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Abstract

The present study is devoted to the investigation of the reorientation and nonlinear optical

properties of 8CB liquid crystal samples doped with gold nanorods with distinct width to

length ratios (aspect ratios). By using the Z-scan technique, the mechanisms behind phase

distortions and nonlinear absorption by samples under homeotropic anchoring conditions

are evaluated. Our results reveal that thermal effects are the leading phenomena causing

distortions in the incident beam wavefront for normal light incidence. When the oblique

incidence regime is concerned, nonlinearities in the refractive index play a larger role in

phase shifts, due to the reorientation of the far-field director caused by the electric field

of impinging light. The temperature dependence of χ(3) nonlinearities are investigated,

where an anomalous behavior of the nonlinear refractive index is observed close to the

nematic-smectic-A phase transition. In addition, a gradual increase in magnitude of

the nonlinear absorption coefficient appears at temperatures where the smectic order is

well-established. Furthermore, the effects of gold nanorod aspect ratio in the viscoelastic

properties of twisted nematic cells under an AC electric field are explored, with a reduction

in the Freedericksz threshold voltage being accounted as impurities are introduced in

the sample. A decrease of reorientation times is reported for samples containing gold

nanorods compared to the undoped liquid crystal, with a further reduction in the system

containing more elongated nanoparticles. The longitudinal plasmonic extinction band

was also excited in order to evaluate the contributions of the surface plasmon resonance

to switch times. The Gooch-Tarry conditions and Mauguin minima are also exploited to

extract the thermal dependence of the nematic birefringence of samples, where a decreased

discontinuity in the nematic order parameter is observed for doped materials. A thorough

discussion of the interplay between the introduction of gold nanorods and the liquid-

crystalline order is performed, unveiling the possibility of novel applications for plasmonic

systems.

Keywords: liquid crystals, gold nanorods, nematic reorientation.
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Resumo

O presente trabalho é voltado para a investigação das propriedades de reorientação e

ópticas não-lineares de amostras de 8CB dopadas com nanobastões de ouro em distin-

tas razões de comprimento por raio (razão de aspecto). Utilizando a técnica de Z-scan,

os mecanismos responsáveis pelas distorções de fase e absorção não-linear em amostras

com ancoramento homeotroópico são avaliados. Nossos resultados revelam que efeitos

térmicos são o principal fenômeno causando distorções na frente de onda do feixe para

incidência normal. Quando o regime obĺıquo é considerado, contribuições não-linearidades

no ı́ndice de refração desempenham um papel maior nas distorções de fase, devido à re-

orientação do diretor de campo distante causada pelo campo elétrico da luz incidente. A

dependência com a temperatura das contribuições de χ(3) para a não-linearidade são in-

vestigadas, onde um comportamento anômalo do ı́ndice de refração não-linear é observado

próximo da transição de fase nemática-esmética-A. Além disto, um aumento gradual em

valor absoluto do coeficiente de absorção não-linear surge em temperaturas onde a ordem

esmética é bem estabelecida. Além disso, os efeitos da razão de aspecto nas propriedades

viscoelásticas de células nemáticas twist submissas a um campo elétrico AC são explo-

radas, com uma redução na voltagem limiar de reorientação sendo observada quando

impurezas são introduzidas na amostra. Uma redução dos tempos de reorientação é ob-

servada para amostras contendo nanobastões comparado com a amostra pura, com um

efeito mais pronunciado no sistema contendo as nanopart́ıculas mais alongadas. A banda

de extinção plasmônica longitudinal é excitada com o objetivo de avaliar as contribuições

da ressonância plasmônica de superf́ıcie para os tempos de reorientação. As condições de

Gooch-Tarry e mı́nimos de Mauguin são explorados com o intuito de extrair a dependência

térmica da birrefringência nemática das amostras, com uma redução da discontinuidade

do parâmetro de ordem nemático sendo observada para materiais dopados. Uma dis-

cussão da relação entre a introdução de nanobastões de ouro e a ordem ĺıquida-cristalina

é investigada, revelando a possibilidade de novas aplicações para sistemas plasmônicos.

Palavras-chave: cristais ĺıquidos, nanobastões de ouro, reorientação nemática.
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1
Introduction to liquid crystals

1.1 Order and states of matter

Liquid crystals are, in essence, a state of matter possessing properties in between those

presented by solids and those presented by liquids. It is, however, not quite simple to

define a liquid crystal without introducing some prior concepts. As stated by de Gennes

and Prost, “to understand the significance of these new states of matter, it may be useful

to recall first the distinction between a crystal and a liquid” [1].

Let us start by defining what would be a crystal. Crystals are structures presenting a

very special property: if one has a primitive pattern located at a certain position, say, ~x0,

and one goes arbitrarily far from that point, the probability of finding the same pattern

remains finite. Experimental-wise, the Bragg X-ray scattering will show sharp peaks

periodically. These are signs of a highly ordered microscopic structure. Since crystals

present this degree of order, they can be defined by what is called a Bravais lattice, an

infinite array of atoms distributed throughout space, generated by the repetition of a

minimum cell. Mathematically, this can be described as [2, 3]

~R = n1â1 + n2â2 + n3â3, (1.1)

where ni are integers and âi are the basis vectors which span the lattice throughout space.

If one walks away from ~x0 to a new point ~x in space, the structure located around such
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point will be described as

~R = ~x+ n1â1 + n2â2 + n3â3, (1.2)

which represents a repetition of the original pattern, recovering our initial concepts of

how a crystal should be like.

One way to quantify the order in a system commonly adopted in statistical mechanics is

the use of correlation functions. In the canonical ensemble, one may define the correlation

function as the thermal average of the inner product of two variables, say, ~s1(~r, t) and

~s2(~r, t) at distinct positions and times [4]. That is,

C(~r, t) ≡ 〈~s1(~r, t) · ~s2(~r + ~r′, t+ t′)〉. (1.3)

The random variables here need not be different. ~s1 and ~s2 may refer to the same quan-

tity, as the spin of electrons, the density of molecules, or the positions of the center of

mass of particles. Correlation functions, hence, give us insight on how two microscopic

variables will be related to one another across space and time on average. We may as

well consider the steady-state (or equilibrium state) of a system, where temporal evolu-

tions are irrelevant and only spatial correlations are of significance (t′ is set to zero in

equation (1.3)).

Through X-ray crystallography experiments, one may determine experimentally how

the microscopic structure of materials is ordered. The procedure consists in bombing

samples with X-rays, which will be diffracted to many directions with varying intensities,

according to the atomic or molecular structure of the material. Inspecting the specific

directions and amplitudes, a picture of the electron density within the sample may be

constructed, leading to a reckoning of the molecular or atomic arrangement of the material.

A crystal X-ray diffraction pattern, for instance, will be described as

lim
|~x−~x′|→∞

〈ρ(~x)ρ(~x′)〉 = F (~x− ~x′), (1.4)
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where 〈ρ(~x)ρ(~x′)〉 is the density-density correlation function (or pair correlation function)

and F (~x − ~x′) a periodic function of vector basis ~a. In other words, if one starts at a

point ~x and walks arbitrarily far away from that point to a new position ~x′, the density

of atoms or molecules on a thermal average will be related by some periodic function of

position, no matter how far ~x is from ~x′.

Liquids, on the other hand, present a whole different set of properties. The probability

of finding a similar structure in a different place in an isotropic liquid vanishes as one gets

far away from the reference, except for an average density. That is,

lim
|~x−~x′|→∞

〈ρ(~x)ρ(~x′)〉 ' ρ̄2. (1.5)

Liquids present an isotropic length scale for which all correlations are lost, usually called

ξ. On the measurements of X-ray diffraction, diffuse peaks with typical width ξ−1 ap-

pear. These properties make liquids disordered, even though their molecules are strongly

interacting.

Liquid crystals are a mix between both states of matter. They must present isotropic

liquid-like order in at least one dimension, and its density-density correlation function

does not depend solely on the positions of the center of mass of each particle, but also

their orientation with respect to a defined axis.

Considering three-dimensional space, one can classify liquid crystals in three main

broad categories:

• Centers of mass presenting isotropic liquid-like order, but with anisotropic corre-

lation lengths. That is, there being two typical length scales for which disorder

appears, ξ⊥ and ξ‖ (or order decays);

• Centers of mass presenting crystalline order in one direction only, and the other two

presenting isotropic liquid-like typical length decays;

• Centers of mass presenting crystalline order in two directions, with the third direc-

tion order decaying as an isotropic liquid.

12



The first category given here is what is usually called a nematic: a phase where the

centers of mass of molecules seem to be disordered, with the disorder, however, decaying

differently in two specific definite directions. The word nematic comes from the Greek

νηµα (nema), which means “thread”, in reference to the topological defects appearing in

nematics. The second category would be what is commonly known as a smectic. Since the

centers of mass present crystalline order in one direction, they arrange in such a way to

form well-defined layers, but their lack of high degree of order in the other two dimensions

make the molecules within a layer able to flow smoothly along it, and layers able to slide

over one another. The word smectic comes from the Latin “smecticus”, meaning cleaning,

a reference to soap-like properties. The third category represents the columnar phases,

where molecules arrange themselves in a two-dimensional array, stacking over one another,

forming columns within the sample. Because of the absence of a high degree of ordering

in the third direction, molecules may flow within a same column.

Not all materials present liquid-crystalline phases (also called mesophases), and neither

do all materials that present them, present all of the phases. In particular, if a mesophase

is achievable in some material, that liquid-crystalline state of matter need not be the

only mesophase that such material presents. There may be multiple phase transitions

between these several possibilities of liquid-crystalline orderings, where the same material

can present one or many phases depending on its physical conditions.

In order for a chemical compound to exhibit mesophases, molecules must present some

specific molecular geometry in which anisotropy is innate. As we have described before,

their density-density correlation function has to depend on the molecular orientation with

respect to a definite axis, even when the positions of the centers of mass present no long-

range order. There are two main candidates that appear frequently in nature: elongated

(prolate, or calamitic) and disc-like (oblate) molecules, being either chiral or achiral. For

the purpose of this work, two specific mesophases formed by achiral calamitic molecules

will be discussed.
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Figure 1.1: Schematic representation of molecules constituting nematic (a) and smectic-A (b) phases,
showing the mean molecular alignment to a fixed far-field direction, as well as the layered structure
present in (b), the less symmetric phase.

Source: Author (2019).

1.2 Liquid-crystalline phases

Thermotropic liquid crystals are a class of materials exhibiting liquid-crystalline phases

under specific thermodynamic conditions. For a certain temperature range (considering

pressure values around sea-level standard), thermal fluctuations will not be high enough to

drive the system to an isotropic state, but sufficient to destroy highly ordered crystalline

assemblies. Under such range, our material will present physical properties lying in one

of the categories described in the previous section, and may even transition between one

another, if heated or cooled. For example, a compound may present a smectic phase and

exhibit a transition to the less ordered nematic phase before reaching an isotropic state,

or even transitions between other smectic phases. For the next subsections, we will delve

a little bit more into the physical properties of nematics and smectics, as well as phase

transitions between both.

1.2.1 Uniaxial nematics

A nematic liquid crystal is a liquid-crystalline mesophase where the centers of mass

of the constituting molecules present no long-range order. Equivalently, it is common

to hear that nematics present no long-range positional order. In this aspect, they are

14



just like liquids, except for the anisotropy in the correlation length scales. However,

the molecules self-align to compose long-range directional order. If, for example, the

molecular shape is calamitic (rod-shaped), their long axes point, on an average, to the

same direction. Such properties make nematics free to flow just like liquids, but their

preferred orientation reflects in the macroscopic tensor properties, ensuing, for instance,

in optical, dielectric and magnetic anisotropy, like crystals do. This preferred molecular

orientation is usually called ~n, the director vector. Due to the molecular anisotropy, ~n is

easily realigned by magnetic or electric fields. Another important property of the director

is that the directions ~n and −~n must be indistinguishable. If molecules carry any dipole

moment, they will cancel out throughout the bulk, mainly based on two arguments: If

dipoles are really present and molecules are asymmetric in shape, there will be as many

shapes “up” as there will be “down”, for any imbalance would be punished by steric

interactions causing costly elastic distortions along the material, an argument that can be

proven mathematically [5]. On the other hand, if no asymmetry is present on molecular

shape, a problem arises with known physical interactions between molecules: the exchange

couplings are much weaker than other conventional molecular interactions, such as van

der Waals, steric repulsion, and so on. Ferromagnetic liquid crystals have been reported

before, but they are a result of magnetic nanoparticle suspensions [6], not magnetic dipole-

carrying molecules. For most of the cases, the director may be regarded as symmetric,

since such lack of symmetry is an exception in nowadays most considered liquid-crystalline

systems. A schematic representation of uniaxial nematics is shown in figure 1.1(a).

1.2.2 Smectic-A phase

A smectic liquid crystal is a mesophase that occurs at lower temperatures than nemat-

ics. The centers of mass this time present quasi-long range order in one direction, giving

rise to a layered structure. Molecules within one layer may flow freely along their layers,

and layers can slide smoothly one over another. Along the other directions, smectics

present no long-range order. Furthermore, smectics also present long-range orientational

order in one direction, just like nematics, where we may also define a director vector ~n
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to the smectic phase, presenting the same properties discussed before for the director

vector of the nematic phase. Since now we have two vectors, namely, the normal to layer

surface and ~n, one may define an angle, say, α, between these two directions. If α = 0,

for instance, the smectic phase is called a smectic-A. If otherwise, the state of matter

is called smectic-C. Once again, the director orientation and layered structure guarantee

anisotropic macroscopic tensor properties. Other smectic phases presenting triangular

lattice positional ordering that extends through a few dozens of nanometers are also pos-

sible, and are called hexatic smectics [1], but will not be discussed here. A schematic

representation of smectic-A is shown in figure 1.1(b).

1.3 Liquid crystal cells

Since the direction of ~n is, to this point, arbitrary in space, it is useful to impose minor

forces in the material, such as boundary conditions on the walls of the sample container

(or cell). By guiding the average direction of molecules, one can also guide the axis on

which anisotropy will occur. This same feature can be achieved adjusting the direction

and magnitude of external fields. Understanding the conformation of molecules subject

to surface alignments and their behavior under the influence of external fields, one may

control mechanical, optical, electrical, magnetic, and thermal effects; enabling oneself to

extract useful physical properties from the systems.

Two main alignment conditions are usually employed in liquid crystal research, namely,

homeotropically- and homogeneously-aligned surfaces. The former induces a perpendicu-

lar alignment of molecules at the substrate, and it may be achieved in practice by chem-

ically treating glass surfaces with surfactants and detergents, such as silanes or special

polyimide compounds. Homogeneously-aligned surfaces impose alignment parallel to the

substrate, usually along a definite, constant, direction. To achieve this state, polyimide

may be deposited over the glass surface and be mechanically rubbed afterwards with vel-

vet or paper, towards the direction of desired alignment. By combining two substrates

of known alignment conditions, one may produce cells with diverse director profiles. See,

for example, the states represented in figure 1.2.
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Figure 1.2: Parallel planar, homeotropic and twist alignment cells, filled with an achiral calamitic liq-
uid crystal. Homogeneous alignment glass surfaces force molecules to align parallel to the substrate,
while homeotropic alignment glass surfaces force molecules to align perpendicular to the substrate. By
setting two homogeneously aligned glass surfaces with their alignment direction parallel to each other,
the director stays constant throughout the sample, parallel to the substrates, and uniform along the
bulk. Homeotropically-aligned cells are observed when two surfaces imposing perpendicular boundary
conditions on the molecules in contact with the glass surface are placed parallel to each other. In such
configuration, the director will be constant and perpendicular to the substrates throughout the sample. If
one now builds a cell with two homogeneously-aligned glasses, but the angle between the two alignment di-
rections is non-null, the director will follow a smooth helical path until reaching the other plate, satisfying
the boundary conditions. A combination between one homogeneously- and one homeotropically-aligned
cell is also possible, but not shown here.

Source: Author (2019).

In order to produce regular cells, two aligned glass plates may be put parallel to each

other, separated by strips of some film of fixed thickness, such as silica, mylar, or cellulose.

The gap between both substrates may then be filled with a liquid-crystalline material. If

we consider a calamitic achiral liquid crystal between two glass surfaces homogeneously-

aligned in the same direction, the director will remain uniform throughout the sample,

parallel to the glass surfaces and constant along the bulk. Such configuration is called

parallel planar, and is the first cell type represented in figure 1.2.

Since the alignment direction in parallel planar cells is known, the director is known,

and so is the anisotropy axis. That way, it’s possible to deal with an optically isotropic

or anisotropic material, depending only on the angle between the polarization of incident

light and alignment direction. For instance, if incident light presents a linear polarization

parallel or perpendicular to the director, the material will behave as an optically isotropic

sample. Equivalently, it is possible to observe a birefringent material with any possible

combination of the two indices of refraction, depending on the angle between ~n and the

polarization of light. Due to their anisotropic nature, liquid crystal molecules are also
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easily reoriented when interacting with external fields. An external electric field may

also be employed to reorient the director, and the anisotropy axis may be fine-tuned by

field strength, an easily controlled parameter. Such feature makes planar alignment cells

suitable to useful everyday applications, such as display technology, where samples may

go from a fully isotropic to a strongly anisotropic state, depending only on the switching

of an external field.

Similarly, two parallel homeotropically-aligned glass surfaces will induce a perpendic-

ular orientation of molecules over the glass surface, and such preferred mean orientation

will hold throughout the bulk, making the director perpendicular to the substrate. Those

are usually called homeotropic cells, and are represented as the second cell type in fig-

ure 1.2. This configuration is optically isotropic for perpendicular incidence, independent

of light polarization direction, unlike planar cells. Even though only the ordinary axis

is accessible for this case, this may actually be of some help in cells being insensitive to

alignment along the optical axis, and thus reducing errors in experiments. Such feature

makes homeotropic cells filled with liquid crystals presenting positive dielectric anisotropy

less common in technological applications, but extremely useful for experimentation.

The third configuration shown in figure 1.2 is the twisted alignment, in which two

homogeneously-aligned surfaces are put together such as their alignment directions make

a definite angle between each other. The director will be parallel to the surfaces, and

vary smoothly in a way to satisfy the boundary conditions at both substrates. That

is, ~n will rotate in a helical fashion, with the helical axis perpendicular to the glass

surfaces. This somewhat curious conformation has interesting properties. If we consider

the twisting angle being π/2 rad, for example, polarized light at certain wavelengths

impinging the sample perpendicularly will have its polarization follow the helix of the

director and be rotated by π/2 rad exactly, if the initial polarization direction is parallel to

the input substrate alignment. Such calculations will be performed later in this text. This

feature will be almost perfect for wavelengths ranging from the whole visible to ultraviolet

spectrum, making twisted nematic samples completely dark in between parallel polarizers

and almost transparent when placed between crossed polarizers (if the “correct” alignment
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of polarizers is ensured). For molecules with positive dielectric anisotropy, an external

electric field can be applied perpendicular to the glass surfaces and induce a state similar

to the homeotropic alignment mentioned before, making the sample optically isotropic.

In other words, samples can go from fully bright to dark (or the opposite, depending on

whether polarizers are perpendicular or parallel to each other) by controlling an external

field. For the aforementioned reason, twisted nematic cells are frequently used in display

technology and light modulation devices.

Regarding the elastic response of molecules to electronically-applied external fields,

uniaxial liquid crystals may present either negative or positive anisotropies, depending

on the microscopic characteristics of the material and physical conditions under which

the material is subjected to. For instance, when the frequency of external AC electric

fields is increased, the formerly positive dielectric anisotropy of materials is decreased and

eventually reverted to negative values [7]. Such distinction between positive or negative

anisotropy leads to very different responses for identical stimuli. An external electric field

will induce director reorientation, to be parallel to the field in the case of positive dielectric

anisotropy and perpendicular for a negative sign. In practice, external uniform electric

fields may be easily induced perpendicular to the cell surfaces. The procedure consists in

coating glass surfaces with indium tin oxide and applying a voltage between both plates.

One simple and illustrative demonstration of how liquid crystal cells might be useful

for everyday applications is the simple twisted nematic liquid crystal display itself (TN-

LCD). It consists in one of the most fundamental examples of an electrically-controlled

birefringence device using liquid crystals, which enables the fast, efficient, and low power

consumption switching between two states — namely, one completely bright to the human

eye and another completely dark. When placed between crossed polarizers, a π/2 rad

twisted nematic cell will almost perfectly rotate the polarization of visible and ultraviolet

light, in a way that it exits the cell with a polarization state practically perpendicular to

the input state; making the display completely bright to the human eye. A voltage may

then be applied to both glass substrates, where the ensuing electric field will reorient the

far-field director. That is, the field will sway positive dielectric anisotropy molecules to
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Figure 1.3: Schematic representation of a twisted nematic liquid crystal display set to the naturally-on
state. Considering a positive dielectric anisotropy, when an electric field is applied perpendicular to
glass surfaces, a reorientation of the director occurs, destroying the formerly twisted director pattern
and giving rise to a new configuration, where molecules will try to align parallel to the applied field.
To induce a completely off state, voltages of approximately 2−5 times the threshold voltage (around 1.5
to 4 V) are required for usual cyanobiphenyls, as will be shown later in text. Such state is called the
electrically-switched-off state.

Source: Author (2019).

try to align along the field lines in order to minimize free energy. This new configuration

of reoriented molecules is now optically isotropic, and the display appears completely dark

between crossed polarizers. A depiction of the TN-LCD is shown in figure 1.3.

It is important to stress that by no means liquid crystal technology is nowadays limited

to displays. Due to their light-modulating properties, simplicity to implement external

control, and fine-tuning of sample responses, liquid crystals are ubiquitous in many tech-

nological application branches nowadays. For example, tunable band gap cholesteric LCs

have proven to be well suited for several photonic applications, including — but not

limited to — adjustable optical filters [8, 9], electro-tunable diodes [10], as well as tun-

able lasers [11, 12, 13, 14]. The optical properties of twisted nematic cells make them

outstanding phase and amplitude modulating devices, being noteworthy candidates for

applicabilities at phase retardation plates, liquid crystal displays, and spatial light mod-

ulators [15, 16, 17, 18]. Another remarkable example is the role played by liquid crystals

in tunable metamaterials technology, a branch that is quickly developing over the past

years [19, 20, 21, 22, 23, 24].
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1.4 Liquid crystalline guest-host systems

Doping liquid crystals with guest molecules and/or particles may lead to dramatical

effects on the macroscopic sample properties. To improve the response of liquid crystals,

one may take advantage of the introduction of guests inside liquid crystal samples and

their curious responses. Chiral dopants, for instance, induce cholesteric and chiral smectic

phases, and may give rise to ferroelectric materials well suited for practical applications

[25, 26]. Dichroic dyes might present tunable optical absorption, according to amplitudes

of external electric fields for samples undergone Freedericksz transitions [27, 28]. Ferro-

electric nanoparticles may increase nematic to isotropic transition temperatures by values

as high as 5 K, as well as present a dramatic enhancement in the sensitivity to external

fields [29], and considerable improvements in two-beam coupling [30]. Due to their large

dimensions compared to molecular scales, colloidal particles induce elastic distortions in

the nematic order, bringing about long-range interactions, thus enabling the arrangement

of several self-assembled structures [31, 32, 33].

Overall, guest-host systems have proven to yield several improvements in optical,

elastic, and thermodynamic properties, as well as novel responses; features yet to be re-

ported for undoped samples. Recently, a lot of attention has been drawn to the study of

liquid-crystalline systems containing plasmonic nanoparticles as the doping agent. Due to

advances in synthesis methods, a fine-tune of nanoparticle shape, size, and surface anchor-

ing conditions can be achieved. The introduction of such colloidal nanoparticles brings

about topological defects around the impurities, depending on the capping agent used

to stabilize dispersions (see figure 1.4). Consequently, disturbances of the orientational

order will follow, reflecting in macroscopic elastic responses. Moreover, surface plasmon

resonance has proven to be of fundamental importance to some electro-, thermo-, and

nonlinear optical properties of samples due to collective phenomena; where size, shape

and anisotropy have played major roles in dictating observed behaviors [34].

Gold nanoparticles, for instance, have shown to induce local electric fields around

themselves, due to plasmonic excitation by incident light. Those local fields, in turn,

cause director reorientation around the impurity centers, yielding a change in the refractive
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Figure 1.4: Schematic representation showing a rod-shaped nanoparticle with different surface anchor-
ing conditions. Note how different anchoring conditions bring about fundamentally distinct topological
defects. For homeotropic anchoring (a), a disclination ring is observed. For parallel anchoring (b), two
surface boojums at extremities of the nanorods are observed. For gold nanorod syntheses, one may employ
different capping agents that are equally efficient at colloidal stabilization and aggregate prevention, but
each inducing distinct anchoring conditions at the nanoparticle surface. For example, cetyltrimethylam-
monium bromide (CTAB) induces homeotropic anchoring conditions, while parallel boundary conditions
are expected for m-polyethylene glycol (m-PEG) stabilization.

Source: Author (2019).

indices of the sample [24]. Enhanced nonlinear optical responses of nematic liquid crystals

were also reported, where gold nanoparticles act as heat sources, with effects improving

as concentration of dopants increases [35]. Lyotropic liquid crystals doped with gold

nanospheres present an enhanced thermo-optical and nonlinear optical response as colloid

concentrations rise, with a stronger dependence on the number of nonmesogenic impurities

compared to aqueous dispersions [36].

In particular, it was previously reported that for homeotropic samples in the vicinities

of the nematic-smectic-A phase transition, the critical behavior of the thermal diffusivity

and thermal beam phase shift is responsive to the shape of gold nanoparticles, with a

suppression of the discontinuities being more pronounced in the sample containing gold

nanospheres than in the sample containing nanorods. Furthermore, for temperatures

where the smectic order is well-established, a saturation of the single-photon absorption

is reported in the sample containing gold nanorods, indicating that as temperatures are
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reduced, local thermal fluctuations of the director are further hindered, influencing an

overall alignment of the nanorods and the advent of a collective nonlinear response [34].

Even though a plethora of studies discuss the plasmonic effects on the thermo-optical and

nonlinear optical properties of liquid crystals, only a few of them are devoted to analyzing

the effects of the smectic ordering.

A lot of attention has also been drawn over the past years to the investigation of

electro-optical responses in nematic liquid crystals containing gold nanorods, where several

enhanced features were reported in planar cells, such as a lowering of splay and bend

elastic constants, as well as a striking independence on temperature of such parameters

[37]. Plasmonic analogues were also shown to be suitable replacements for dichroic dyes

in technological applications, due to a greater stability and absence of aggregates [38]. A

self-assembly of gold nanorods codoped with nanocomposite materials was also observed

in nematic systems, where the orientation of plasmonic nanorods could be fine-tuned to

enable the selection of distinct polarized surface plasmon resonance spectra [39]. Albeit

liquid-crystalline samples doped with gold nanorods have been extensively explored under

parallel planar boundary conditions, a few works were devoted to plasmonic and elastic

distortion effects of cells submitted to twist surface anchoring.

In the present work, the effects of a beam impinging at oblique incidence onto a liquid-

crystalline system containing gold nanorods at the vicinities of the nematic-smectic-A

phase transition are evaluated. Due to optically-induced director reorientations, a non-

linear optical refractive response takes place over thermal effects, being the leading beam

distortion phenomena as opposed to the normal incidence configuration [34]. Moreover,

an anomalous increase of the nonlinear refractive index n2 is observed near the vicinities

of the nematic-smectic-A phase transition. Such observation is then explained under the

light of director instabilities near the phase transition temperature, due to an enhanced

anisotropy of Frank elastic constants. As temperatures are lowered and the smectic order

becomes well established, a saturable nonlinear absorption is reported, just like at the

regime of normal incidence [34], with the nonlinear absorption coefficient β increasing in

magnitude as the sample is further cooled, until reaching an apparent plateau.
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Moreover, the electro-optical properties of twisted cells containing liquid crystals doped

with gold nanorods at two distinct aspect ratios are also exploited. The steady-state

transmittances were obtained for several voltages, where samples containing nanoparti-

cles presented a slight decrease in threshold voltages, together with a much steeper profile

than the undoped one, with the sample doped with the more elongated particles being

the steepest. The time-dependent transmittance curves were also analyzed, and the reori-

entation time curves for each sample calculated from the data. A significant decrease in

reorientation times is reported as impurities are added to the system, with the response

being faster in the sample containing the higher aspect ratio nanorods. A thorough discus-

sion is given on the nature of the observed phenomenon, under the light of induced elastic

distortions and the Osipov-Terentjev framework. In order to evaluate the contributions

of the longitudinal plasmonic extinction band to the enhancement of the electro-optical

response, samples were pumped at various powers by a DPSS laser operating at the near

infrared, close to the plasmonic peaks. Further, the transmission spectra of cells were

obtained for various temperatures, which enabled us to estimate the thermal behavior of

the birefringence according to the Gooch-Tarry conditions and Mauguin minima. A re-

duction in the discontinuity of the birefringence at the nematic-isotropic phase transition

was observed, probably due to a decrease in the nematic order parameter caused by the

introduction of disorder centers.
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2
Lensing phenomena in low absorption thin

media

When matter is subject to the presence of radiation at strong intensities, some curious

phenomena may occur. For a sample free to move back and forth along the propagation

direction of a focused beam (say, over the z-axis), the light irradiance profile over the

sample will be dependent on its position, z. This distribution of intensities may interact

electro-optically or thermally with our material, causing changes in its index of refraction,

n. Such interactions might provoke a radial refractive index profile, n(r), which will be

related to the intensity distribution of light, I(r). Depending on how the sample refractive

index responds to such intensity profile, a self-focusing or self-defocusing phenomenon of

the beam may be observed — due to the lens-like behavior caused by the ensuing refractive

index gradient. If we let z = 0 be our focus and consider a self-focusing response, a

reduction in the transmittance will be observed for z < 0, while an increase is measured for

z > 0. The opposite holds true for a self-defocusing process. Several systems presenting

optically-induced refractive index gradients have been previously reported [40, 41, 42],

some of which will be discussed in detail here.

When a sample is exposed to electromagnetic radiation, electrons in the material take

up the energy of some incident photons, transitioning to a new quantum state, where

electromagnetic energy is transformed in internal energy of the sample. Such internal

energy increase may lead to thermal variations within the material, possibly altering
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macroscopic physical properties, depending on the particular thermal sensitivity of each

respective physical parameter. The index of refraction of the sample might be sensitive to

slight local variations of temperature, depending on dn/dT , such that an external beam

profile impinging the material will ensue a similar temperature profile, and a subsequent

refractive index gradient. The aforementioned radial variations on the index of refraction

result in a consequent lens-like behavior, called the thermal-lens effect.

Another common phenomenon arises when the beam irradiance is strong enough such

that nonlinearities in the electric polarization density become relevant, in a manner that

the optical response of the material becomes nonlinear. If we are considering materials

possessing inversion symmetry, the nonlinearities are induced through contributions of

both real and imaginary components of χ(3), χ(5), and further odd polarizability coeffi-

cients, χ(2n+1), with their effects being more or less pronounced according to field strength

and material sensitivity. Depending on the laser profile, an index of refraction gradient

mimicking the beam profile will be formed in the sample, ensuing a gradient-index lens-

like behavior. Such phenomenon is called the optical Kerr effect. A thorough discussion

of the aforementioned features is presented later in this chapter.

2.1 Thermal-lens model

When a beam described by some intensity profile is incident upon a sample, the

molecules of the material will absorb some of its energy, raising the sample temperature.

As a consequence, a thermal profile is observed along the sample, being related to the

intensity profile of the impinging beam through the diffusion equation. Such temperature

gradient throughout the sample will affect the refractive index, which is sensible to thermal

variations, and cause the material to behave like a lens [43, 44, 45]. Such response is called

the thermal-lens effect, and a schematic representation of the phenomenon is shown in

figure 2.1.

The heat diffusion on the sample on the presence of an energy source term will be
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Figure 2.1: Schematic representation of an optically-induced temperature gradient, which, in turn, induces
a refractive index distribution throughout the sample, giving rise to a thermally-induced lensing effect.
Dashed lines here represent the output light intensity profile in the absence of any material. Solid lines
after the sample represent the self-focusing behavior caused by the material properties.
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Source: Author (2019).

described by the heat equation, given by [43]

cρ
∂

∂τ
[∆T (r, τ)] = q̇(r) + k∇2 [∆T (r, τ)] . (2.1)

Here, ∆T (r, τ) is the temperature profile of the sample, induced by a heat source, q̇(r),

called the source term. It is the energy flow into a unit volume per unit time at a distance r

from the axis. The other constants in the equation together with their units are presented

below in table 2.1.

Table 2.1: Parameters appearing in equation (2.1).

c specific heat cal g−1 K−1

ρ density g cm−3

τ time s
r radial coordinate cm
k thermal conductivity cal s−1 cm−1 K−1

The change in intensity as a light beam passes through a medium presenting a small

and linear absorption can be described as

∆I(r) = I(r)− I0(r) ≈ I0(r)b`0, (2.2)

where b is the sample absorbance, in cm−1, and `0 is the sample thickness (in cm). I(r)

is the light intensity exiting the cell and I0(r) is the intensity entering the cell. The heat

source — corresponding to the energy flow into a unit volume per unit time — will be
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the intensity change per unit distance (thickness in this case), defined as

q̇(r) =
∆I(r)

`0

≈ I0(r)b. (2.3)

Since Gaussian beams at TEM00 are common experimental lasers and have a function

with well-known properties as a profile, we may use them as our beam profile of choice.

Such beam will have its radial intensity profile described by

I0(r) =
2(0.24P )

πω2
exp

(−2r2

ω2

)
. (2.4)

ω here is the beam radius, or spot size, in cm. P is the laser power, in W. The factor of

0.24 is the Joule constant, in order to transform W→ cal s−1.

Our source term then will be

q̇(r) =
2(0.24P )b

πω2
exp

(−2r2

ω2

)
. (2.5)

With equation (2.5) as the heat source, the solution to equation (2.1) can be shown

by the Green function method to be [46]

∆T (r, τ) =
2(0.24P )b

πcρω2

∫ τ

0

(
1

1 + 2τ ′/τc

)
exp

( −2r2/ω2

1 + 2τ ′/τc

)
dτ ′, (2.6)

where τc is defined as

τc ≡
ω2cρ

4k
, (2.7)

and is usually called the characteristic time for thermal-lens buildup.

On a first approximation, the refractive index as a function of temperature can be

written as

n(r, τ) = n0 +
dn

dT
∆T (r, τ), (2.8)

where n0 is the refractive index of the sample at the initial temperature and dn/dT is the

ratio of change in the refractive index resulting from temperature variations.

Since we have equation (2.6), the temperature dependence of the refractive index dis-
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Figure 2.2: Geometry of the experiment and parameters appearing at the diffraction integral, at equa-
tion (2.9).
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Source: Author (2019).

tribution over the sample can be obtained directly. Such distribution will cause phase

distortions on the resulting input beam wave, and in order to calculate this lensing be-

havior, equation (2.8) will be important later on.

Let us now analyze how the ensuing thermally-induced lens will affect the beam wave-

front at the output plane, where the detector is located. The Huygens principle states

that the complex phase and amplitude of the resulting wave in the output plane will be

the sum of all contributions related to each Huygens wavelets emerging from their re-

spectively source point in the input plane. Mathematically, the Huygens principle can be

stated in terms of the diffraction integral,

Ũbc(τ) =
i

λ

∫ ∞
0

∫ 2π

0

Ũi(r, τ)

(
1 + cosα

2

)
exp [−i(2π/λ)|~z2 − ~r|]

|~z2 − ~r|
rdrdφ. (2.9)

Figure 2.2 shows all the parameters used above. The first term in the integrand is the

complex phase and amplitude of the wavelets exiting the input plane (that is, right after

the sample). The second quantity in the integrand is the inclination factor, and the third

is the phase attenuation of a wave after traveling across a distance |~z2 − ~r|. The result,

Ũbc(τ), is the ensuing complex phase and amplitude at the output plane, right on axis

(r = 0), where the detector is placed.

In fact, some rearrangements may be done in the experimental setup in order to

simplify the diffraction integral. The detector might be placed far away from the sample

such as z2 may be taken as much larger than r, which will lead to |~z2 − ~r| ≈ z2 and

(1 + cosα)/2 ≈ 1. For the exponential, a first order approximation is better suited, for
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Figure 2.3: Geometry of the optical path differences and phase distribution with thermal-lens sample
being absent (a) and present (b).
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even though the exponent may be small by itself, the exponential of such small value

may not be so negligible. Bearing the previous discussion in mind, the argument of the

exponential will be better represented by (2π/λ)|~z2 − ~r| ≈ (2π/λ)[z2 + r2/(2z2)]. With

these previous considerations, equation (2.9) is simplified to

Ũbc(τ) = A

∫ ∞
0

∫ 2π

0

Ũi(r, τ) exp

(
−iπ
λ

r2

z2

)
rdrdφ. (2.10)

Here, all constants are merged together into A.

In order to find an expression for Ũi(r, τ), we are going to ignore the effects of the

lensing medium and consider a composition of spherical waves of radius R and Gaussian

amplitude distribution. Subsequently, the phase distortions caused by the lensing medium

will be found and taken into account. Then, the amplitude distributions of the waves

exiting the sample will be

|Ũi(r)| = B exp

(−r2

ω2

)
. (2.11)

The geometry for optical path differences can be used to calculate the phase at points

on the input plane. Since optical paths are related to phase differences with a propor-

tionality factor of 2π/λ, we may observe the wave geometry represented schematically in

figure 2.3 to obtain the phase of each spherical wave. By following the aforementioned
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approach, the reckoned phase shifts will be given by

2π

λ
L =

2π

λ

√
R2 + r2 (2.12)

≈ 2π

λ

(
R +

r2

2R

)
. (2.13)

Our approximation is valid, because the beam is confined to a small region around the

z-axis, such that R � r holds. From equation (2.13), consequently, the relative phase

distribution of our spherical waves (also called the phase lag) will be πr2/λR.

The effects of the lensing medium may be considered as an aberration in order to

take into account the extra phase lag caused by the sample. That means we should add

another term to the original phase lag of the spherical wave. Let us once again consider

the geometry of optical path lengths. Initially, the optical path is Φ0 = n0`0, and the

optical path variations for off-axis points about z is written as

Φ(r, τ) = `0[n(r, τ)− n(0, τ)]. (2.14)

This is where equation (2.8) becomes important. Knowing our solution, equation (2.6),

the additional phase lag will be

2π

λ
Φ(r, τ) =

2π

λ

dn

dT
`0[∆T (0, τ)−∆T (r, τ)]. (2.15)

Considering we have the following expressions: the amplitude distribution for the

waves on the input plane (equation (2.11)), the initial phase lag (equation (2.13)), and

the additional phase lag (equation (2.15)), the complex phase and amplitude on the input

plane will be

Ũi(r, τ) = B exp

(−r2

ω2

)
exp

[
−iπ
λ

(
r2

R
+ 2Φ

)]
. (2.16)

Substituting equation (2.16) in the diffraction integral (equation (2.10)), performing

the change of variables u = r2/ω2, and integrating over φ, we arrive at

Ũbc(τ) = C

∫ ∞
0

exp

{
−
[
u+ i

(
2π

λ
Φ(u, τ) +

πω2

λ

(
1

R
+

1

z2

)
u

)]}
du. (2.17)
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Remember that ω here is not the angular frequency of light, but the beam radius. Con-

sequently, since we are considering our beam to be Gaussian, the following relations are

true [47]

ω(z1) = ω0

√
1 +

(
z1

zR

)2

, (2.18)

R(z1) = z1

[
1 +

(
zR

z1

)2
]
, (2.19)

where zR (sometimes denoted as zc) is the Rayleigh range (or confocal parameter) of the

Gaussian beam, defined as zR = πω2
0/λ. Here, ω0 is the minimum beam waist — that is,

the spot size at z1 = 0.

With such relations, the third term in the exponential of equation (2.17) becomes

i
πω2

λ

(
1

R
+

1

z2

)
u = i

[
z1

zR

+
z1

z2

(
z1

zR

+
zR

z1

)]
u. (2.20)

But our detector is placed at the far-field, such that all terms containing z1/z2 or zR/z2

may be neglected. Furthermore, we will also consider

exp

(
−i2π

λ
Φ

)
≈ 1− i2π

λ
Φ, (2.21)

assuming (2π/λ)Φ � 1, a condition usually met in thermal-lens experiments [43]. The

diffraction integral is now

Ũbc(τ) = C

∫ ∞
0

(
1− i2π

λ
Φ

)
exp [−(1 + iξ)u]du, (2.22)

with ξ = z1/zR.

By finally using our solution (equation (2.6)) to find the additional phase lag (equa-

tion (2.15)), we will have

2π

λ
Φ(u, τ) =

θ

τc

∫ τ

0

η[1− exp (−2ηu)]dτ ′, (2.23)
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where

θ =
0.24P`0

λ

b

k

dn

dT
, (2.24)

η(τ ′) =
1

1 + 2τ ′/τc

. (2.25)

Substituting equation (2.23) in equation (2.22), we are left with

Ũbc(τ) = C

∫ ∞
0

[
1− i θ

τc

∫ τ

0

η[1− exp (−2ηu)]dτ ′
]

exp [−(1 + iξ)u]du. (2.26)

Performing first the integral with respect to u and then proceeding to carry out the integra-

tions in τ ′, we may find a closed expression for Ũbc(τ). After integrating equation (2.26),

we should now find the intensity measured in our detectors, Ibc(τ) = |Ũbc(τ)|2. Such

measurable quantity will be

I(τ) = I(0)

[
1− θ

2
arctan

(
2ξ

3 + ξ2 + (9 + ξ2)(τc/2τ)

)]2

. (2.27)

A common experiment performed to obtain the beam phase shift, θ, directly from

curve fitting, is to take the steady-state regime of equation (2.27), where τ →∞ and all

transient effects die out. In such useful configuration, the measured normalized steady-

state transmittance is then

TN(ξ) =

[
1− θ

2
arctan

(
2ξ

3 + ξ2

)]2

, (2.28)

where, as we can see, θ is the only free parameter in the transmittance profile.

The fractional intensity change, in turn, will be given by

I(τ)− I(∞)

I(∞)
=

1− θ arctan
[

2ξ
3+ξ2+(9+ξ2)(τc/2τ)

]
1− θ arctan

(
2ξ

3+ξ2

) − 1, (2.29)

if we ignore terms of the order θ2. Notice that if the sample is positioned at z1 =
√

3zR

(ξ =
√

3), we can measure τc and, consequently, the thermal diffusivity of our material,
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as shown below

I(τ)− I(∞)

I(∞)
=

1− θ arctan 0.577
1+τc/τ

1− θ(0.524)
− 1. (2.30)

Since we have already obtained θ from equation (2.28), a modulated (or chopped) laser

beam may be employed to obtain the transient transmitted intensities and measure τc

— the characteristic thermal lens buildup time — which is the only free parameter in

equation (2.30).

2.2 Nonlinear refraction and absorption

Under the presence of electric fields, some materials experience a change in their index

of refraction according to the magnitude of the applied field, due to nonlinear contribu-

tions to the electric polarizability density. The electric field responsible for triggering such

nonlinear response may be due to light itself, where beams with high enough local irradi-

ance provide an ensuing variation of the sample refractive index, causing phase distortions

in the incident beam wavefront. Consequently, several phenomena may be observed as

beam intensity is boosted, such as self-focusing, self-phase modulation and modulational

instability.

Based on the principles of spatial beam distortion, reference [48] presents a single-beam

method for measuring the sign and magnitude of refractive nonlinearities that offers sim-

plicity as well as high sensitivity [48, 49], called the Z-scan technique. The proposed

experimental setup measures the beam phase distortions caused by lensing media, and

the model developed by the authors enables a fast identification of the nonlinear optical

response of the sample. In the Z-scan method, a quick analysis of the obtained transmit-

tance profile yields both an immediate identification of the sign of the nonlinear optical

parameters β and n2, as well as a quick estimative for both values.

The experimental apparatus of the Z-scan experiment consists in a Gaussian beam set

to be focused at an arbitrary position z = 0, where the sample will be moved back and

forth along the z-direction. According to the incident beam radius, a different optical

response will be obtained, as represented in figure 2.4. The ensuing transmittance will
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Figure 2.4: Experimental apparatus of the Z-scan technique, as discussed in main text. Optical compo-
nents are labeled accordingly in the figure. Here, our diode-pumped solid state laser operating at TEM00

will be focused by a lens, and, according to sample positioning, a more or less pronounced thermo-
and/or nonlinear optical response will be triggered. Characteristic self-focusing or -defocusing profiles
will be observed, where the shape of transmission curves will determine the corresponding main physical
mechanisms associated with the phenomena. By the adjust of normalized Z-scan transmittance curves
according to the most suitable model, one may obtain beam phase shifts directly for the condition of
a closed aperture (S ≈ 0), which will be related to dn/dT or n2. For the open aperture configuration
(S = 1), β follows directly.
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be recorded by a photodetector after passing a variable aperture tool, such as an iris.

Because of this “sweeping” path along the z-axis, the technique was named the Z-scan.

In particular, smaller apertures favor the observation of nonlinear refraction effects, while

larger apertures become more sensitive to nonlinear absorption effects, to the point of

being completely insensitive to n2 for a fully open configuration, as we shall later see.

As one may notice, for the closed aperture configuration, the experimental setup is

identical to the thermal-lens experiment described before. This means that the trans-

mittance profile of the experiment is sensitive to both thermal-lens and nonlinear effects,

and one should be careful when inspecting the detected curves. Thermal-lenses, how-

ever, present a transmittance profile quite distinct from nonlinear optical effects, because

each phenomenon arises from fundamentally different mechanisms. Nevertheless, in most

cases, experimental cautions may be assured to filter one effect or the other, and the same

apparatus gives insight about phenomena arising from dissimilar principles.

In order to evaluate the behavior of light after traversing a nonlinear medium, let us

examine a fast cubic nonlinearity in the refractive index, given by

n = n0 +
n2

2
|E|2 = n0 + γI, (2.31)
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where n0 is the linear index of refraction, I is the beam irradiance within the sample

(SI), E is the peak electric field (CGS), and n2 and γ are the nonlinear refractive indices

in CGS and SI systems of units, respectively. In particular, n2 = (cn0/40π)γ, with c

being the speed of light in vacuum (SI). Let us now consider a Gaussian beam in TEM00

traveling along the positive z-axis,

E(z, r, τ) = E0(τ)
ω0

ω(z)
exp

(
− r2

ω2(z)
− i2π

λ

r2

2R(z)

)
exp (−iΦ(z, τ)). (2.32)

As discussed in the previous section, ω is the spot size (or beam radius), ω0 is the minimum

beam waist, and λ is the wavelength — all in free space. E0(τ) contains the temporal

envelope of the laser pulse, with its peak being the maximum amplitude at focus, and

exp (−iΦ(z, τ)) represents a combination of all the temporal phase variations along z.

Here, we will proceed calculating the radial phase variations, ∆Φ(r), introduce their

contribution to equation (2.32), and find the resulting transmittance for a determined

aperture.

Since the thickness of our sample is an experimental parameter of our choice, we may

ensure that `0 < zR holds. Also, `0 � zR/∆Φ(0) is a condition shown to hold empirically

by [49]. With such conditions in mind, the electric field amplitude (
√
I) and phase (Φ) are

governed by the slowly varying envelope approximation [47, 49, 48] as a pair of differential

equations,

d∆Φ

dz′
= ∆n(I)

2π

λ
, (2.33)

dI

dz′
= −α(I)I. (2.34)

Here, our variable z′ is the penetration depth within the sample, ∆n(I) is the refractive

index variation caused by the laser beam, and α(I) is a term containing all absorptive

contributions. For a cubic nonlinearity in the refractive index (no χ(5) or higher order

effects) and negligible nonlinear absorption (β ≈ 0), our set of equations may be directly

solved to yield

∆Φ(z, r, τ) =
∆Φ0(τ)

1 + z2/z2
R

exp

(
− 2r2

ω2(z)

)
. (2.35)
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∆Φ0(τ) here is the phase shift at the focus over the z-axis, defined as

∆Φ0(τ) =
2π

λ
γI0(τ)Leff , (2.36)

with I0(τ) being the beam irradiance at the focus and Leff = [1 − exp (−α`0)]/α the

effective length of the sample, with α being the linear absorption coefficient.

The electric field exiting the sample now will have a difference in amplitude and phase,

due to linear absorption and the phase shift just found at equation (2.35), which will be

Ee(z, r, τ) = E(z, r, τ) exp
(
−α

2
`0

)
exp [i∆Φ(z, r, τ)]. (2.37)

We will now proceed using the Gaussian decomposition of beams, in which the complex

electric field at the input plane is decomposed in a series of Gaussian beams through a

Taylor series expansion of exp [−i∆Φ(z, r, τ)], the complex phase term [50]. Our series

expansion will be

exp [−i∆Φ(z, r, τ)] =
∞∑
m=0

[i∆Φ0(z, τ)]m

m!
exp

(−2mr2

ω2(z)

)
. (2.38)

Each Gaussian beam is assumed to propagate through space to the output plane, where

they are combined to reconstruct the resulting beam. The electric field at the aperture

(output plane) is then represented by [49, 48]

Ea(r, τ) = E(z, r = 0, τ) exp
(
−α

2
`0

) ∞∑
m=0

[i∆Φ0(z, τ)]m

m!

ω0m

ωm
exp

(
− r2

ω2
m

− iπr2

λRm

+ iθm

)
.

(2.39)

If our detector is placed at z = z2 and we define g = 1 + z2/R(z), the yet undefined

parameters in equation (2.39) are

ω0m =
ω2(z)

2m+ 1
, (2.40)

z2m =
πω2

0m

λ
, (2.41)

ω2
m = ω2

0m

[
g2 +

z2
2

z2
2m

]
, (2.42)
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Rm = z2

[
1− g

g2 + z2
2/z

2
2m

]−1

, (2.43)

θm = arctan

(
z2/z2m

g

)
. (2.44)

The transmitted power through the aperture can be found by integrating the electric

field throughout the aperture radius. That is,

PT (∆Φ0(τ)) = cε0n0π

∫ ra

0

|Ea(r, τ)|2rdr, (2.45)

where ε0 is the electrical permittivity in vacuum. The normalized Z-scan transmittance

is then

TN(z) =

∫∞
−∞ PT (∆Φ0(τ))dτ

S
∫∞
−∞ Pi(τ)dτ

. (2.46)

Here, Pi(τ) = πω2
0I0(τ)/2 is the beam power penetrating the sample at τ , and S =

1 − exp (−2r2
a/ω

2
a) is the aperture transmittance when the linear regime is considered,

with ωa being the beam radius at the aperture.

For a closed aperture and ξ = z/zR, by considering the two leading terms of the

expansion equation (2.39), the steady-state transmittance will be given by [49]

TN(ξ) = 1− 4∆Φ0ξ

(ξ2 + 9)(ξ2 + 1)
. (2.47)

Even though equation (2.47) is a powerful tool to measure nonlinear optical refrac-

tion in thin samples, it does not, however, take into account effects related to nonlinear

optical absorption in the ensuing transmittance. Some materials present a strong reso-

nant transition of energy levels which may be associated with two recurring phenomena,

in particular: either a fast rate excitation preventing electrons to decay back to ground

state before it becomes depleted; or the population of a new excited level, accessed by the

electrons through the absorption of the energy of multiple photons.

For instance, let us take a closer look at χ(3) nonlinearities, considering the third-order
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nonlinear susceptibility as a complex quantity,

χ(3) = χ
(3)
Re + iχ

(3)
Im , (2.48)

where χ
(3)
Re and χ

(3)
Im are the real and imaginary components of χ(3), respectively. The real

part of the nonlinear susceptibility is related to γ (or n2) as follows

χ
(3)
Re = 2n2

0ε0cγ, (2.49)

while the imaginary component is related to the nonlinear absorption coefficient (β) as

χ
(3)
Im =

n2
0ε0cλ

2π
β. (2.50)

Our initial set of differential equations — equation (2.33) and equation (2.34) — will now

be rewritten to take into account the effects of nonlinear absorption. That is, α(I) =

α+ βI. Once again, by direct integration, the exiting beam irradiance at the input plane

will be

Ie(z, r, τ) =
I(z, r, τ) exp (−α`0)

1 + βLeffI(z, r, τ)
, (2.51)

while the beam phase shift is

∆φ(z, r, τ) =
2π

λ

γ

β
ln [1 + βLeffI(z, r, τ)]. (2.52)

Consequently, the complex electric field at the input plane is

Ee(z, r, τ) =
√
Ie(z, r, τ) exp (i∆φ), (2.53)

= E(z, r, τ) exp
(
−α

2
`0

)
[1 + βLeffI(z, r, τ)]i2πγ/(λβ)−1/2. (2.54)

Let us call q(z, r, τ) = 1 + βLeffI(z, r, τ). If |q(z, r, τ)| < 1, following a binomial

series expansion in powers of q(z, r, τ), equation (2.54) can be written as a Gaussian
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decomposition as follows

Ee(z, r, τ) = E(z, r, τ) exp
(
−α

2
`0

) ∞∑
m=0

q(z, r, τ)m

m!

[
m∏
n=0

(
i2πγ

λβ
− 1

2
− n+ 1

)]
. (2.55)

where the binomial coefficient has been defined in terms of the product, Π. By factoring

out i4πγ/(λβ), equation (2.55) can be represented analogously to equation (2.39), by

making the following substitution:

[i∆φ0(z, τ)]m

m!
→ fm =

[∆φ0(z, τ)]m

m!

m∏
n=0

[
1 +

λβ

4πγ
(2n− 1)

]
. (2.56)

Note how the coupling factor here, λβ/(4πγ), is the ratio χ
(3)
Im/χ

(3)
Re , indicating that nonlin-

earities in the refractive index and nonlinearities in the absorption coefficient are coupled

together.

If we consider the open aperture configuration, however, the Z-scan experiment be-

comes insensitive to n2 effects, as predicted by equation (2.46). Beam distortions become

irrelevant to overall measurements and only nonlinear absorption effects take place. We

can now proceed integrating equation (2.51) in the open aperture configuration (S = 1)

with respect to r to obtain the transmitted power

P (z, τ) = Pi(τ) exp (−α`0)
ln [1 + q0(z, τ)]

q0(z, τ)
. (2.57)

Here, q0(z, τ) = βI0(τ)Leff/(1 + z/z2
R) and Pi(τ) = πω2

0I0(τ)/2 is the instantaneous input

power within the sample, as defined before. If we consider our incident beam to be a

temporally Gaussian pulse, the measured power can be integrated with respect to time

to yield the measured transmittance

TN(z)S=1 =
1√

πq0(z, 0)

∫ ∞
−∞

ln [1 + q0(z, 0) exp (−τ ′2)]dτ ′. (2.58)
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Once again, if |q0(z, 0)| < 1, we can take advantage of the identities

ln[1 + a exp(−x2)] = −
∞∑
m=1

(−1)m[a exp (−x2)]m

m
(2.59)

and ∫ ∞
−∞

[exp (−x2)]mdx =

√
π√
m

(2.60)

to express equation (2.58) in a more convenient summation form,

TN(z)S=1 =
∞∑
m=0

[−q0(z, 0)]m

(m+ 1)3/2
. (2.61)

Equation (2.61) can be used as an expression to the normalized Z-scan transmittance

for the open aperture configuration to determine β alone, since at S = 1 the transmittance

curves are insensitive to beam distortion effects. When β is determined, χ
(3)
Im is known,

and the coupling factor can be reckoned by any S < 1 Z-scan experiment. This leads

us to a determined value for χ
(3)
Re and, consequently, n2. Higher order effects such as χ(5)

contributions can also be calculated by the Sheik-Bahae method: the further nonlinear-

ities just have to be considered on equations (2.33) and (2.34). Consequently, different

expressions would be obtained for equations (2.51) and (2.52), but the Gaussian decom-

position method, equation (2.55), will still hold. For the purpose of this work, we will

limit ourselves to χ(3) nonlinearities, and state that the equivalent χ(5) normalized Z-scan

transmittance will show a valley-peak separation of ∆v−p ≈ 1.2, and ∆Tv−p ≈ 0.21|∆Φ0|

for the closed aperture (S → 0) configuration [49].

2.3 Director reorientation-induced nonlinear refrac-

tion

Since the liquid crystal director is extremely sensitive to external electric fields, am-

plitudes as low as light’s electric field may reorient the director and give rise to a change

in the extraordinary refractive index. Such refractive index depends on the director ori-

41



entation according to the following equation [51, 52]

ne(θ) =
n‖n⊥√

n2
‖ cos2 θ + n2

⊥ sin2 θ
, (2.62)

where θ is the angle formed by the perpendicular axis of the molecules and the far-field

director.

In order to avoid director reorientations, samples are prepared with specific boundary

conditions to keep the director uniform throughout the bulk and parallel or perpendicular

to the incident wave vector. This approach avoids dealing with LC birefringence, since

light will only be interacting with one of the refractive indices. If one exits the afore-

mentioned regime, either by introducing an external field or by letting light impinge the

sample with a certain oblique incidence angle, an electrical or optical birefringence may

be induced.

As we shall later see, the theory of continuum dictates the behavior of the director

according to the minimization of Helmholtz free energy, where splay, bend, twist and

electric field-induced distortions will be taken into account. For a fixed temperature, the

free energy densities associated with such deformations of the director will be [1]

fsplay =
1

2
K11(∇ · ~n)2, (2.63)

ftwist =
1

2
K22(~n · ∇ × ~n)2, and (2.64)

fbend =
1

2
K33(~n×∇× ~n)2. (2.65)

Here, K11, K22, and K33 are the splay, twist and bend elastic constants of the liquid

crystal.

If we consider a beam impinging our sample obliquely, as shown in figure 2.5, a dipole

interaction will be observed between the dielectric anisotropy of the molecules and the

electric field of light. The free energy density associated with such interaction is written

as [52]

fop = − 1

4π

∫
~D · d ~E = − ε⊥

8π
E2 − ∆ε〈(~n · ~E)2〉

8π
, (2.66)

42



Figure 2.5: Director reorientation brought about by the electric field of light, ensuing an optically-induced
birefringence and consequent nonlinear refraction.
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Source: Author (2019).

where 〈(~n · ~E)2〉 here represents the time average. Since we will be minimizing the energy

density with respect to variations in the director profile, the first term will play no role

in the minimization. So we can consider

fop = −∆εopE
2
op, (2.67)

where E2
op = 〈(~n · ~E)2〉/8π. The total energy density of our system, F , will be the sum

of every possible deformation plus the energy associated with the dipole-field interaction,

which is

F = fsplay + ftwist + fbend + fop. (2.68)

The surface anchoring energy will not appear in the Hamiltonian, and will instead be

taken as boundary conditions for our differential equations.

For a homeotropic nematic cell under the influence of the optical electric field, ftwist

will be null, since there won’t be any twist deformations in our system. The director

profile may be obtained by solving the Euler equation associated with the Hamiltonian

described in equation (2.68). Such equation will be the torque balance of the molecules
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in the presence of viscosity and an external optical field, which is [51, 52]

I
d2θ

dt2
+ γ1

dθ

dt
= (K11 sin2 θ +K33 cos2 θ)

d2θ

dz2
+ [(K11 −K33) sin θ cos θ]

(
dθ

dz

)2

+

+ [α2 sin2 θ − α3 cos2 θ]
dν

dz
+ ε0∆εopE

2
opf(β, θ). (2.69)

The first term on the left hand side of our equation represents the total torque of the

system, where is I the moment of inertia of the molecules. The second term on the same

side represents the linear damping related to the angular momentum of molecules —

which will be proportional to the constant γ1, called the rotational viscosity. On the right

hand side, the first and second terms come from the splay and bend elastic distortions of

the liquid crystal. The third term represents the damping associated with the linear flow

of molecules — where α2 and α3 are called the Leslie coefficients and ν the velocity of

the nematic flow. The last term on the right hand side represents the electric field drive

caused by incident light — where ∆εop is the dielectric anisotropy of the material at an

optical frequency and f(β, θ) will be a function dependent on the incidence of the wave

in the sample.

If we consider a plane wave impinging our homeotropically-aligned cell at a certain

angle β; within the one constant approximation, where K11 = K33 = K; neglect any

nematic flow; and the torque being null; we will be left with the much simplified equation

γ1
dθ

dt
= K

d2θ

dz2
+ ε0∆εopE

2
op sin [2(β + θ)]. (2.70)

In the limit where local director reorientations are smaller than the incidence angle, one

has β + θ ≈ β. If we also consider the steady-state only, dθ/dt eventually dies out. So,

K
d2θ

dz2
+ ε0∆εopE

2
op sin (2β) = 0. (2.71)

Equation (2.71) can be solved straightforwardly to give

θ(z) =
−ε0∆εopE

2
op sin (2β)

2K
z2 + Az +B. (2.72)
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Remembering our boundary conditions, our cell is homeotropically-aligned, so θ = 0 for

z = 0 and z = `0, such that

B = 0, (2.73)

A =
ε0∆εopE

2
op sin (2β)`0

2K
. (2.74)

Consequently, θ will be given by

θ(z) =
ε0∆εopE

2
op sin (2β)

2K
(z`0 − z2). (2.75)

Since the director will vary along the sample thickness throughout the laser path, the

material will exhibit a z-dependent extraordinary refractive index change, given by

∆ne,opt(z) = ne(β + θ(z))− ne(β) =
n⊥∆εop

ε‖n‖
θ(z) sin (2β) = α2(z)I, (2.76)

where α2(z) is the optical nonlinearity, and I is the optical intensity. In particular,

I = n‖E
2
op/2η, where η is the free space impedance. By using equations (2.75) and (2.76),

the optical nonlinearity will be approximately

α2(z) ≈ n⊥∆ε2opηε0

ε‖n
2
‖K

sin2 (2β)(z`0 − z2). (2.77)

The nonlinear refraction index, in turn, will be the average of optical nonlinearities

along the sample. That is,

n2 = 〈α2〉 ≈
n⊥∆ε2op

6ε‖n2
‖cK

`2
0 sin2 (2β) (2.78)

or

n2 =
∆ε2op`

2
0

24cK11

sin2 (2β). (2.79)

Equation (2.79) dictates the behavior of the nonlinear refractive index according to

the elastic and dielectric properties of our liquid crystal. By doping liquid crystal sam-
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ples with dye molecules, fullerene, or plasmonic nanoparticles, it has been reported that

the nonlinear optical response of guest-host liquid crystalline systems may be enhanced

by several orders of magnitude compared to undoped samples [51]. In particular, an en-

hancement in the optically-controlled birefringence response is desired due to its simplicity

and advantages over electrically-controlled systems, such as remote access, needlessness of

electronic circuits, and fine-tuning possibilities arising from the complete control of both

incidence direction and polarization of the incident optical electric field [53, 51, 52].

2.4 Z-Scan technique

The Z-scan technique is a powerful tool for measuring nonlinear refraction and ab-

sorption in materials, as well as effects related to the formation of thermal lenses. While

other methods are also well-established and accurate, such as nonlinear interferometry,

degenerate four-wave mixing, nearly degenerate three-wave mixing, ellipse rotation, and

beam distortion measurements, they either require a complex experimental apparatus or

require precise scans followed by a detailed wave-propagation analysis. By using an ex-

perimental apparatus as simple as described in figure 2.4, nonlinear and thermo-optical

effects can be exhaustively examined.

The experimental setup is indeed simple: it only needs to consist of a single Gaussian

beam focused by a lens, where the sample will be moved around the focus, and the output

then captured by a photodetector. The presence of an iris or convergent lens before the

detector is also required: to either filter information to points near the z-axis only (r = 0)

or gather information about the whole output plane (0 ≤ r <∞).

When interacting with our samples, laser beams may trigger refractive (or absorptive)

index changes, which in turn make the sample act like a lens and distort the incident

beam itself. If the refractive index gradient induced in the sample yields a convergent

lens, for instance, the lens will try to further converge the beam for points at z < 0,

shortening the beam focus and decreasing the received power captured by the detector in

the closed aperture configuration. For points where z > 0, the convergent lens will tend to

collimate the diverging photons, leading to an increase of the detected power at (r = 0).
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The opposite will be hold true for refractive index gradients that induce divergent lenses.

As one sweeps the sample along the z-axis around z = 0, the detected intensities will

form a characteristic profile holding information about the beam phase shift according to

sample positioning. Furthermore, different phenomena lead to different profiles, and the

Z-scan technique will be able to tell if the lensing effects originate from thermally-induced

refractive index changes or nonlinearities in the index of refraction.

In the previous sections, we have seen two different phenomena that give rise to self-

focusing and self-defocusing lensing effects, one associated with thermal diffusion (equa-

tion (2.28)) and other with nonlinearities in the refractive index (equation (2.47)) — the

thermal-lens and Sheik-Bahae models, respectively. The Z-scan experiment is sensitive to

both, and cannot explicitly filter beam phase distortions caused by one from the other.

If we take a look at the mathematical expressions for the thermal-lens model (which

will be called TL) and the Sheik-Bahae model (SB), however, we may notice that even

though both curves will present a maximum-minimum profile for negative (divergent)

lenses and minimum-maximum profile for positive (convergent) lenses, they are rather

distinct. One way to distinguish which is the leading mechanisms behind the observed

lensing phenomenon is to examine the extrema separation (valley-peak separation, or

∆vp ≡ |ξv − ξp|) of the transmission curve.

Consider first the normalized Z-scan transmittance for a thermally-induced refractive

index change (dn/dT effect). The TL model states that

T
(TL)
N (ξ) =

[
1− θ

2
arctan

(
2ξ

3 + ξ2

)]2

. (2.80)

Note that the extrema in such case will be slightly dependent on θ. If we, however, neglect

small contributions of the order of θ2, our extrema will be given by ξvp = ±
√

3, leading

to a valley-peak separation of ∆vp ≈ 3.46.

If we consider a fast cubic nonlinearity in the refractive index (a n2 effect) without any

nonlinear absorption taking place (=(χ(3)) = 0), the normalized Z-scan transmittance in
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Figure 2.6: Comparison between the transmission profile obtained by a pure dn/dT effect in the thermal-
lens model (left) and pure n2 effect in the Sheik-Bahae model (right). As one can see, the valley-peak
separation is distinct for each phenomenon, and the transmittance profiles exhibit remarkably different
shapes, with the Sheik-Bahae normalized transmittance being much steeper.
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the Sheik-Bahae model will be

T
(SB)
N (ξ) = 1− 4∆Φ0ξ

(ξ2 + 9)(ξ2 + 1)
. (2.81)

This time, the extrema will not be dependent on any parameters, but ξ itself, and although

the derivative of equation (2.81) has two non-real roots, it has two symmetric real roots

at ±(2
√

15− 5)/3, ensuing a transmittance peak-valley separation of ∆vp ≈ 1.83.

In order to illustrate how not only the valley-peak separations are distinct in each case,

but how each phenomena yields fundamentally different curves, a plot of both models is

represented in figure 2.6.

Equivalently, we can make the same analysis for a nonlinear optical absorption. If,

instead of using an iris, one switches to a convergent lens to capture the overall signal

of the resulting beam, the resulting curve becomes insensitive to nonlinearities in the

refractive index, but sensible to nonlinear absorption. Consequently, β effects become

evident. When moving a sample from negative z towards 0, the incident intensity will

increase as ω decreases, which may lead to a hindered transmittance as the incident

intensity is boosted (enhancement of absorption, β > 0) or to a reduction of the ensuing

transmittance as the incident intensity grows (decrease of absorption, β < 0). The former

48



effect is called multiphoton absorption, where samples have their electrons excited to an

energy level higher than linear absorption in order to deal with significant I2 irradiance.

The latter effect is called single photon saturation, happening when electrons at the

ground state become excited at such a rate that there is no sufficient time for a decay

before the ground state becomes depleted. Consequently, the system can hold no more

excited states, and an increase the resulting transmittance is observed as a consequence.

As samples move farther away from the focus, the incident light intensity is diminished,

and the normalized transmittance returns symmetrically to unity.

A practical expression for the normalized Z-scan transmittance for a fully open aper-

ture can be obtained by considering the first two terms in equation (2.61), namely,

T
(SB)
N (ξ)S=1 ≈ 1− βI0Leff√

8(1 + ξ2)
. (2.82)

Such expression yields β directly from the transmittance curves, and the nonlinear re-

fraction coefficient may be obtained by adjusting the normalized Z-scan transmittance

for a predetermined finite aperture (S < 1), when both effects are considered. The pre-

dicted transmittance for this experiment, however, is obtained by radially integrating

equation (2.51) over a predetermined finite aperture (S < 1), and may be impractical for

quick analyses. With that in mind, it is useful to derive a way to quickly perform β and

n2 estimates.

For instance, one may follow a simple approach if |q0(0, 0)| ≤ 1 and χ
(3)
Im ≤ χ

(3)
Re . The

first condition may be met by choosing appropriate incident beam powers, while the second

will unfortunately be dependent on the physical properties of the sample, but is shown to

hold for a wide variety of materials [49]. The process consists of dividing the measured

closed aperture normalized Z-scan transmittance curve (S < 1) by the equivalent open

aperture one (S = 1). The result will be a new Z-scan curve, where estimated values

for the nonlinearity in the refractive index may be calculated by the valley-peak vertical

separation ∆Tvp ≈ 0.406|∆Φ0|, just like the estimates for a very small aperture (S → 0)

[49].
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3
Electro-optical properties of twisted nematics

As we have seen in previous chapters, liquid crystalline materials may present changes

in their optical properties due to interactions with the electric field of light itself. For

instance, nonlinear optical absorption and refraction phenomena were shown to be con-

siderable when matter interacts with beams presenting strong irradiance. Furthermore, an

optically-induced birefringence emerges in homeotropic nematic samples under the regime

of oblique light incidence, due to a reorientation of the director caused by the electric field

of the incident beam.

The sources of changes in optical properties, however, are not exclusively restricted to

the electric field of light. External slowly varying voltages (compared to the frequency of

light) applied to cell plates may as well yield significant modifications in the optical re-

sponse of samples, called electro-optical effects. One of the main mechanisms behind such

alterations is the reorientation of the director — commonly known as the Freedericksz

transition — and the consequent reorientation of the axis of anisotropy, influencing the

phase, polarization, and amplitude of light. Electro-optical effects are of extreme impor-

tance, both because fundamental viscoelastic and dielectric properties may be obtained

from simple optical experiments, and for their usefulness in technological applications.

This chapter is dedicated to the analysis of the interplay between electronically-applied

external electric fields and the ensuing director configuration within twisted nematic sam-

ples, under the light of free energy minimization. At first, the steady-state director profile

of samples undergone a Freedericksz transition is calculated, as well as how elastic and
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dielectric constants determine the transition threshold voltage. At next, the dynamics of

the Freedericksz transition is examined, and by which means the viscoelastic properties

of liquid crystals will influence the director reorientation times. Further, linear optical

transmission through twisted cells is evaluated, by the means of stratifying our media in

layers. At last, the mechanisms connecting the microscopic anisotropy of molecules and

the macroscopic birefringent nature of liquid crystals is discussed.

3.1 Freedericksz transition in twisted nematics

Twisted nematic liquid crystal cells have proven to be effective devices for switchable

displays, since the experimental discovery of the transmission of light when a twist cell is

placed between crossed polarizers (by Mauguin, in 1911), and the consequent development

of a practical way to reorient the director and hinder such transmission — “switching the

display off” — by Helfrich and Schadt, sixty years later [54, 55]. To understand the

mechanisms behind the operation of twisted nematic displays (TN-LCD), it is important

to comprehend the interplay between the viscoelastic constants and the director config-

uration. Such interactions can be clearly understood through a detailed analysis of the

Freedericksz transition and how the ensuing director profile will affect the sample bire-

fringence and following optical transmission. In the present chapter, we will part from

Ericksen-Leslie coupled equations for the steady-state and arrive at the ensuing director

configuration for an applied arbitrary external field, H, together with the critical values

that make reorientation start to occur.

By considering a set of right-handed Cartesian coordinates, the director characterized

as an unit vector, and the influence of an external field along the z-direction (perpendic-

ular to the glass substrates), the steady-state reorientation will be given by two coupled

differential equations [56],

f(θ)
d2θ

dz2
+

1

2

[
d

dθ
f(θ)

](
dθ

dz

)2

−1

2

[
d

dθ
g(θ)

](
dϕ

dz

)2

−

− 2α2τ sin θ cos θ
dϕ

dz
+ νH2 sin θ cos θ = 0 (3.1)

51



and

g(θ)
d2ϕ

dz2
+

[
d

dθ
g(θ)

]
dθ

dz

dϕ

dz
+ 2α2τ sin θ cos θ

dθ

dz
= 0, (3.2)

where

f(θ) = α1 cos2 θ + α3 sin2 θ, (3.3)

g(θ) = (α2 cos2 θ + α3 sin2 θ) cos2 θ. (3.4)

Here, θ(z) and φ(z) are the polar and azimuthal angle of the director at position z,

respectively. H is an arbitrary external field, together with a multiplicative constant ν

(which may be, for example, ∆ε and E), and αi are the elastic constants of our liquid

crystal. τ here is the auxiliary constant used in [57] and [58] (but labeled as s0 in the

references). Equation (3.2) can be integrated to

g(θ)
dϕ

dz
− α2τ cos2 θ = C1, (3.5)

with C1 being an arbitrary constant to be determined from boundary conditions.

Multiplying equation (3.1) by the derivative of θ with respect to z, equation (3.2) by

dϕ/dz, summing both, and integrating, we will have

f(θ)

(
dθ

dz

)2

+ g(θ)

(
dϕ

dz

)2

+ νH2 sin2 θ = C2. (3.6)

The stored energy per unit volume in a liquid crystal, W , is assumed to be a function

of ~n and ∇~n. Such function is objective to proper rigid rotations and invariant under

the transformation ~h→ −~h. If W is also invariant under reflections in planes containing

the director, ~n, we have what is called a nematic liquid crystal [59]. In such liquid

crystals, consequently, W is invariant under improper orthogonal transformations, and

the substitution ~h→ −~h in the free energy formulae leads to τ = 0 [57, 58, 56].

Let us also consider initially no external field to find a homogeneous solution, and then

later treat the field as a inhomogeneity in our coupled ordinary differential equations, to
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find a particular solution. So, for the set

f(θ)

(
dθ

dz

)2

+ g(θ)

(
dϕ

dz

)2

= C2 (3.7)

and

g(θ)
dϕ

dz
= C1, (3.8)

we may suppose a solution intuitively, by assuming that θ will not vary throughout the

sample. Its value is already zero at both surfaces, due to anchoring (θ(0) = θ(`0) =

0). In other words, we are assuming that the twist of the substrates induces only twist

deformations on the director. In this case, f(θ) = α1 and g(θ) = α2, both constants.

Nevertheless, dϕ/dz will be constant, which will lead to the solution

ϕ(z) = ϕ0
z

`0

, (3.9)

where here we consider a sample whose azimuth angle, ϕ, of the director varies in a

homogeneous helix, going from 0 to its maximum twist angle, ϕ0. This representation for

ϕ(z) seems not to be unique. However, we will consider such result as a homogeneous

solution, as is done in [56], and find another particular solution when the field is present.

Let us consider an expression for θ of the type

θ(z) = θ(`0 − z), 0 ≤ θ ≤ `0/2, (3.10)

dθ

dz

∣∣∣∣
z=`0/2

= 0, (3.11)

and

θ(`0/2) = θm. (3.12)

The derivative condition will assure θ to have an extremum exactly at the middle of the

sample, which, as a consequence, will also be a point of return. Since θ might be chosen

to be positive without loss of generality, its value will rise from z = 0 to z = `0/2, reach

its extremum, and decay the same way it has risen, given the symmetry of the problem.
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Analyzing such conditions, θ will reach a maximum at `0/2, due to its positivity. That

value will be called θm here.

Let us return to equation (3.7) and equation (3.8). Given our assumptions, they will

yield

dϕ

dz
=

C1

g(θ)
(3.13)

and

f(θ)

(
dθ

dz

)2

= νH2(sin2 θm − sin2 θ) + C2
1

(
1

g(θm)
− 1

g(θ)

)
. (3.14)

A solution for the polar angle then comes directly,

z =

∫ θ

0

 f(ψ)

νH2(sin2 θm − sin2 ψ) + C2
1

(
1

g(θm)
− 1

g(ψ)

)
1/2

dψ, (3.15)

for 0 ≤ z ≤ `0/2. Equivalently,

ϕ =
ϕ0

2
+

∫ θm

0

 f(ψ)

νH2(sin2 θm − sin2 ψ) + C2
1

(
1

g(θm)
− 1

g(ψ)

)
1/2

C1

g(ψ)
dψ. (3.16)

Again, 0 ≤ z ≤ `0/2. The constants θm and C2 must, however, satisfy some conditions.

The solutions must be self consistent. Those requirements are

`0

2
=

∫ θm

0

 f(ψ)

νH2(sin2 θm − sin2 ψ) + C2
1

(
1

g(θm)
− 1

g(ψ)

)
1/2

dψ, (3.17)

that is, θ should be θm at the middle of the cell, and

ϕ0

2
=

∫ θm

0

 f(ψ)

νH2(sin2 θm − sin2 ψ) + C2
1

(
1

g(θm)
− 1

g(ψ)

)
1/2

C1

g(ψ)
dψ, (3.18)

which is an analogy to ϕ — it should be ϕ0/2 in the middle of the cell. These last two

equations, equation (3.17) and equation (3.18), will return the values of θm and C1 for a

given field strength H.

By performing the change of variables sinλ = sinψ/ sin θm, the aforementioned equa-
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tions will become

`0

2
=

∫ π/2

0

[
f(ψ)

νH2 − C2
1F (ψ, θm)/[g(ψ)g(θm)]

]1/2
dλ

cosψ
, (3.19)

ϕ0 =

∫ π/2

0

[
f(ψ)

νH2 − C2
1F (ψ, θm)/[g(ψ)g(θm)]

]1/2
C1dλ

cos (ψ)g(ψ)
, (3.20)

where

F (ψ, θm) =
g(θm)− g(ψ)

sin2 θm − sin2 ψ
(3.21)

= α3 − 2α2 − (α3 − α2)(sin2 ψ + sin2 θm). (3.22)

From equations (3.19) and (3.20), it follows that

lim
θm→0

C1 =
α2ϕ0

`0/2
(3.23)

and

lim
θm→0

ν

(
`0

2

)2

H2 = α1

(π
2

)2

+ (α3 − 2α2)ϕ2
0. (3.24)

In equation (3.24), we are assuming that either α3 ≥ 2α2 or ϕ2
0 ≤ α1π

2/4(2α2 − α3).

By performing once again a change of variables, β = sin2 θm, the differentiation of

equations (3.19) and (3.20) with respect to β will yield

`0

(
dC1

dβ

)
β=0

= (α3 − 2α2)ϕ0, (3.25)

2ν

(
`0

2

)2(
dH2

dβ

)
β=0

= α3

(π
2

)2

− ϕ0(α2
3 − α3α2 + α2

2)

α2

. (3.26)

If our previous assumptions hold, and ϕ2
0 < α3α2π

2/4(α2
3 − α3α2 + α2

2), we arrive at the

condition that (
dH

dβ

)
β=0

> 0. (3.27)

Our assumptions were necessary, therefore, to ensure that θm monotonically increases as

the external field is also increased.
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Since there are multiple solutions to our problem, we will filter the solution that

minimizes the energy function [59]

ε =

∫
V

{
W − 1

2

[
(ν1 − ν2)( ~H · ~n)2 + ν2( ~H · ~H)

]}
dV, (3.28)

based on the argument that we must ensure the stability of our system [56].

If we denote by ε0 the value of the integral above (equation (3.28)) when the solution

found before (equations (3.19) and (3.20)) has a null external field, and introduce ∆ =

ε− ε0, we arrive at [56]

∆ = A

∫ π/2

0

[f(ψ)]1/2[νH2 sin2 θm cos 2λ+ C2
1/g(θm)− α2ϕ

2
0/(`0/2)2]

cosψ[νH2 − C2
1F (ψ, θm)/g(ψ)g(θm)]1/2

dλ, (3.29)

where A is the area of the glass plates.

By differentiating equation (3.29) and the relations of self-consistency (equations (3.19)

and (3.20)), one can show that [56]

(
d∆

dβ

)
β=0

= 0, (3.30)

2`0

(
d2∆

dβ2

)
β=0

= −A
[
α3

(π
2

)2

− (α2
3 − α3α2 + α2

2)ϕ0

α2

]
. (3.31)

If our previous assumptions hold, then ε > ε0 for values of θm in a neighbourhood of

zero.

Our analysis leads to the existence of a critical field Hc, where external fields greater

than this critical value disturb the simple twisted orientation pattern and lead to new

solutions. That is,

H2
c =

1

ν(`0/2)2

[
α1

(π
2

)2

+ (α3 − 2α2)ϕ2
0

]
. (3.32)

As was predicted in [60], it is possible to obtain the value of the elastic constants

appearing in equation (3.32) experimentally and estimate a possible threshold value from

the results. More specifically, if we consider a ϕ0 = π/2 rad twist cell, and the external

field to be an electric field, the following substitutions shall be done: Hc → Ec and
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ν → ∆ε/(4π), leading us to

(Ec`0)2 =
4π

∆ε
π2(α1 + α3 − 2α2), (3.33)

the well-known Freedericksz threshold voltage expression for a twisted nematic cell. Or,

in a more common notation, as is expressed in [53, 61],

Vth = π

√
π

∆ε
(4K11 +K33 − 2K22). (3.34)

As a reference to homeotropic and planar cells, where special cases for the Freedericksz

transition threshold voltage expressions exhibit dependences only on the splay (K11, pure

S-effect), twist (K22, pure T-effect), and bend (K33, pure B-effect) elastic constants in

a similar fashion to equation (3.34) (with (4K11 + K33 − 2K22) → Kii), the constant

4K11 +K33 − 2K22 is sometimes called k, the “effective twist constant”.

Straightforward experiments may be performed in order to measure the threshold

voltage. By knowing the dielectric anisotropy — which may be, for instance, measured

from capacitance experiments [53, 62] — one has a concrete estimative for the effective

twist elastic constant. As was mentioned before and will later be discussed with detail, the

reorientation of the director will change the sample birefringence, a parameter which might

be easily obtained analyzing the transmittance of polarized white or monochromatic light

through our material [53, 63]. For example, one may start from a null field and steadily

increase its strength. As soon as the intensity captured in our detector changes, the

director is starting to reorient and we have our threshold value.

3.2 Transmission spectra of twisted liquid crystals

Let us now evaluate the linear transmission of light through a twisted nematic sample.

Both glass plates here present parallel-alignment boundary conditions, and the alignment

directions are forming an angle θ between each other. For the purpose of this section,

no external field will be present. Several fundamentally different methods can be used to
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achieve the same solution for this problem [53], each one giving insight over a particular

feature of twisted nematic cells: (1) the generalized geometrical-optics approximation,

which considers the propagation of ordinary and extraordinary waves within samples [64];

(2) the 4x4 matrix method, which considers how the electric field components of light

behave when impinging the cells at any incidence [65, 66, 67, 68, 69]; and (3) the Jones

matrix method, consisting in treating polarized light propagating as Jones vectors and

the material as linear optical elements, the Jones matrices [70]. Here, we will be using

one of the methods described in [71], the approach of segmented layers.

Consider our medium as segmented layers, where every layer has its optical axis along

the x′-direction. The (m+ 1)-th layer will have its optical axis rotated by δθ with respect

to the m-th layer, along the z (propagation) axis.

The electric field exiting the m-th layer will be

E(x′)m = Am sinωt+Bm cosωt, (3.35)

E(y′)m = Cm sinωt+Dm cosωt. (3.36)

When this wave reaches the (m + 1)-th layer, its components will be transmitted to the

(m + 2)-th layer with a relative phase difference of δφ = 2π∆nδz/λ, with δz being the

thickness of each plate.

The light emerging from the (m+ 1)-th plate will then be

Am+1 = Am cos δθ − Cm sin δθ, (3.37)

Bm+1 = Cm cos δθ −Dm sin δθ, (3.38)

Cm+1 = (Am sin δθ + Cm cos δθ) cos δθ − (Bm sin δθ +Dm cos δθ) sin δθ, (3.39)

Dm+1 = (Bm sin δθ +Dm cos δθ) cos δθ + (Am sin δθ + Cm cos δθ) sin δθ. (3.40)
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These equations can be combined to give a recursion relation on A:

Am−2 − 2Am−1(1 + cos δφ) cos δθ + 2Am[(1 + cos δφ) cos2 δθ + cos δφ]−

− 2Am+1(1 + cos δφ cos δθ + Am+2 = 0. (3.41)

Equivalent relations can be found for B, C and D.

We can write A as a continuous function of z, by taking the m-th plate to be a distance

zm from the origin. That is,

Am−n = A(zm − nδz). (3.42)

Now, it is possible to expand equation (3.41) around zm, with δφ, δz, δθ → 0. We will

be left with

d4A

dz4
+

[
2θ2

`2
0

+ 4

(
π∆n

λ

)2
]
d2A

dz2
+ α4 = 0. (3.43)

This differential equation can be integrated to yield

A = a1 cos (qαz) + a2 sin (qαz) + a3 cos (αz/q) + a4 sin (αz/q), (3.44)

with q =
√

1 + 2u2 + 2u(1 + u2)1/2, and u = π`0∆n/θλ. The equations for B, C and D

will be alike, but the constants will be represented by b1, b2, c1, and so on.

If we consider as our boundary condition a perpendicularly incident beam with a

polarization angle parallel to the alignment induced by the bottom glass surface — that

is, parallel to the x-axis of the first layer (z = 0), our amplitudes are

A =
q2

1 + q2
cos

(
αz

q

)
+

1

1 + q2
cos (qαz), (3.45)

B =
−q2

1 + q2
sin

(
αz

q

)
+

1

1 + q2
sin (qαz), (3.46)

C =
q

1 + q2
sin

(
αz

q

)
+

q

1 + q2
sin (qαz), (3.47)

D =
q

1 + q2
cos

(
αz

q

)
− q

1 + q2
cos (qαz). (3.48)

For the light exiting the liquid crystal, we should analyze the components at z = `0. If
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we are interested specifically in light polarization perpendicular to the angle θ, we should

take T = C2 +D2, which will yield

T (u) =
sin2 (θ

√
1 + u2)

1 + u2
. (3.49)

The previously derived expression dictates the transmission spectra of a twisted ne-

matic cell when the input polarizer is parallel to the alignment direction at z = 0 and

the output polarizer perpendicular to θ, the alignment direction at z = `0. Note how

equation (3.49) will present successive minima, given the dependence on the sine function

at the numerator. The nuances of such expression for π/2 rad cells and its usefulness on

determining the nematic birefringence will be discussed later, in section 3.4.

3.3 Birefringence and single-band model

In 1966, Vuks reported the development of a semiempirical model analogous to the

Clausius-Mossotti equation for correlating the microscopic molecular polarizabilities to

the macroscopic refractive indices of crystalline materials [72].

The macroscopic relative permittivity of our medium (εr) is related to the atomic

polarizability (α), a microscopic parameter of the molecules constituting the system,

through the Clausius-Mossotti relation [73, 74],

εr − 1

εr + 2
=

4π

3
Nα. (3.50)

Here, N is the number of molecules per cm3, and all values here are in the cgs system of

units.

This equation is valid as long as the frequency regime is low. In the optical frequency

regime, one should, as a rule of thumb, substitute ε → n2 to obtain the Lorentz-Lorenz

equation [73, 72, 75, 76],

n2 − 1

n2 + 2
=

4π

3
Nα. (3.51)

In a liquid crystal, however, two refractive indices are observed — n⊥ and n‖. The same
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holds true for molecular polarizabilities. In fact, a first attempt was made, considering

each polarizability (α⊥ and α‖) to be related to a refractive index (n⊥ and n‖). There, α

was simply replaced by α⊥,‖ and n by n⊥,‖ in equation (3.51) [77], but further experiments

showed this assumption to be unfit.

Several models were developed in an attempt to relate the macroscopic permittivity

of liquid crystals to molecular polarizabilities [78, 79], but the expressions for the permit-

tivities are rather intricate for practical uses. One particular semi-empirical assumption

that yields fruitful results is made in [80], where the internal field in a crystal (Lorentz

field) is taken to be isotropic [81]. That is,

~Ei =
〈n2〉+ 2

3
~E. (3.52)

With such assumption, an useful expression relating microscopic molecular polarizabilities

and macroscopic refractive indices can be derived [80]:

n2
⊥,‖ − 1

〈n2〉+ 2
=

4π

3
Nα⊥,‖. (3.53)

Consequently, the birefringence, ∆n = n‖ − n⊥, can be written as

∆n =

(〈n2〉+ 2

n‖ + n⊥

)
4π

3
N(α‖ − α⊥). (3.54)

However, since our material is a liquid crystal, its polarizability will be related to that of

a perfect crystal by an order parameter, S [82]. That is,

α‖ − α⊥ = S(γ‖ − γ⊥). (3.55)

The polarizability of a molecule in the ground state at a certain frequency is given by

the sum over all possible quantum transitions [83, 84],

γm ∝
∑
n

Zfmn
ω2
mn − ω2

, (3.56)
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where Z is the number of active electrons per molecule and fmn is the oscillator strength.

Here, we have considered no damping in the harmonic oscillator. Equivalently, we may

write equation (3.56) in terms of the wavelength

Zfmn
ω2
mn − ω2

∝ Zfmn
λ2
mnλ

2

λ2 − λ2
mn

. (3.57)

If we consider the typical absorption bands of calamitic molecules of liquid crystal

systems, λ1, λ2, and λ3, assume that each band is closely separated to one another, with

f1, f2, and f3 as their corresponding oscillator frequencies, at a wavelength far away from

resonance (λ� λ1, λ2, and λ3):

fm1λ
2
1 + fm2λ

2
2 + fm3λ

2
3 ≈ f̄mλ̄2. (3.58)

Above, λ̄2 = (λ2
1 + λ2

2 + λ2
3)/3 and f̄m = fm1 + fm2 + fm3. Well, f̄m here will not be of

much importance, for it is only a proportionality constant. The resulting polarizability

will be

γm ∝ Zf̄m
λ̄2λ2

λ2 − λ̄2
. (3.59)

Through equations (3.54), (3.56), (3.57) and (3.59), we arrive at our final expression

for the birefringence,

∆n(λ, T ) = gNZS(f̄‖ − f̄⊥)
λ̄2λ2

λ2 − λ̄2
, (3.60)

where g is a proportionality constant, involving the multiplicative constants in equa-

tion (3.54) and the proportionality factor implicit in equation (3.56). In particular, it

was found empirically that the value (〈n2〉+ 2)/(n‖ + n⊥) is bound between a narrow re-

gion, and is practically insensitive to chemical composition, temperature, and wavelength.

By testing parameters for liquid crystals that maximize and minimize the values of the

constant, it was found that [84]

〈n2〉+ 2

n‖ + n⊥
= 1.40± 0.03. (3.61)
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Moreover, the proportionality between the atomic polarizability and the quantum tran-

sitions is also temperature independent, because all thermal contributions are cloistered

in Zfmn. Consequently, we may take g as independent of temperature and wavelength.

NZS(f̄‖− f̄⊥), on the other hand, is temperature dependent, but wavelength independent

[53]. So we may merge all thermal contributions in a constant G(T ), to be left with

∆n(λ, T ) = G(T )
λ̄2λ2

λ2 − λ̄2
. (3.62)

Equation (3.62) predicts the behavior of birefringence as temperature and wavelength

are varied. What is particularly remarkable about the single-band model is that by mea-

suring a determined birefringence at a particular wavelength, one may directly obtain

G(T ) and estimate the birefringence as a function of wavelength for that particular tem-

perature, as long as λ lies within the domain where equation (3.62) holds — that is, far

from resonance bands. In particular, refractive indices and absorption coefficients exper-

iments performed in cyanobiphenyls have shown that equation (3.62) and another model

considering three separate absorption bands for possible quantum transitions (the three-

band model) yield numerically similar results, both being equally very good in fitting

experimental data [85].

3.4 Gooch-Tarry conditions and Mauguin minima

As we have seen before, the transmittance of a twisted nematic cell between parallel

polarizers is given by the expression [71]

T =
sin2

(
π
2

√
1 + u2

)
1 + u2

, (3.63)

when the input polarizer is aligned parallel to input glass rubbing direction.

If we examine the plot of such function, one can see that it has infinite minima, given

by the values of u in which the sine function in the numerator will be null, since the

denominator in this case will never diverge for non-zero wavelengths (that is, finite u).
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Figure 3.1: Transmission spectrum for a twisted nematic cell.
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Consequently, the minima of our transmittance will be given by

π

2

√
1 + u2 = mπ, (3.64)

where m here will be a natural number, due to the domain of equation (3.63). For

convenience, let us enumerate our minima. Since u is strictly positive, and T is regular

for finite u, we will have a first minimum, a second, and so on. Let us assign each minimum

to one corresponding value of m, where the first minimum of our function will be given

at m = 1, the second at m = 2, and so on.

This leaves us with

um =
√

4m2 − 1, m ∈ N∗, (3.65)

where um is the position of the m-th minimum of the transmittance. Writing this in terms

of the wavelength,

2`0∆n

λm
=
√

4m2 − 1, m ∈ N∗, (3.66)

which means we can extract information of the sample birefringence at all λm within the

physical limitations of our equipment yielding the transmission spectra. The values for

the birefringence, ∆n, at the measured minima, λm, are

∆n(λm) =
λm
d

√
4m2 − 1

2
, m ∈ N∗. (3.67)
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Such conditions are called the Gooch-Tarry conditions [71], which make possible for us

to evaluate the liquid crystal birefringence at a specific wavelength, given that it is a

minimum of transmission. These wavelengths where optical transmission is null are called

the Mauguin minima. By simply measuring a Mauguin minima, one has a powerful tool

to determine the sample birefringence following equation (3.67), as stated before.

Looking at equation (3.63), one may inquire why don’t we analyze T at the desired λ

and get ∆n(λ) directly, instead of going through the Mauguin minima, obtaining ∆n(λm),

and then using some complementary model (such as the previously derived single-band,

or three-band models) to estimate ∆n(λ). The answer is simple: it is not quite easy

to normalize T , because we never know how far in the infrared one should go to obtain

a satisfactory approximation for T (u → 0). Furthermore, it is rather uncommon for

portable spectrometers to measure a good range of IR transmission, together with the

fact that polarizers don’t perform well in long wavelength ranges — making the use

of several polarizers necessary and the experimentation involved. Another important

consideration to take into account is the scenario where the sample is doped with guests

presenting strong absorption coefficients, such as dyes and plasmonic nanoparticles. The

transmittance will be heavily influenced by the presence of doping agents, being unreliable

in magnitude to describe the twist structure. Still, the minima will never change, no

matter how extreme the extinction coefficients of dopants are.

Let us also consider a real case scenario and make a simple estimative to illus-

trate how experimentation will usually work. For typical liquid-crystalline materials

like cyanobiphenyls, ∆n is of the order of 0.1 to 0.2. Sample thickness, `0, is usually

around 10 µm with cellulose spacers. Portable spectrometers usually measure about 400

to 900 nm wavelength. These parameters will yield a first minimum at 1000 to 2000 µm,

a second minimum at 500 to 1000 µm, a third minimum at 350 to 700 µm, and so on. So,

in experiments employing portable spectrometers, m for the related minima will usually

range from 2 to 4. Of course, thicker or thinner samples might be employed. One may

use, for example, mylar spacers, whose thickness can reach 100 µm, and this will change

the ensuing wavelengths and values of m observed experimentally.
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4
Samples preparation and experimental setups

This chapter is dedicated to carefully describe the steps taken to set our experiments

up, from the production of gold nanorods to beam waist measurements to the program-

ming of instruments. The first section contains a discussion on the synthesis of gold

nanorods using the seed-mediated method, as well as procedures related to their charac-

terization. In the second section, our liquid crystal compound is presented, together with

the protocol employed to transfuse gold nanorods to it. The third section is focused on

detailing the treatment of substrates to ensure alignment, as well as cell assembly pro-

cess and its initial characterizations. Further, the experimental setups for the Z-scan and

electro-optical response are outlined in sections four and five, respectively.

4.1 Seed-mediated synthesis of gold nanorods

Gold nanorods were prepared in aqueous solution by the seed-mediated method, de-

scribed in reference [86], with cethyltrimethylammonium bromide (CTAB) as the capping

agent. According to the concentration of the growth solution added to the seed solution,

different aspect ratios of gold nanorods could be obtained. In order to verify if the aque-

ous dispersions contain the characteristic extinction profile of gold nanorods and obtain

a first estimative of the mean aspect ratio, aqueous dispersions were analyzed in a quartz

cuvette, and unpolarized light extinction curves were measured using a portable UV-VIS

spectrometer (Ocean Optics USB 4000) and Ocean Optics Spectra Suite software. Several
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Figure 4.1: Plasmonic extinction spectra for gold nanorod aqueous dispersions obtained through sev-
eral different syntheses. Here, the longitudinal plasmonic extinction peak is highlighted for each
dispersion, together with the aspect ratio estimated from peak position. Besides the shown curves
(r̄ = 1.9, 2.1, 3.1, 3.5), other aspect ratios were also obtained, namely, r̄ = 2.0, 2.5 (not shown).
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gold nanorod aqueous dispersions presenting nanoparticles at different aspect ratios were

synthesized, ranging from r̄ = 1.8 to r̄ = 3.8, and their extinction spectra are shown in

figure 4.1. Even though all nanoparticles from the aqueous dispersions were transfused to

the liquid crystal compound and the doped materials transferred to closed cells, not all

samples were used. For the thermo-optical and nonlinear optical characterization, only

r̄ = 2.5 was available at the time, so it was the only sample studied. For the viscoelastic

and birefringence characterization, all samples except the higher aspect ratio ones (r̄ = 3.0

and r̄ = 3.8) presented strong absorption bands encompassing λ = 633 nm, which made

measurements unreliable, because that was the wavelength of our probe beam. In spite of

having lasers operating at several wavelengths available in our laboratory, from ultraviolet

to infrared, only the helium-neon (at 633 nm) had enough stability around the required

power to be used as a probe beam.

For clarity, the extinction spectra of the gold nanorod dispersions used in each section

of the experimental results chapter are shown separately. Figure 4.3 shows the spectra for

r̄ = 2.5 gold nanorods, where one may observe the transversal extinction band peaked at

λt ≈ 512 nm and the longitudinal band peaked at λl = 656 nm. Figure 4.2 equivalently

shows r̄ = 3.0 and r̄ = 3.8 spectra, with the same transversal plasmonic extinction peak

at λt = 512 nm, and slightly separated longitudinal peaks, at λl = 719 nm for r̄ = 3.0
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Figure 4.2: Extinction spectra of gold nanorod aqueous suspension for two aspect ratios, r̄ = 3.0 and
r̄ = 3.8. As we can see, both nanoparticle suspensions present the same transversal plasmon peak, located
at λt = 512 nm, with slightly different longitudinal peaks, at 719 and 754 nm for r̄ = 3.0 and r̄ = 3.8,
respectively.
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Figure 4.3: Extinction spectra for r̄ = 2.5 gold nanorods in aqueous suspension. Here, the transversal
absorption band is centered at λt = 514 nm, while the longitudinal band at λl = 656 nm. Note how
the transversal plasmonic band is positioned close to the λt for the aqueous dispersions represented in
figure 4.2.
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and λl = 754 nm for r̄ = 3.8.

4.2 Liquid crystal sample

The liquid crystal sample of choice here is 4-octyl-4-n’-cyanobiphenyl, commonly

known as 8CB. Cyanobiphenyls, in particular, have several advantages for technologi-

cal applications as well as experimentation [87, 88]. Their nematic phase is observed near

room temperatures, while also presenting a wide nematic range and good chemical sta-

bility under laser exposure. Our liquid crystal, 8CB, was purchased from Sigma-Aldrich

and used as obtained, without further purification. It presents both nematic and smectic-

A phases, with the isotropic to nematic phase transition occurring at 313.5 K and the

nematic to smectic-A phase transition at 306.5 K. A ball-and-stick model schematic rep-

resentation of 8CB is shown in figure 4.4, where carbons are represented as gray spheres,

nitrogen as the blue sphere and hydrogen atoms as white spheres. The molecular posi-

tioning and angles were calculated at T = 0 using the universal force field for the atomic

potentials, where energy was then minimized via the steepest descents method, all calcu-

lations done by Avogadro (the software). Please note that the molecules and bonds are

out of scale to represent the space-filling model. In order to clarify the visualization of

positioning and relative angles for atoms and bonds, both spheres and bonds had their

radii divided by half, and bonds were further stretched to double length. Overall, the

molecules present an average length of 25 Å.

Table 4.1: Average length, L, and diameter, D, of gold nanorods, measured in nm, together with the
aspect ratio, r̄ = L/D, for each of the obtained samples. One example micrograph for each of the grids
is shown in figure 4.5.

Sample label L (nm) D (nm) r̄ = L/D
8CBNR1 42± 4 14± 1 3.0
8CBNR2 38± 3 10± 1 3.8

After the syntheses described in section 4.1, gold nanorods were transfused to 8CB in

the isotropic phase at a small weight concentration of c = 0.02 wt.%, aiming the formation

of a stable dispersion without any visible aggregates in the ensuing system. CTAB was

shown to stay stable during the exchange of solvents and subsequent transfer process
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Figure 4.4: Ball-and-stick model for 8CB, calculated using the universal force field as the interaction
potential model, with parameters given by Avogadro (the software). The potential energy was minimized
via the steepest descents method. Even though atomic positioning and bond angles are accurate, atomic
and bond sizes are out of scale to improve visibility.

Source: Author (2019).

to the liquid crystal, with a homeotropic anchoring being expected at the nanoparticles

surfaces [34]. In order to evaluate the mean size and aspect ratio of the gold nanorods

inside the liquid-crystalline system, images obtained by transmission electron microscopy

were examined, with the grids being prepared as described in [86], by casting a thin film of

our doped samples over a copper grid coated with a porous carbon film. The first aqueous

dispersion, shown in figure 4.3, was evaluated using a FEI-Tecnai 20 operating at 200 kV.

The resulting micrographs were examined using the software Sigma Scan to determine

mean particle size and their distribution, where approximately 100 nanoparticles were

taken into account for each sample. A sample image captured by the microscope is shown

in figure 4.6. The analysis returned an average length of L = 40 nm, average diameter of

D = 16 nm, and aspect ratio of r̄ = 2.5 for the gold nanorods. Such material was used

to perform the Z-scan experiment characterization. The other two aqueous dispersions,

shown in figure 4.2, were subsequently transfused to 8CB and inspected by a FEI Tecnai

Spirit Biotwin operating at 120 kV. For those samples, micrographs were analyzed via

the software ImageJ Version 1.48v. Once again, approximately 100 nanoparticles were

considered for each grid, and the results are summarized in table 4.1. For simplicity, the
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Figure 4.5: Transmission electron microscopies after nanorods transfusion to 8CB. r̄ = 3.0 gold nanorods
are presented in (a), while r̄ = 3.8 are shown in (b). Note that gold nanorods are surrounded by an 8CB
shell, where a short-range alignment of guest particles is observed.

Source: Author (2019).

samples were labeled 8CBNR1 and 8CBNR2. Those samples were used in the electro-

optical experiments, and a micrograph for each is shown in figure 4.5.

4.3 Cell preparation

In order to characterize the nonlinear optical properties of our samples using the Z-scan

technique, a homeotropically-aligned cell was prepared by treating cleaned glass surfaces

with octadecyl chlorosilane, a surfactant purchased from Sigma-Aldrich. Two homeotropic

substrates were set parallel to each other, separated by two fixed thickness sheets (100 µm

mylar spacers), and glued together using epoxy glue. After the resin was cured, our sample

(8CB + 0.02 wt.% AuNR at r̄ = 2.5) was filled inside the cell through capillarity at the

isotropic phase of 8CB (T ≈ 330 K), closed with epoxy glue again, and slowly cooled to

room temperature. To verify the alignment conditions, the sample was placed between

crossed polarizers and analyzed through optical microscopy. Since homeotropic samples

are optically isotropic to normal incidence, a light gray homogeneous pattern was observed,

due to small fluctuations of the director within a thick sample. Extinction spectra for

unpolarized white light perpendicularly at the filled cell is shown in figure 4.6, for two

different temperatures, T = 309 K (nematic phase) and T = 302 K (smectic phase). As
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Figure 4.6: Extinction spectra (a) and transmission electron microscopy (b) of 8CB samples doped with
gold nanorods. The extinction curves were obtained for cells presenting a homeotropic alignment, and
were measured at two distinct temperatures, T = 309 K (nematic phase) and T = 302 K (smectic-
A phase). One observes a significant suppression of the longitudinal plasmonic peak together with an
increase of the transversal peak as the temperature is lowered. Such behavior reveals the importance of
the nematic and smectic ordering in the mean alignment of guest nanorods.
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one can see, for temperatures where the smectic order is well established, the longitudinal

plasmonic extinction band is hindered while the transversal band is boosted, indicating

a reduction of thermal fluctuations of the orientation of gold nanorods together with an

overall mean alignment along the far-field director.

The twisted alignment cells were prepared by coating indium-tin oxide (ITO) cleaned

glass surfaces with polyvinyl alcohol (PVA) and further rubbing the substrate with velvet,

in a way that each glass plate presents a rubbing direction perpendicular to the alignment

of their matching plate. The direction of rubbing here also dictates the imposed alignment

direction of molecules over the substrate. Two homogeneously aligned glass surfaces with

alignment directions perpendicular to each other were then put together, separated by

10 µm thick cellulose spacers, and glued with epoxy resin. The thickness of empty cells

were measured by the interferometric method described in [89]. Afterwards, the cells

were filled with undoped 8CB, 8CBNR1, and 8CBNR2 samples by capillary action at the

isotropic phase of 8CB (T ≈ 330 K), closed with epoxy glue and slowly cooled to room

temperature. Once again, samples were put into a hot stage and analyzed between crossed

polarizers. When the input polarizer was set parallel to the input alignment direction

and the analyzer parallel to the output alignment direction (the “correct” alignment

72



Figure 4.7: Polarized optical microscopy of 8CBNR1 at T = 314 K for several external AC voltage
amplitudes at f = 1.2 kHz. The input polarizer was set parallel to the input alignment direction, with
the analyzer perpendicular to the polarizer. (a) no applied voltage, (b) 1000 mV, (c) 2000 mV, (d)
3000 mV. Exposure time, white balance, gain, as well as other parameters were kept constant for all
pictures. Notice how samples go from being fully-bright to dark as electronically-applied voltages increase
in magnitude.
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for full transmission), cells appear completely bright, as was previously shown. When

temperature increases and samples enter the isotropic liquid phase, images get dark and

the N ↔ I transition temperature can be promptly determined. To ensure the proper

functioning of the electronic circuit, external voltages were applied to the ITO-coated

glasses, and samples appeared darker and darker as voltage amplitudes increased (see

figure 4.7). It is important to stress that there is no distinction between left- and right-

handed director twisting pattern here, so no handedness preference can be imposed. When

sample temperatures are abruptly changed, domains of different handedness visible from

optical microscopy form within the sample, separated by defect walls. To avoid such

artifacts, sample temperatures were varied carefully and slowly, at an empirically ideal

rate of approximately 0.3 K/min, where no defects could be observed.

4.4 Z-scan experiment setup

The experimental setup used to obtain the Z-scan transmittance curves is shown in

figure 4.8. A diode-pumped solid-state laser operating at 532 nm was used as both pump
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Figure 4.8: Diagram for the Z-scan experiment. The vertically polarized and collimated beam exiting the
DPSS laser is focused and re-collimated afterwards by two convergent lenses. Such re-collimation allows
the optical chopper to modulate the laser beam at the focus, thus reducing errors due to finite spot size.
After being re-collimated, the beam is deflected through two mirrors, used to facilitate beam alignment.
The light beam is then divided by a beam splitter, part to a reference detector (trigger signal), and
part being later focused by a convergent lens. The liquid crystal cell is placed inside a thermal stage,
moving back and forth the beam propagation direction by a computer-controlled stepper motor-powered
optical rail. According to the sample position, a different beam intensity profile will impinge the sample,
and a consequent position-dependent transmitted signal will be observed. Both open (S = 1) and closed
(S = 0.1) aperture Z-scan transmittances are detected and sent to the oscilloscope, to be further acquired
by the computer.
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and probe beam (Coherent Verdi V6). The beam was focalized by a short focus lens to be

mechanically modulated by an optical chopper at a smaller beam radius, as a means to

improve square wave shapes. The modulated beam was then re-collimated and deflected

by two mirrors, used to facilitate alignment, and split in two by a beam splitter. The

light intensity from one of the arms was measured by a photodetector to be used as a

trigger signal for the oscilloscope, and the other was focused by a convergent lens. A hot

stage containing the sample was set over a long travel range motorized stage (Newport),

where stage position could be fine-tuned by a computer. After exiting the sample, two

possible experimental configurations were detected by photodetectors connected to the

oscilloscope (Tektronix TDS 2022 B), one after passing an almost closed iris (S = 0.1)

and the other being converged by a lens to the detector (S = 1). Five transient intensity

curves were captured at each position, and 50 positions were used, with steps of 5 mm

between each other. A computer script was written in Python language to automatize

the experiments and yield CSV output data. Such experiment was performed for several
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Figure 4.9: Normalized transmitted power through a 50 µm pinhole as a function of position along the
light path (z-axis), for a Gaussian beam focused at z = 0. By adjusting the data points (grey circles)
according to equation (4.3) (red line) with λ = 532 nm, a minimum beam waist of ω0 = 50 µm and a
Rayleigh range of zR = 14.7 mm were obtained.
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temperatures in the smectic-A as well as nematic ranges, in increments of 0.5 K, and a

set thermal stabilization time of approximately 15 min.

In order to measure the beam waist and further obtain the Rayleigh range, a 50 µm

pinhole was moved back and forth along the z-axis (propagation direction) and the trans-

mitted power recorded for each position. Since we know the transmitted power for a fixed

aperture and the input intensity, we also know the beam radius, ω, as a function of z. In

fact, one can obtain the transmitted power by integrating the Gaussian distribution of

intensities from 0 to ra, the aperture radius, which gives us

P (z)(0≤r≤ra) = P(0≤r<∞)

[
1− exp

(−2r2
a

ω2(z)

)]
. (4.1)

P(0≤r<∞) can be obtained by measuring the incident power before the aperture, and ra,

the radius of the pinhole, is specified by the manufacturer. As shown in previous chapters,

ω2(z) is given by

ω2(z) = ω2
0

[
1 +

(
λz

πω2
0

)2
]
. (4.2)
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Inserting equation (4.2) in equation (4.1), we have

P (z)(0≤r≤ra)

P(0≤r<∞)

= 1− exp

 −2r2
a

ω2
0 +

(
λz
πω0

)2

. (4.3)

So, in order to measure the minimum beam waist, one can simply take into account the

light power exiting a pinhole with respect to the position z of the pinhole and fit the data

points using equation (4.3), as shown in figure 4.9.

In particular, all z-scan experiments in the present work were performed with a beam

waist of ω0 = 50 µm and a Rayleigh range of zR = 14.7 mm, as obtained from the fits of

figure 4.9.

4.5 Electro-optical response experiment setup

In order to investigate the mechanisms behind the director reorientation under an

external applied field, an experimental apparatus to measure the transmittance of twisted

cells under a varying, electronically-applied, external electric field was built, as shown in

figure 4.10. A helium-neon laser (633 nm) polarized vertically was used as our light source.

Twisted nematic cells were placed in a hot stage, aligned in a way that the alignment of the

first substrate in the optical path matched laser polarization. The light beam exiting the

sample was split in two by a beam splitter at the Brewster angle, such that p- and s-waves

were properly separated, to be analyzed independently. Each detector was connected to

a channel in the oscilloscope (Tektronix TDS 2012 B), which was set in scan mode. The

external voltage was applied to the cell by connecting the two ITO-coated glass surfaces

to the output channels of a function generator (Tektronix AFG 1022 C), where square-

shaped AC voltages at f = 1.2 kHz of varying amplitude were generated. Turning the

field on, samples take a few milliseconds to fully reorient, and as reorientation occurs,

the transmitted signal for each detection channel is also altered. The time-dependent

transient profile is then acquired and analyzed.

As a means to enable the execution of several averages for each configuration as well as
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Figure 4.10: Experimental apparatus used to indirectly calculate director reorientation times through
voltage dependence of the transmitted s- and p-wave intensities. Here, samples are submitted to an
external electric field resulting from a function generator outputting a square-wave AC voltage, and the
signal obtained by the detectors is directed to the oscilloscope. A computer program controls the ampli-
tude of the applied voltage and captures the resulting time-evolution of the p- and s-wave transmittances.
In particular, when V < Vth, no director reorientation occurs, and no signal change is observed. As V
is increased to exceed Vth, molecules tend to align themselves parallel to the applied electric field, thus
reducing the angle made by the director and the external field (for positive dielectric anisotropy, ∆ε > 0,
which is the case for 8CB).
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increase the accuracy of results, a computer script was written in Python programming

language. Instruments were connected via USB-B to a USB-A port in the computer

and controlled through National Instrument’s virtual instrument software architecture

application programming interface (NI-VISA API), which enables the computer to send

user-defined standard commands for programmable instruments (SCPI) to our electronic

equipments 1. The script consisted of intermittently setting voltages on and off at a defined

rate and acquire the time-dependent transmittance signal. Describing in more detail, the

voltage was turned on for a couple hundred milliseconds, long enough for steady-state to

be reached. After that, the data obtained by the oscilloscope were acquired, unpacked to

1At the time of writing, the author now realizes that a more elegant, portable, efficient, and lightweight
solution could be achieved using different tools. Readers trying to reproduce this or perform similar work
are encouraged to employ different methods. The usbtmc module of the Linux kernel, for instance, is
recommended in place of the NI-VISA backend. That’s because the module makes the kernel see in-
struments as regular terminals, rendering communication straightforward and any external dependencies
superfluous. Fortunately, several Python usbtmc implementations have already been developed. Thus,
users willing to stick to a high-level powerful scripting programming language instead of a less resource-
hungry, lower-level compiled language should not be discouraged from migrating towards the simpler
solution. Currently, the author is working in a multi purpose graphical toolbox to control bench instru-
ments, written in C and GTK 3. The project is yet to be released, but will be made available as free
software soon. A quick web search on the author’s name is predicted to yield positive results by the time
you’re reading this.
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CSV format, and stored. The voltage was then turned off, a couple hundred milliseconds

were waited for stabilization another time, and output files were stored as described

before. The voltage was subsequently turned on again, but at a higher amplitude, and

the procedure aforementioned repeated in a loop until reaching the final voltage. Ten to

fifteen repetitions of the full experiment were performed for each temperature, changing

the incidence location within the sample, aiming to minimize local effects. After all

repetitions of the experiment for a determined temperature have been performed, another

program written in FORTRAN 95 calculated the reorientation time from output data of

the Python script and yielded off- and on-time versus voltage curves, together with the

corresponding error bars. The temperature was then varied in the hot stage controller, and

after 15 min for thermalisation, the procedure described in this paragraph was repeated.
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5
Results

In this work, we explore the thermo-optical, nonlinear optical, and electro-optical

properties of gold nanorod-doped 8CB samples. The results have been split in two sec-

tions, according to the experiments performed and samples studied. The first section

is dedicated to the Z-scan experiments, where the thermo-optical and nonlinear optical

properties of the homeotropic sample containing r̄ = 2.5 gold nanords were examined. In

the second section, we discuss the results obtained in the electro-optical switching and

spectrophotometry experiments, where the twisted samples containing r̄ = 3.0 and 3.8

gold nanorods were investigated.

5.1 Thermo-optical and nonlinear optical properties

of 8CB + AuNR liquid-crystalline systems

Figure 5.1 represents the normalized Z-scan transmittance for homeotropically-aligned

8CB cells containing gold nanorods at two different incidence angles. In both cases,

temperature was fixed at T = 309 K, which is well above the temperature where the

N ↔ Sm-A phase transition occurs. At the left, we see the optical response of cells at

normal incidence, φ = 0, while right shows the optical response at an oblique incidence of

φ = 5◦. In both curves, scattered gray points represent experimental data, while solid lines

are the best fits for Thermal-lens (blue) and Sheik-Bahae (red) models. In particular, left

curve shows a valley-peak profile with extrema separation of ∆vp ≈ 3.4zR, suggesting that
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Figure 5.1: Normalized Z-scan transmittance in closed aperture configuration for homeotropically-aligned
samples of 8CB doped with gold nanorods at two incidence angles, normal (left) and φ = 5◦ (right). Gray
circles represent experimental points. Solid blue and dashed red lines represent the best fits using the
Thermal-lens and Sheik-Bahae models, respectively. Sample temperature was set to T = 309 K, well
above N↔ Sm-A phase transition temperature. For normal incidence, the Thermal-lens model shows to
be more appropriate, while the Sheik-Bahae model appears to excel at fitting the oblique incidence data.
Such feature shows that samples seem to be highly sensitive to incidence angle, leading to the conclusion
that phase distortions are governed by different mechanisms in each configuration.
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distortions on the wavefront are caused mainly due to thermal lensing phenomena. When

fitting experimental data with the Thermal-lens model described before, one can see that

the model suits the data nicely, with a well-adjusted curve for the beam phase shift set to

θ = −0.153 rad. The Sheik-Bahae model, on the other hand, doesn’t seem to adjust the

data well, indicating that neither nonlinear optical absorption nor nonlinear refraction

are contributing much to the phase shift and distortions on the exiting wave. Such results

lead us to believe that heat generation from nonradiative decay of the plasmon excitation

in guest particles provokes a thermally-induced variation in the sample birefringence upon

laser exposure. Moreover, previous studies show that even though a collective plasmonic

excitation may result in a pronounced nonlinear optical response in homeotropically-

aligned samples at wavelengths not far away from the transversal plasmon band [34], the

nematic orientational ordering is apparently not sufficient to induce an ensuing strong

nonlinear response, and optical nonlinearity may be neglected. The same argument does

not hold true for oblique incidence, φ = 5◦, where the valley-peak separation is ∆vp ≈

1.8zR. If we try to adjust a TL curve fit to the data points, an unsatisfactory result is

obtained, even though the self-focusing pattern also present in the TL model persists.
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The Sheik-Bahae model, on the other hand, seems to perform a much better job in this

case. With a nonlinear phase shift ∆Φ0 = −0.592 rad, one can observe that the ensuing

curve lays adequately within experimental points. In fact, when light impinges at oblique

incidence on a homeotropically-aligned cell, an optically-induced director reorientation

occurs, which gives rise to a nonlinearity in the sample refractive index [51, 52]. Such

effect is taken into account in the SB model, and even though the incidence angle is

rather small (φ = 5◦), distortions on the beam wavefront seem to be governed mainly by

optically-induced nonlinearities in the refractive index, overtaking thermal effects due to

heat generation by plasmonic nanoparticles.

As we have seen before, ∆Φ0 is proportional to the nonlinear refraction index, n2,

according to the relation

∆Φ0 =
−2πI0Leff

λ
n2. (5.1)

I0, the input intensity, is easily measured before the experiments. For a low absorption

thin sample, Leff ≈ `0, and our DPSS laser operated at λ = 532 nm. In particular, for an

incidence angle much larger than the optically-induced director reorientation, n2 relates

to the incidence angle, φ, as states the previously derived equation (2.79),

n2 =
∆ε2op`

2
0

24cK11

sin2 2φ. (5.2)

∆εop here is the electrical anisotropy for an optical field, c is the speed of light in vacuum

and K11 is the splay elastic constant. If we make a simple estimative, taking ∆εop = 0.48,

φ = 5◦ and K11 = 5.40×10−7 dyn [90], we arrive at an expected nonlinear refractive index

of n2 ≈ 1.79 × 10−5 cm2/W for pristine 8CB samples of `0 = 100 µm. Our experiments

yield similar results. By fitting closed aperture Z-scan curves for pure 8CB at oblique

incidence at φ = 5◦, we get n2 ≈ 1.73 × 10−5 cm2/W, close enough to our estimative.

If we take the SB fit for figure 5.1(b), with ∆Φ0 = −0.592 rad, the nonlinear refractive

index is estimated to be n2 ≈ 3.48 × 10−5 cm2/W, almost twice as much as that for the

undoped sample. As a matter of fact, previous studies have shown that the addition of

gold nanorods in cyano-biphenyl samples promotes a significant reduction in the splay
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Figure 5.2: Temperature dependence of nonlinear refractive index n2 for a homeotropic 8CB sample
containing gold nanorods. The dashed line is shown to guide the eyes. Notice that the nonlinear refractive
index exhibits a pronounced increase in the vicinity of the nematic–smectic-A phase transition.
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elastic constant, together with a substantial diminution of the temperature dependence of

such parameters [91, 37], while the dielectric anisotropy is slightly enhanced in such gold

nanorod-LC guest-host systems [92]. Indeed, our results confirm the prediction that gold

nanorods in liquid crystal samples should increase nonlinearities in the refraction index.

By adjusting experimental data as those represented in figure 5.1(b) with the SB model

for various temperature values, the temperature dependence of n2 could be obtained, as

shown in figure 5.2. The results seem to be in contrast with the thermal behavior predicted

by equation (5.2), since the dielectric anisotropy tends to exhibit a slight increase as the

temperature approaches the N ↔ Sm-A phase transition temperature [93], and so does

the splay elastic constant [94, 95]. The anomalous increase in the refractive index may be

related with a thermally-induced change in the relative angle between the director and

the incident beam, due to the emergence of a spatial instability in the orientational order

of a homeotropically-aligned nematic liquid crystal film in the vicinity of the N↔ Sm-A

phase transition [96, 97]. In fact, as temperature decreases and the nematic sample

approaches the N ↔ Sm-A phase transition, the splay elastic constant (K11) remains

unchanged, while the twist (K22) and bend (K33) elastic constants diverge to suppress

the spatial instability modes. Thus, a new director configuration ensues to hold such

enhanced nematic anisotropy, and an optical (or external) electric field-induced director
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Figure 5.3: Normalized Z-scan transmittance in open aperture configuration for homeotropically-aligned
samples of 8CB doped with gold nanorods at two different temperatures, T = 302 K (gray circles), and
T = 305 K (blue squares). The incidence angle was set to φ = 5◦. Solid lines are curve fits according
to the Sheik-Bahae model for open aperture. From such curve fits, one may extract β, the nonlinear
absorption coefficient.

−8 −6 −4 −2 0 2 4 6 80.98

1.00

1.02

1.04

1.06

1.08

1.10

z/zR

T
N
(z
)

T = 302 K
T = 305 K

Source: Author (2019).

reorientation is observed in homeotropically-aligned liquid crystal films, with an ensuing

formation of a striped pattern within the sample [97].

If we analyze the open aperture configuration for the Z-scan experiment, information

about thermal effects and nonlinear refraction is lost, but mechanisms related to nonlinear

optical absorption become important to the ensuing transmittance, as mentioned in the

previous sections. Figure 5.3 presents the curves for the normalized Z-scan transmittance

at an oblique incidence (φ = 5◦) for homeotropically-aligned 8CB cells doped with gold

nanorods at two different temperatures. As we can see, curves stay approximately con-

stant near the N↔ Sm-A transition temperature, but as temperature drops, a pronounced

peak in the normalized Z-scan transmittance appears at z = 0, which is a characteristic

behavior of nonlinear optical absorption (in particular, single-photon absorption satu-

ration). This response is a consequence of the strengthening of the smectic order and

consequent suppression of fluctuations on the mean alignment of guest nanorods, where

a self-organization process may rise to reduce costly elastic perturbations in the energy

of the smectic order. Such effect was already reported in the literature for normal inci-

dence, where authors have found that as the temperature of gold nanorod-liquid crystal

systems is reduced, the equilibrium configuration may favor the alignment of elongated

nanoparticles, giving rise to a saturation in the linear absorption of plasmon bands [34].
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Figure 5.4: Dependence of the nonlinear optical absorption coefficient on temperature. Data points were
obtained from the best fits of open aperture Z-scan curves at various temperatures, such as curves shown
in figure 5.3. As the temperature rises, β tends to a constant value, reflecting the ordering degree of gold
nanorod guests inside the liquid crystal host.
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As oblique incidence is concerned, the angle between the optical field and LC director

does not seem to play an important role in the saturation of single-photon absorption in

the system.

In figure 5.4, we represent the temperature dependence of the nonlinear optical ab-

sorption coefficient, β, for oblique incidence (φ = 5◦). The experimental points obtained

here come from fitting curves such as figure 5.3 for various temperature values using the

SB model. As we have seen before, the open aperture normalized Z-scan transmittance

is given by equation (2.82). Since the linear absorption coefficient is small (α < 1 cm−1,

`0 ≈ 100 µm), we may assume Leff ≈ `0, and β is determined straight away from the free

parameter. The input intensity ranged from 5 to 20 kW/cm2. By examining the plot of

−β versus T , we see that β is initially negative for lower temperatures, and, as samples

are heated, the nonlinear absorption coefficient slowly rises to an apparent constant value.

As the temperature is further increased, β rapidly grows to a steady regime of β = 0,

where nonlinear absorption ceases to exist, completely disappearing at T ≈ 2 K below

the N↔ Sm-A phase transition temperature. This behavior appears to be a consequence

of how the mean alignment of nanorods behaves as temperature drops. For lower temper-

atures inside the smectic range, a self-organization of the nanorods may occur to reduce

energetically costly elastic distortions in the smectic order, favoring the alignment of
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Figure 5.5: Steady-state transmittance as a function of applied AC voltage for pristine 8CB, and 8CB
doped with gold nanorods at two different aspect ratios, r̄ = 3.0 (8CBNR1) and r̄ = 3.8 (8CBNR2). The
AC field frequency was fixed at f = 1.2 kHz. All measurements have been performed at the same reduced
temperature tred = |(T/TNI)− 1| ≈ 0.01, where the nematic order is well established (approximately 3 K
below N ↔ I transition temperature). As disorder is introduced through colloidal guests in 8CB, the
threshold voltage is slightly decreased and the transmittance reaches a plateau at lower voltages. As
aspect ratio is increased, such plateau is attained at even lower voltages.
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elongated colloids and ensuing a saturation of the linear absorption of plasmonic bands.

Similar behavior has been observed in polymeric films, where an enhanced absorptive

nonlinearity is obtained from the nanorods alignment induced by the film stretching [98].

5.2 Electro-optical response of twisted nematic sam-

ples containing gold nanorods

By applying a square-wave shaped external AC electric field with f = 1.2 kHz and

acquiring the resulting steady-state intensities for the exiting s-wave of the probe beam

(as shown in figure 4.10), the normalized steady-state transmittance as a function of

the amplitude of the external field could be obtained as shown in figure 5.5, for pristine

(solid black), 8CBNR1 (dashed blue), and 8CBNR2 (dash-dot green) twisted nematic

samples. Here, all measurements have been performed approximately at the same reduced

temperature, tred = |(T/TNI)− 1| ≈ 0.01, well below the N↔ I phase transition. As one

can see, both the Freedericksz reorientation and optical thresholds are lowered when the

colloids are added to our liquid crystal. In particular, the pristine sample presents a
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Figure 5.6: Transient intensities (a) for pristine and gold nanorod-doped 8CB, where gold nanorods come
at two different aspect ratios, r̄ = 3.0 (8CBNR1) and r̄ = 3.8 (8CBNR2). From the time interval required
by each sample to go from 0.1 to 0.9 of total intensity, τrising versus voltage could be obtained as shown
in (b). The AC field frequency was fixed at f = 1.2 kHz. All measurements have been performed at
the same reduced temperature, tred = |(T/TNI) − 1| ≈ 0.01, where the nematic order is well established
(approximately 3 K below N ↔ I phase transition temperature). In order to eliminate imperfections
and local effects, experiments were performed at 15 different sample positions. The gold nanorod-doped
samples reach steady state much faster than pristine one, with more elongated particles presenting an
even faster electro-optical response, together with a more systematical decrease of response times, where
error bars shrink considerably, indicating a decrease of inconsistencies due to sample positioning.
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reorientation threshold at Vth = 950 mV, while in both gold nanorod-doped samples

this value was reduced to Vth = 750 mV. The optical threshold was also dramatically

reduced when the guests were added to 8CB, being even lower in the sample containing

the more elongated particles. Furthermore, the maximum transmittance state is reached

at much lower voltages as impurities are introduced and the aspect ratio is increased.

More specifically, the nanoparticles capped with CTAB induce a homeotropic alignment

over their surface, provoking the appearance of topological defects around them. The

lowering in Freedericksz transition voltage is likely related to elastic distortions in the

nematic order induced by the colloid guests, where the ensuing configuration may yield

different elastic constants in order to accommodate the presence of generated defects.

In order to evaluate the effects of guest particles in the viscoelastic constants, the

dynamics of the Freedericksz transition is analyzed. By acquiring the time-dependent

curves for the ensuing s-wave transmittance, several curves such as figure 5.6(a) could be

obtained. Here, we show an example of resulting transmittances in response to the time

evolution of the director profile for pristine 8CB (gray circles), 8CBNR1 (blue squares),
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and 8CBNR2 (green triangles) for an AC square-wave voltage with an amplitude of V =

4 V at f = 1.2 kHz and approximately the same reduced temperatures (tred = |(T/TNI)−

1| ≈ 0.01). As we can see, the steady-state configuration is reached much faster for gold

nanorod-doped samples, with an even faster response for the sample containing more

elongated particles. By calculating the time interval required by each configuration to

go from 10% (I(τ10) = 0.1 · I(τ → ∞)) to 90% (I(τ90) = 0.9 · I(τ → ∞)) of the total

transmittance, one can calculate τrising = τ90 − τ10, the characteristic switching time for

each sample at each voltage. We have then acquired time-dependent transmittance curves

such as shown in figure 5.6(a) for various voltages, and repeated the experiment with the

incident beam impinging the cell at 15 different positions on each sample in order to

reduce local effects and ease artifacts due to imperfections. An average of τrising(V ) for

each of the 15 experiments was calculated and is shown in figure 5.6(b), together with

the respective error bars. As one can see, the introduction of gold nanorods significantly

reduces the reorientation times, with the switching times being slightly faster in 8CBNR2

than 8CBNR1. Such reduction of response times is also accompanied by a systematical

decrease of error bar size, indicating that the response is also more consistent and reliable

than in pristine samples. In particular, τrising is dependent on the applied voltage as

follows [99, 61]

τrising =

(
γ1d

2

π2k

)
1

(V/Vth)2 − 1
, (5.3)

where γ1 here is the rotational viscosity and k = K11−(2K22−K33)/4 is an effective elastic

constant for the twist sample. One can fit the voltage dependence of the characteristic

reorientation times using equation (5.3) to calculate the ratio γ1/k. Our calculations

reveal a ratio of 23.7 mPa · s/pN for the pristine sample, 16.8 mPa · s/pN for 8CBNR1,

and 12.8 mPa · s/pN for 8CBNR2. As one may observe, the presence of impurities and

subsequent increase of aspect ratio decreases the viscoelastic constant γ1/k, reducing the

reorientation times.

Figure 5.7(a) shows transmission spectra for 8CBNR1 between parallel polarizers, with

the incident light polarization being parallel to the input alignment of the cell. Here, we

can see the typical transmittance profile for a twisted nematic sample placed between
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Figure 5.7: Transmission spectra are shown in (a) for 8CB doped with r̄ = 3.0 nanoparticles (8CBNR1)
for three temperatures, all within the nematic phase range. One can note that, as the temperature is
lowered, a redshift of the Mauguin minima is observed, leading to an increase of the birefringence, as
expected. From the position of the Mauguin minima observed and its consequent minimum number
identification, one can use the single-band model to calculate the ensuing temperature dependence of
birefringence at λ = 633 nm, as shown in (b). Notice that the addition of gold nanorods reduces the
discontinuity in the birefringence observed at the N↔ I phase transition.
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parallel polarizers, as shown in previous sections, for T = 314.7 K (blue), T = 311.9 K

(red) and T = 308.3 K (black). One can note how the Mauguin minima shifts to longer

wavelengths as temperature is decreased. By slowly cooling samples, the thermal depen-

dence of the Mauguin minima position can be obtained, and the system birefringence can

be calculated according to the Gooch-Tarry conditions. Such value for the birefringence

is, however, valid for the Mauguin minima only. Using the single-band model, already

described in previous sections, we can accurately estimate ∆n for λ = 633 nm. In par-

ticular, 8CB presents absorption peaks at λ0 = 200 nm, λ1 = 220 nm and λ2 = 282 nm,

resulting in an average of λ̄2 = (λ2
0 + λ2

1 + λ2
2)/3 ≈ (237 nm)2. The thermal behavior

of the birefringence is shown in figure 5.7 for pristine 8CB (gray circles), 8CBNR1 (blue

squares) and 8CBNR2 (green triangles). Note that a decrease in birefringence is observed

for temperatures where the nematic order is well established, together with a reduction

of the birefringence discontinuity near the N ↔ I phase transition, indicating that the

presence of colloid guests induce an emergence of disorder in the orientational order of

the molecules.

In order to examine the contribution of the surface plasmon resonance to director re-

orientation times, a pump beam was aimed at the 8CBNR2 sample and the electro-optical
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Figure 5.8: Optical switching times versus voltage for 8CB samples doped with r̄ = 3.8 gold nanorods for
different powers of longitudinal plasmonic excitation. The sample was pumped by a DPSS laser beam at
λ = 785 nm, close to the longitudinal plasmonic extinction peak of r̄ = 3.8 gold nanorods. The external
AC voltage had the same frequency f = 1.2 kHz, and the temperature was set to tred = |(T/TNI)− 1| ≈
0.01, the same setup as figure 5.6. Curves show that the electro-optical response is roughly independent
of excitation power, indicating that the elastic distortions induced by nanoparticles shape are responsible
for the decrease in τrising over the plasmonic nature of such guests.
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experiment related above was repeated with various excitation powers, ranging from 0 to

64 mW. The laser pump operated at λ = 785 nm (OBIS DPSS laser, by Coherent), close

to the longitudinal plasmonic extinction peak of r̄ = 3.8 gold nanorods (754 nm). The

pump beam spot covered the whole sample, in order to assure the maximum excitation

area possible. Again, experiments for each excitation power were performed at the usual

temperature of tred = |(T/TNI)− 1| ≈ 0.01, and points obtained from 15 different sample

positions were used to calculate an average τrising(V ), with their respective error bars.

Our results are summarized in figure 5.8. As one can notice, plasmonic effects do not

seem to play a major role in the reorientation dynamics, with effects associated with the

local electric field near nanoparticles being overtaken by elastic distortions induced in

the nematic order, even though plasmonic effects having previously shown to be leading

thermo-optical and nonlinear phenomena [34, 100, 101].

More specifically, CTAB capped gold nanorods induce a homeotropic alignment of the

liquid crystal molecules over their surfaces. A scheme of the director alignment over the

nanoparticles is shown in figure 5.9. When no reorientation is present (V < Vth), the

twist configuration prevails, as shown in (a). Meanwhile, when the applied field exceeds

the threshold voltage, the far field director tends to align itself parallel to the external
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Figure 5.9: Schematic representation of a gold nanorod inside a twisted nematic cell with homeotropic
anchoring expected at the LC-gold interface, as imposed by CTAB. Note how molecules align perpen-
dicular to the surface of the nanoparticle, inducing a disclination ring around its center. The presence
of such defects reduce the orientational order of the system and yields the modifications observed in the
viscoelastic properties of the sample. In (a), the characteristic configuration of the director under twisted
anchoring conditions is represented, while the director profile for samples undergone a Freedericksz tran-
sition is shown in (b). Specifically, colloidal nanorods tend to align themselves parallel to the director
[102, 34].

Source: Author (2019).

field, depicted in (b). In particular, such topological defects induce disorder in the sample

and consequently reduce the elastic constants due to a lowering in the orientational order

parameter, leading to smaller values of the Freedericks threshold voltage. This behavior

has been previously shown to hold for nematic samples in parallel planar (homogeneous

alignment) cells containing gold nanoparticles [102]. The effects of the introduction of gold

nanorods in nematic samples on the rotational viscosity can be understood by analyzing

the Osipov-Terentjev framework, which states that the rotational viscosity of the sample

can be expressed as [103]

γ1 =
ρξ

6vm

√
J̄0s

kBT
exp

(
J̄0s

kBT

)
, (5.4)

where ρ is the mass density, ξ is the molecular frictional coefficient, vm is the molecu-

lar volume, J̄0 is the mean field coupling and s the order parameter. Due to the low

concentration of colloids, the volume fraction of molecules is only slightly changed, with

effects related to the molecular frictional coefficient being negligible. Expression 5.4 shows,
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however, that the rotational viscosity is strongly sensitive to alterations in the order pa-

rameter. As we have discussed before, the nematic order parameter is reduced as the gold

nanorods are introduced in the systems, leading to a decrease in the ensuing rotational

viscosity. Figure 5.7(b) further confirms our assertion, since the sample birefringence is

proportional to the nematic order parameter (∆n ∝ s).
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6
Concluding remarks

In conclusion, we have first studied the thermo-optical and nonlinear optical response

of 8CB liquid crystals containing gold nanorods. The extinction spectra analysis has

showed us how thermal fluctuations are important in the mean alignment of gold nanorods,

where a strong suppression of the longitudinal plasmon peak together with a significant

boost in the transversal peak follows on homeotropic samples as temperature is reduced

and the smectic order begins to establish itself. By investigating normalized Z-scan curves

for closed aperture configuration, we have found that birefringence changes leading to

lensing phenomena are governed by two distinct mechanisms according to beam incidence

angle. Thermal effects are predominant in the regime of normal incidence, where nanorods

act as individual heat sources within the liquid crystal host, due to plasmonic excitation

of the extinction bands. When oblique incidence is concerned, however, thermal lensing

is no longer dominant, with birefringence changes occurring due to director reorientations

in response to light’s electric field. Such observations lead us to conclude that the in-

cidence angle is rather important, because both gold nanorod mean alignment and the

director orientation are extremely sensitive to excitation angle. At normal incidence, di-

rector reorientation is hindered, while transversal plasmonic excitation reaches its peak,

making thermal effects prevalent, due to the colloids acting as heat sources. When beam

incidence is changed to oblique, however, plasmonic excitation of extinction bands are

hamstrung, leading to thermal effects being overthrown by optically-induced changes in

the birefringence, as a result of director reorientation. Moreover, an anomalous behavior
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has been observed for the temperature dependence of the nonlinear refractive index n2 at

the vicinity of the N↔ Sm-A phase transition, where a spatial instability may occur due

to the enhanced nematic anisotropy of the elastic constants [97], yielding an enhanced

optically-induced director reorientation and consequent boosted nonlinear refraction re-

sponse. For the open aperture configuration, a peak centered at z = 0 in the Z-scan

transmittance curve surges as temperature drops to values well below the N ↔ Sm-A

phase transition temperature, for both normal and oblique incidence. The dependence on

temperature of the nonlinear optical absorption coefficient is then obtained for oblique in-

cidence by adjusting the Sheik-Bahae model for open aperture normalized Z-scan curves.

Our results show that even though changes in birefringence due to optically-induced di-

rector reorientation were dominant in the closed aperture configuration, surface plasmon

resonance still plays an important role in nonlinear optical absorption, with a negative

nonlinear absorption coefficient appearing for temperatures where the smectic order is

well established, and increasing in absolute value until reaching an apparent plateau.

The director reorientation properties have also been explored, through the analysis

of the resulting transmittance of twisted nematic samples under an AC voltage for pure

8CB, and 8CB containing gold nanorods in two different aspect ratios. By applying a

square-wave voltage at f = 1.2 kHz and awaiting for transient effects to die out, the

steady-state transmittance and, indirectly, the equilibrium director configuration could

be obtained for various voltages. As nanorod guests were added to 8CB, Freedericksz

reorientation threshold voltages were lowered, keeping constant for both aspect ratios

of gold nanorod guests. The Freedericksz optical threshold, however, was also lowered

as impurities were added to 8CB, but presented a slight decrease as the aspect ratio

was increased. Such reduction is related with a greater degree of disorder being induced

in the samples due to elastic distortions in the orientational order. Moreover, steady-

state transmittance curves presented a pronounced enhancement in steepness, with gold

nanorod-doped samples reaching near-complete transmission at much lower voltages than

the pristine one. In particular, such effect was more evident in the sample containing the

more elongated particles. The dynamic behavior of the director was also evaluated, and a
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significant decrease of reorientation times was reported as disorder centers were introduced

in 8CB, with an even faster response for the sample containing the higher aspect ratio

gold nanorods. By analysing the thermal dependence of the birefringence for each sample

according to the transmission spectra, we could conclude that such reduction is associated

with a drop of the rotational viscosity, caused by the decrease of the order parameter,

as predicted by the Osipov-Terentjev framework. Such behavior is a consequence of the

disrupting of the nematic orientational order around the anisotropic nanoparticles. Even

though the reported increase of the nematic-isotropic phase transition temperature may

at first sight seem contradictory with the overall reduction of the order parameter together

with a slight suppression of the discontinuity at the phase transition, both phenomena

are led by different mechanisms. In the former, the dilution effect related to the excluded

volume contribution plays a major role, in contrast to the second. Furthermore, the

plasmonic contribution to reorientation times was evaluated, where results show that the

local electric field caused by the plasmonic nature of gold nanorods does not present much

significance compared to elastic distortions in the nematic orientational order produced by

guest nanoparticles shapes, despite being crucial to thermo-optical and nonlinear optical

phenomena.
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