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Maceió, Alagoas
26 de Outubro de 2020



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          Catalogação na fonte 

          Universidade Federal de Alagoas 

          Biblioteca Central 
           Divisão de Tratamento Técnico 

         Bibliotecário: Marcelino de Carvalho Freitas Neto – CRB-4 – 1767   
         
               F866i      Freitas, Cristopher Gabriel de Sousa. 
                                   An information-theoretic approach of network structure and dynamics / Cristopher 

Gabriel de Sousa Freitas. – 2020. 
                                   44 f. : il. 
                                     
                                   Orientador: André Luiz Lins de Aquino. 

    Dissertação (mestrado em Modelagem Computacional do Conhecimento) – 
Universidade Federal de Alagoas. Instituto de Computação. Maceió, 2020.     

                                                
                                   Texto em inglês.                                    
                                   Bibliografia: f. 39-44. 
                                    

    1. Redes de computadores. 2. Teoria da informação. 3. Redes complexas. I. Título.                           
                                                                                                    
                                                                                                                                          
                                                                                                                                                CDU: 004.7  



 

 

 
Folha de Aprovação 

 

CRISTOPHER GABRIEL DE SOUSA FREITAS 

An information-theoretic approach of network structure and dynamics 

 
Dissertação submetida ao corpo docente do 
Programa de Pós-Graduação em Modelagem 
Computacional de Conhecimento da 
Universidade Federal de Alagoas e aprovada 
em 26 de OUTUBRO de 2020. 

 

 

 

____________________________________ 
Prof. Dr. ANDRE LUIZ LINS DE AQUINO 

Instituto de Computação - UFAL  
Orientador 

 

 

Banca Examinadora: 
 
 

______________________________________ 
Professor Dr. RIAN GABRIEL SANTOS PINHEIRO 

Instituto de Computação - UFAL  
Examinador interno 

 
 

 

______________________________________ 

Professora Dra. FABIANE DA SILVA QUEIROZ 

Centro de Ciências Agrárias - UFAL  

Examinador externo 



Happiness can be found, even in the darkest of times, if one only remembers to turn on

the light. – Albus Dumbledore



Abstract

Modern networks are facing the most challenges in recent years. Life is changing,

and the Internet became one of the essential services such as power, healthcare, banking.

The Internet has opened global information, and nowadays, a stable and efficient network

is a global right and requirement. Legacy networks inherited many concepts and infras-

tructure from circuit-switching networks, with inflexible design relying most on hardware.

Another critical aspect of networking is debugging it, which requires specialized personnel

with properly designed software. For these reasons – and currently increasing demand

– Internet Service Providers are dealing with challenges that require innovation and sci-

entific strategies. This scenario led to new paradigms such as software-defined networks

(SDNs) to address most of the current issues by bringing the network logic from hardware

design to software development and virtualization.

The emergence of SDNs has drawn the attention of network scientists and engineers

to new roads. The Internet is the most extensive distributed system, and it relies upon

distributed devices communicating efficiently through protocols. A computer network is

a sophisticated collection of network devices and end-systems. SDNs allow a protocol-

agnostic, centralized view, and flexible control of the network, favoring the development

of new strategies that are not achievable into legacy IP networks. In this work, we study

two main aspects of computer networks: structure and dynamics. By understanding

the network characteristics and modeling its dynamical processes, we can uncover how

network structure and dynamics affect its robustness. To achieve this understanding, we

propose the usage of information-theory quantifiers for network characterization. For net-

work topology, we introduce the Fisher Information Measure for quantifying the network

characteristics, using alongside the Network Entropy in a bi-dimensional representation

that allows us to identify if a network is closer to a random, small-world or scale-free

topology.

We evaluated the traffic time-series using the Normalized Permutation Entropy and the

Statistical Complexity for network traffic. We observe the traffic generation models based

on heavy-tail distributions can not reproduce the actual traffic dynamics. We believe this

understanding through information-theory quantifiers can help develop fault-management

solutions and network automation. Instead of focusing on the massive amount of data

available for networks, we can observe how the quantifiers describe the network behavior.

Keywords: Software-defined Networks, Information Theory, Complex Networks.



Resumo

As redes modernas estão enfrentando os maiores desafios nos últimos anos. A vida está

mudando e a Internet se tornou um dos serviços essenciais, como energia, saúde, serviços

bancários. A Internet abriu informações globais e, hoje em dia, uma rede estável e efi-

ciente é um direito e um requisito global. As redes legadas herdaram muitos conceitos

e infraestrutura das redes de comutação de circuitos, com um design inflex́ıvel que de-

pende principalmente do hardware. Outro aspecto cŕıtico da rede é a depuração, o que

requer pessoal especializado com software projetado adequadamente. Por essas razões -

e atual aumento de demanda - os Provedores de Serviços de Internet estão lidando com

desafios que exigem inovação e estratégias cient́ıficas. Esse cenário levou a novos paradig-

mas, como redes definidas por software (SDNs) para resolver a maioria dos problemas

atuais, trazendo a lógica de rede do design de hardware ao desenvolvimento de software

e virtualização.

O surgimento de SDNs atraiu a atenção de cientistas e engenheiros de rede para novos

caminhos. A Internet é o sistema distribúıdo mais extenso e depende de dispositivos

distribúıdos que se comunicam com eficiência por meio de protocolos. Uma rede de com-

putadores é uma coleção sofisticada de dispositivos de rede e sistemas finais. As SDNs

permitem uma visão centralizada e agnóstica de protocolo e controle flex́ıvel da rede,

favorecendo o desenvolvimento de novas estratégias que não são alcançáveis em redes IP

legadas. Neste trabalho, estudamos dois aspectos principais das redes de computadores:

estrutura e dinâmica. Ao compreender as caracteŕısticas da rede e ao modelar seus pro-

cessos dinâmicos, podemos descobrir como a estrutura e a dinâmica da rede afetam sua

robustez. Para alcançar esse entendimento, propomos o uso de quantificadores da teo-

ria da informação para caracterização de redes. Para topologia de rede, apresentamos a

Medida de Informação de Fisher para quantificar as caracteŕısticas da rede, usando jun-

tamente com a Entropia da Rede em uma representação bidimensional que nos permite

identificar se uma rede está mais próxima de uma topologia aleatória, small-world ou

scale-free.

Avaliamos as séries temporais de tráfego usando a Entropia de Permutação Normal-

izada e a Complexidade Estat́ıstica para tráfego de rede. Observamos que os modelos de

geração de tráfego baseados em distribuições de cauda pesada não podem reproduzir a

dinâmica real do tráfego. Acreditamos que esse entendimento por meio de quantificadores

da teoria da informação pode ajudar a desenvolver soluções de gerenciamento de falhas e

automação de rede. Em vez de focar na enorme quantidade de dados dispońıveis para as

redes, podemos observar como os quantificadores descrevem o comportamento da rede

Palavras-chave: Redes definidas por software, Teoria da Informação, Redes Com-

plexas.
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Chapter 1

Introduction

Nature is full of interdependent components coupled together, acting as one big and

complex system. Molecules and organisms are the most ancient example of the inter-

connected system observed in nature, inspiring scientists throughout the centuries. As

humans evolved, society grew more complex and interconnected than ever. Independent

people living together as one bigger system (i.e., cities) changed the design of living;

before, each small settlement produced its own food, and it had its own habits, it was

simpler to understand and control. A few travelers walked and rode in between cities;

they were unusual people, distributing information about other cultures, and starting an

irreversible interconnection process.

With the advent of better transportation techniques, humans started to travel faster,

and the system started to become more complicated than any royalty or governor was

able to understand. Such challenges guided the curiosity of a few, which started to design

tools and frameworks in a search to understand how these complex systems behaved.

One of the earliest well-formulated problems of this nature is the traveling salesman

problem (TSP) from around 1832 with no mathematical formulation. The TSP raised the

following question: “Given a list of cities and the distances between them, what is the

shortest possible route that visits each city once, and returns to the origin city?”

Another critical problem in networking history is the “small-world problem”. Travers

and Milgram [44] discuss the occasional experience of meeting someone we share a mutual

acquaintance, raising a question: “Starting with any two people in the world, what is the

probability that they will know each other?” In a small-world network, two random nodes

can reach out to each other in a relatively small number of hops, i.e., a small-world network

has a relatively small average path length (see Sec. 3.4.2). Nevertheless, communication

amongst different societies amazes social psychologists, communication specialists, and

political scientists. There is a clear impact when two isolated communities connect, it

changes the structure and dynamics of society [51]

The search to improve the communication in society – lowering the average path length

information takes to travel – led the development of the most extensive networked system
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ever engineered: the Internet [33, Ch.1]. The Internet connects billions of devices through

communication links and switches. Similarly, as humans abide by laws maintaining a well-

functioning society, currently, Internet devices must respect communication protocols and

design principles to “survive”.

On the Internet, hosts or end-systems do not communicate directly with each other;

they send their data through communication links and packet switches. There are many

types of communication links, each different link transfer data at different transmission

rate measured in bits/second. When an end-system sends data to another system, it

segments its data into smaller pieces called packets. The route that these packets will take,

it will depend upon the packet switches; these packet switches can be link-layer switches

(Layer-2 switches) or routers (Layer-3 switches). Usually, routers are in the core of the

network, while link-layer switches are “closer” to the end-systems; the end-systems access

the Internet through these collections of packet switches and communications links that

establish the Internet Service Providers (ISPs). Each ISP runs independently conforming

to Internet protocols such as IP (Internet Protocol), BGP (Border-Gateway Protocol),

and MPLS (Multi-Protocol Label Switching).

Into the Internet, the World Wide Web (WWW) was born. In a similar manner to the

Internet, the WWW relied on protocols such as the Hypertext Transfer Protocol (HTTP)

to function accordingly. In the 1990s, the WWW was a collection of documents (webpages)

available on the Internet and connected through virtual links pointing to other documents.

Before Google, there was no easy way to map the WWW content. Like the Internet,

researchers assumed the WWW had random structure until Barabási and Albert [2] saw

it differently. Using web crawlers, they mapped the WWW structure and observed that,

instead of a random network, they obtained something differently. According to the

studies of Random Graph Theory inspired in the Erdős and Rényi model [22], a random

graph presents a degree distribution (histogram of the node degrees) resembling a Poisson

distribution. At the same time, Barabási and Albert observed a degree distribution that

presented power-law characteristics on its tail. Similarly, Faloutsos et al. [24] also observed

a power-law behavior in the degree distribution of the Internet. Observing that this

was no random discovery, Barabási and Albert went further and proposed a model [10]

that better described the “scale-free networks” (i.e., networks that degree distributions

resemble a power-law), considering growth and preferential attachment (see Sec. 3.4.3).

The discovery that the Internet and WWW were scale-free networks changed the per-

spective when evaluating these network characteristics, and started a brand-new research

field of network science. As the Internet grew and became significantly crucial in our

society, there were severe concerns about the robustness and resilience of these networks.

Barabási and Albert observed that scale-free networks were robust to random attacks

– removing random nodes – while they were susceptible to target attacks in the hubs,

quickly dissolving the connectivity of its end-systems [3].
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Nonetheless, with the development of network science, it became clear that it was

necessary an understanding of the network structure to design reliable networks as if some

node presents a failure, its load shifts to other nodes, stressing the network behavior; this

applies to computer networks, transportation, power-grids, and others. By understanding

the network characteristics and modeling its dynamical processes, we can uncover how

network structure and dynamics affect the robustness of the system. Therefore, in this

work, one of our several contributions is to carry an extensive analysis of synthetic network

topologies, proposing a simple method to characterize network topologies (e.g., scale-free,

small-world, or random) using Information Theory quantifiers.

In our scenario, when discussing the network dynamics, we mainly refer to traffic, as

the only dynamical process evaluated. Usually, network dynamics can refer to mobility,

depending upon the nature of the system; this is not our case, since the focus is on the

backbone of ISPs, and generally, they have static topologies.

Concerning network traffic dynamics, it was a similar situation to what we saw in

network topologies. Initially, the researchers considered network traffic random, following

a Poisson distribution. However, Leland et al. [37] collected several days of network

traffic and observed a self-similar nature in Ethernet traffic. Self-similarity describes

a phenomenon where some stochastic processes present high-variability and long-term

correlations, usually captured by a heavy-tailed distribution or power-laws (see Sec. 4.1).

This characteristic uncovered the idea that network traffic presents patterns, and these

patterns can be classified and predicted. Lakhina et al. [35] classified general network

traffic in three categories: (i) long periodic volumes; (ii) bursty events; and (iii) noise.

Considering these findings, Nucci et al. [47] present traffic generation models considering

heavy-tailed probability distributions. Thus, in this work, another of our contributions is

to evaluate if the existent traffic models reproduce the dynamics of real network traffic.

At this point, it is clear that although computer networks became more complex

than ever, they are far from random. Assessing network data, we can observe distinct

patterns, from structure to dynamics. These patterns must be taken into consideration

when planning, designing and deploying a network. However, what if we only identify the

problem after the network is already deployed? Can we optimize an operational network

running thousand of critical services? This scenario represents the actual one for Internet

Service Providers.

With the Internet dynamics changing quickly, it becomes costly to maintain a crit-

ical network that generally consists of proprietary hardware struggling to attend new

demands. Traditional IP networks consist of several protocols coupled together into a

circuit or “black-box” software. This scenario led to the development of Software-Defined

Networks (SDNs) and the OpenFlow protocol; SDNs enable quick automation of network

management and a centralized view of the network state. Therefore, with the SDNs,

ISPs would be able to gather their data efficiently and optimize its functioning through
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software APIs. The possibility of having centralized management (i.e., a controller) of the

network, has set a new trend for ISPs: Network automation through Machine Learning

(ML) and Artificial Intelligence (AI). Using data from past events and continually collect-

ing information about the network state, we can characterize the network features, create

models and even use trial-and-errors methods as we can design flexible software solutions

to optimize the network.

Overall, it is essential that ISPs store their data, providing a comprehensive eval-

uation of their structure and dynamics, and automate as many operations as possible.

Otherwise, they will fall behind, losing vital resources such as time and money in a very

competitive industry. Failures may happen in many levels of the system’s architecture,

and the development of a comprehensive fault management solution is challenging [67].

Our contributions rely on developing an information-theoretic characterization of network

topologies and traffic. It is our understanding that such characterization can guide future

developments of network automation solutions. Computer networks are complex systems

that generates a lot of data, and information-theoretic approaches give us the possibility

of lowering this burden, and focusing on the network underlying characteristics.

We tackle the network problems in two distinct aspects: structure and dynamics.

For this reason, we structure this thesis proposal as follows. Chapter 2 enlighten our

discussion by presenting the state-of-the-art when dealing with computer networks and

software-defined networks. Chapter 3 evaluates distinct network structures and topolo-

gies, proposing an information-theoretic approach to simplify the discussion on network

characteristics. Our results enhance the discussion on the characterization of complex

networks in general and may inspire the development of future optimization solutions

for network control. Chapter 4 evaluates the characteristics of the traffic models in the

Complexity-Entropy plane, which may further help us identify traffic patterns. Chapter 5

wraps our discussion and explores the future directions for our work.



Chapter 2

State of the art

Before diving into our development, it is critical that we discuss the state-of-the-art in

each of the fields we will discuss as follows. Considering the Complex Networks domain,

we discuss the characterization of network topologies in Section 2.1, and its applications

to the domain of Computer Networks. In Section 2.2, we discuss the most classical

discoveries of traffic characterization in Computer Networks, and the current trends of

applications.

2.1 Characterization of network topologies

As discussed in Chapter 1, the problems of network characterization is the key to other

aspects such as information spreading [50] and fault tolerance [3]. When identifying the

network’s structural characteristics, we can predict how the network will react to distinct

processes. Therefore, for computer networks and the Internet, it is of huge importance to

know how the structure will react when unexpected events happen.

The process of characterizing a network can be long and tedious, there are many

metrics to quantify distinct properties of the network, and for each class (e.g., random),

there are many considerations. Zanin et al. [68] discuss a long process of data mining

and how to extract meaningful information from network datasets. In this way, many

researchers attempt to simplify the characterization process by using “universal” metrics.

Humphries et al. [30] proposed the so-called small-world-ness measure to distinguish if

a network is small-world or not. Schieber et al. [54] proposed a distance measure that

compares two distinct networks, giving the likelihood that two distinct networks present

similar characteristics. Wiedermann et al. [65] proposed the usage of Complexity-Entropy

plane for complex networks, by adapting the idea behind network entropy [16] to develop

the Statistical Complexity quantifier. Many other studies characterize a collection of

networks, in the attempt to develop a broader characterization [31, 19, 69].

Based on existing methods for network characterization, there are several studies to

characterize Internet-like topologies. Siganos et al. [56] evaluated the presence of power-
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law degree distribution in distinct router topologies, extending the studies developed

in [24]. Canbaz et al. [18] enlighten one of the biggest problems in the characterization

of the Internet, which is the measurement process. Bakhshaliyev et al. [6] went further

and studies the usual paths that many end-to-end services take in intra-domain networks,

observing that around 78% of the paths does not use the shortest path only, indicating

load balancing and rerouting strategies. More recent, Canbaz et al. [17] did a thorough

evaluation of Internet-like topologies and proposed a tool for mining Internet data, both

topology, and traffic.

2.2 Characterization of network traffic

Different from network topology, the characterization of network traffic is much more

common, and intersects with the studies of network tomography. As we introduced in

Chapter 1, Leland et al. [37] and Willinger et al. [66] changed the perspective when

evaluating network traffic. There was much more effort to develop a successful model

of network traffic. Garret and Willinger [27] discussed the usage of fractional Brownian

motion to model the self-similarity aspects of network traffic, creating a traffic genera-

tion approach. Grossglauser et al. [29] proposed an attractive fluid traffic model whose

parameters are controllable, and its resulting process is self-similar. Most of these models

require a sophisticated deep understanding of stochastic processes and their analytical

properties.

Duffield et al. [21] discussed the existent dependence between the traffic generation

model and the quality of service observed in the queueing systems; the outcomes may

vary according to the model used, resulting in a biased analysis. Furthermore, Bolotin

et al. [14] proposed strategies to control the network functioning, considering the long-

range dependence and self-similar nature of network traffic. They use ON/OFF sources

and heavy-tailed distributions to generate synthetic traffic, identifying critical points, and

preparing the network according to the model prediction.

Even though [27] and [29] proposed better models to reproduce network traffic. Re-

searchers continue to use ON/OFF sources based on heavy-tailed distributions due to its

simpler formulation [47, 61, 11, 60]. Therefore, considering these studies, we conduct a

characterization of these models in Chapter 4, and we propose a straightforward analysis

using the Complexity-Entropy plane to provide a better overview of synthetic and real

traffic dynamics.



Chapter 3

Characterizing network topologies

We propose the Shannon-Fisher plane to a simple and efficient characterization of com-

plex networks compared with the standard models of the literature [25]. Using both the

Network Entropy and the Fisher Information Measure, we can identify several clusters of

distinct network properties such as small-world, scale-free, and randomness.

Nonetheless, the extent of our contributions in characterizing networks is the following:

• The proposal of the Shannon-Fisher plane for network characterization.

• The impact of matrix reordering in the Fisher Information Measure

• A comprehensive evaluation of many complex network models

3.1 Notation and definitions

A graph can take many forms depending upon the system being represented. The most

common representation is the simple graph G(V,E), consisting of nodes vi ∈ V , and

edges euv : (u, v) ∈ E with no self-loops (u, u) /∈ E, no direction (u, v) = (v, u), and

neither weights on its edges. These properties facilitate when evaluating a network; but,

it also limits the power of generalization when analyzing the system’s underlying dynam-

ics. Generally, simple graphs are more useful when we want to understand the system’s

structure, i.e., how the components arrange themselves in space.

In this thesis, we will generally represent a graph as adjacency matrix A with N ×N
dimensions, where |V | = N is the number of nodes, and |E| = M is the number of

edges. For a simple graph, each (i, j) element takes Ai,j = 1 if a connection exists

between nodes i and j, otherwise, Ai,j = 0. The absence of self-loops is represented as

Ai,i = 0, ∀i = 0, . . . , N − 1; and, for undirected graphs A = AT .

The node degree ki indicates the amount of connections node i contains. Considering

the adjacency matrix A, we can calculate the node degree ki =
∑

j Ai,j, therefore, 0 ≤
ki ≤ N−1. If a node i has degree ki = 0, we say this is an isolated node; if ki = N−1, we
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have a fully connected node. The number of connections of a node may be an indicator

of its relevance. In order to measure how the number of connections is distributed for a

network, we define the degree distribution P (k). The degree distribution measures the

fraction of nodes with degree k in the network, i.e., P (k) = Nk/N , where Nk indicates

the number of nodes with degree k.

Sometimes, it is useful to refer to sparse or dense graphs using a measure of link density.

For simple graphs, the link density is the fraction of existing links (i.e.,
∑N

i ki = 2M)

over the maximum possible links (i.e., N(N − 1)/2):

ξ =
1

N(N − 1)

N∑
i

ki =
2M

N(N − 1)
. (3.1)

The clustering coefficient measures the presence of clusters in a networks. As discussed

earlier, this is an important property of small-world networks, where the nodes tend to

cluster easily. The clustering coefficient can be measured locally or globally. The local

clustering coefficient quantifies how the neighborhood of a node compares to a clique.

A clique is a subset of vertices C ⊆ V where every two distinct vertices are adjacent.

Nevertheless, the local clustering coefficient for an undirected graph is defined as the

fraction of nodes in the neighborhood Ni = {vj : eij ∈ E ∨ eji ∈ E} over the maximum

numer of links in the neighborhood for an undirected graph (i.e., ki(ki − 1)/2):

Ci =
2|ejk : (vj, vk) ∈ Ni, ejk ∈ E|

ki(ki − 1)
(3.2)

Another understanding of the clustering coefficient is counting the number of triangles

in the neighborhood, compared to the number of pairs in a three-node neighborhood

subset, i.e., a triplet. In this sense, the local clustering coefficient can be defined as

Ci =
λG(v)

τG(v)
, (3.3)

where λG(v) is the number of triangles on v ∈ V , and τG(v) is the number of connected

pairs in a triplet.

Finally, both definitions are the same, but they can be used differently for calculat-

ing the global clustering coefficient. The global clustering coefficient is also known as

transitivity, defined as

C∆ =
3× number of closed triplets

number of all triplets
. (3.4)

Another alternative of the global clustering coefficient is based on averaging the clus-
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tering for single nodes. Then, the clustering for the whole network is the average

C̄ =
1

N

N∑
i=1

Ci. (3.5)

3.2 Network Entropy

Network Entropy is based on the classical Shannon Entropy for discrete distributions.

Burda et al. [16] proposed a measure of Network Entropy based on the probability that a

random walker goes from node i to any other node j. This probability distribution P (i)

is defined for each node i and has entries

pi→j =

0, for aij = 0,

1/ki, for aij = 1.
(3.6)

It is easy to observe that
∑

j pi→j = 1 for each node i.

Based on the probability distribution P (i), the entropy for each node can be defined

as

S(i) ≡ S[P (i)] = −
N−1∑
j=1

pi→j ln pi→j = ln ki. (3.7)

with S(i) = 0 if node i is disconnected.

After calculating the entropy for each node, we then calculate the normalized node

entropy by

H(i) =
S[P (i)]

ln(N − 1)
=

ln ki
ln(N − 1)

. (3.8)

Finally, the normalized Network Entropy is calculated averaging the normalized node

entropy over the whole network as

H =
1

N

N∑
i=1

H(i) =
1

N ln(N − 1)

N∑
i=1

ln ki. (3.9)

The normalized Network Entropy is maximal H = 1 for fully connected networks,

since pi→j = (N − 1)−1 for every i 6= j and the walk becomes fully random, i.e., jumps

from node i any other node j are equiprobable. The walk becomes predictable in a sparse

network because it limits the possibility of jumps. The sparser the network, the lower

becomes its Network Entropy.

The normalized Network Entropy H, hence, quantifies the heterogeneity of the net-

work’s degree distribution, with lower values for nodes with lower degrees and higher

values for nodes with higher degrees. For example, peripheral nodes present lower H(i)

than hubs. Entropy, thus, ranges from H → 0 (sparse networks) to H → 1 (fully con-
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nected networks).

3.3 Network Fisher Information Measure

The normalized Fisher Information Measure (FIM) [53] for a node i is given by

F (i)[P (i)] =
1

2

N−1∑
j=1

[√
pi→j+1 −

√
pi→j

]2
. (3.10)

The normalized network Fisher Information Measure is given by

F =
1

N

∑
i

F (i)[P (i)] . (3.11)

If the system under study is in a very ordered state, i.e., a sparse network, almost all pi→j

values are zeros, we have Shannon Entropy H → 0 and normalized Fisher’s Information

Measure F → 1. On the other hand, when a very disordered state represents the system

under study, that is when all pi→j values are similar, we obtain H → 1 and F → 0. We

can then define a Shannon-Fisher plane, which can also be used to characterize Complex

Networks.

However, a critical problem emerged, and it drifted our focus in this approach. The

Fisher Information Measure considers the node indices to build the random-walk-based

distribution, if we permute these indices without altering the network structure, our results

for Network Fisher may change (see Fig. 3.1). This dependency is problematic when using

our proposal. Nonetheless, we have found an adequate solution that enhances our results

for both synthetic and real networks; and does not compromise the initial discussion, only

improves it, but it comes with an additional computational cost.

3.3.1 Matrix reordering problem

As the Fisher Information Measure is sensitive to the ordering of node labels, we want

to find an order ϕ that maximizes the amount of information that we can extract from

the system using the adjacency matrix A, i.e., an optimal representation A∗ that it can

reveal the most patterns if they do exist.

An ordering, or order, is a bijection ϕ(v)→ i from v ∈ V to i ∈ N = {1, . . . , n} that

associates a unique index to each vertex. We denote one specific ordering from the set of

all possible orderings as ϕ∗. Usually, a network comes with an arbitrary ordering that we

call initial order, denoted ϕ0(v) to distinguish from a computed order. A transformation

from one ordering to another is called a permutation π. Formally, a permutation is a
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Figure 3.1: (a) shows the 1-ring topology with N = 10 and original order of the lattice.
(a) shows a very ordered adjacency matrix for 1-ring with ordered labels. (b) shows the
1-ring topology with N = 10 after randomly permuting the node labels. (c) shows the
resulting matrix after shuffling the node labels for the 1-ring topology.

bijection π(x)→ y such that:

π(xi) = yi, (x, y) ∈ N2 where yi = yj =⇒ i = j. (3.12)

Each permutation is implemented as a vector containing n distinct indices in N . We

denote S the set of all possible permutations n! for n. A reordering of an undirected

network G consists in computing one permutation π ∈ S that maximizes or minimizes an

objective function q(π, G), such that:

arg min
π∈S

q(π, G). (3.13)

For each permutation π, we may have a different value of Network Fisher Information

Measure I(π, G) ∈ F , where F is the set of all possible FIM for a given network G and

permutation π.

From our previous results [25], we observe that there exists a pattern of transitions

between k-ring and random networks, where k-ring is the most ordered matrices with



3.4. RESULTS: SYNTHETIC NETWORKS 14

block-diagonal patterns and the lowest FIM values, except for k = 1. Therefore, when the

number of connections increases, the adjacency matrix A starts to saturate with ones,

and the Network Fisher decreases. Thus, we choose a permutation π that minimizes the

FIM I for a given network G, such that:

π∗ = arg min
π∈S

I(π, G). (3.14)

We denote our ideal FIM as I∗ ≡ I(π∗, G), as π∗ is the optimal permutation for our

problem. Now that we know what to find, we need to define how to do it. Finding the best

possible solution for our problem is immediate if we run all the possible permutations,

and we choose the one with the lowest possible value of FIM. However, this is not feasible,

as we have n! permutations for each undirected network G. For this, there are several

algorithms for matrix reordering or seriation.

The block-diagonal pattern is one of the most sought-after matrix patterns. It consists

of coherent rectangular areas that appear in ordered matrix whenever strongly connected

components or cliques are present in the underlying topology. Initially, we are focused

on finding the best possible solution, and for this task, the Optimal-Leaf-Ordering is the

best algorithm as it finds an exact solution [15, 8]. However, it is the most expensive

technique with a time of complexity of O(n2 log(n)) and memory complexity of O(n).

Thus, we use this exact solution for N < 10000, but for N > 10000, we chose a

sub-optimal algorithm that focuses on the angular order of eigenvectors [26]. Although

the exact solution (obviously) performs better than the sub-optimal algorithm, the sub-

optimal algorithm produces a very consistent result. It is our understanding that this

algorithm gives us more information than the natural ordering of the system, then, en-

hancing our results.

3.4 Results: Synthetic Networks

We analyze the behavior of Information Theory quantifiers when applied to Random

(RN), Small World (SWN), and Scale-Free networks (SFN). We simulated independent

instances of these networks for several parameters and then analyzed how their Network

Entropy and Fisher Information Measure vary. These synthetic networks may present

some degree of stochasticity related to its parameters setting, which results in variations

of the quantifiers; for this, when we observe variations in any measure X , we represent it

by its average value X along with its sampling standard deviation sX . These variations,

when too small, can be hard to distinguish in figures, but their numerical results should

make this clearer.
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3.4.1 Random Networks: Erdős-Rényi

Boccaletti et al. [13] state that: “the term random graph refers to the disordered nature

of the arrangement of links between different nodes.” According to Ref. [46], Solomonoff

and Rapoport [57] initiated the study upon the nature of random graphs, but Erdős and

Rényi [22] are most known by observing the properties of networks as they increase the

number of random connections, thus, defining an ensemble of graphs G(N,M), with N

nodes and M edges. Later, Gilbert [28] described an alternative method for generating

random graphs by defining an ensemble of graphs GN,p with N nodes connecting randomly

according to a linking probability p that is analogous to the link density.

Although Erdős-Rényi (ER) random graphs are well studied in network science, they

often fail at describing the essential properties of real networks. An important aspect

of ER graphs, is the critical point identifying the emergence of a giant component in

a random network pc = lnN/N . This property is derived analytically from the GN,p

ensemble. For a graph in GN,p, the distribution of the degree k of any particular node v

is binomial:

P (k) =

(
N − 1

k

)
pk(1− p)N−1−k, (3.15)

where N is the number of nodes in the graph, and p is the linking probability. For a

large N , and Np = constant, this resembles a Poisson distribution. Nonetheless,

P (k)→ (np)ke−np

k!
as n→∞ and np = constant. (3.16)

Erdős and Rényi [23] described the behavior of GN,p for distinct values of p. They

observed the following:

• If Np < 1, then GN,p is very unlikely to have any connected components of size

larger than O(ln(N)).

• If Np = 1, then GN,p is very likely to have a largest component whose size is of

order N2/3.

• If Np → c > 1, where c is a constant, then GN,p is likely to have a unique giant

component, and no other component will have more than O(lnN) vertices.

• If p < (1−ε) lnN
N

, then GN,p is very likely to contain isolated nodes.

• If p > (1+ε) lnN
N

, then GN,p is very likely to be connected.

Thus, lnN/N is considered a critical threshold for the connectedness of GN,p. Other

properties of the Erdős-Rényi model are described more precisely in the asymptotic limits

of N →∞.
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We analyzed fifty independent ER graphs GN,p for every combination of N =

{50, 1000, 10000} and p ∈ {0, 0.001, 0.002, . . . , 0.99, 1}making, thus, a total of 50×3×1001

graphs. Figure 3.2 shows the variation of the Shannon Entropy (Fig. 3.2a) and Fisher

Information Measure (Fig. 3.2b) with respect to the link density, while Figure 3.2c depicts

the relationship in between the Shannon Entropy and Fisher Information Measure.

Figure 3.2: Results showing the relationship of Shannon Entropy and Fisher Information
Measure with link density ((a) and (b)), and between Fisher Information Measure and
Shannon Entropy (c) for 50 independent Erdős-Rényi networks except when N = 10000.
The dark-green circles correspond to N = 50; the light-green squares to N = 1000; and
the orange crosses to N = 10000.

Figure 3.2a shows how the Shannon EntropyH varies with respect to the link density ξ.

The variation starts steep, then saturates. This may enhance the sensibility of Shannon-

Fisher plane for sparse networks, but it may not be sensitive to denser graphs. The

relationship between H and ξ also depends on the number of nodes N . The Shannon

Entropy increases, for the same link density, with N . However, the rate of this growth

decreases with N .

Figure 3.2b suggests that the Fisher Information Measure presents two distinct regimes

for ER graphs as a function of their link density. Initially, this measure grows steadily:

for p = 0 the network starts is totally disconnected; as p increases, it reaches the critical

threshold pc that is relative to the network number of nodes N , after which the measure

decreases in a quasi-linear fashion I∗ ≈ b− ap, where a and b are constants that changes

according to the network size N . For N = 50, the critical point is pc = 0.06 with standard

deviation spc = 0.02 and I∗ = 0.70, sI∗ = 0.04; for N = 1000, pc = 0.01, spc = 0.002 with

I∗ = 0.912, sI∗ = 0.003; for N = 10000, pc = 0.001 with I∗ = 0.999 and no variation

observed. As the linking probability for ER graphs is analogous to the link density, this

also stands for the link density, so I∗ ≈ b − aξ for every ξ > ξc. This result relates to

the expected phase transitions in random graphs at pc > lnN/N [23], as the network will

almost surely be connected.

Figuree 3.2c shows the relationship between the Shannon Entropy and the Fisher

Information Measure. As expected, the larger the network is, the less the variability
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observed. For this reason, we will only present results for N = 1000 hereinafter.

3.4.2 Small-world Networks: Watts-Strogatz

While the ER graphs have clearly established properties, it often does not account for

real networks behavior. They do not generate local clustering, lacking the presence of

triplets, inducing a low clustering coefficient. Even though, in general, a ER network has

relatively low average path length in order of L ∼ O(lnN).

In order to address this problem, Watts and Strogatz [64] (WS) proposed a model to

build graphs GN,k that can reproduce this small-world property with a high clustering

coefficient. Small-world networks present an intrinsic characteristic of having a relatively

small average path length between nodes [59]. Starting with a k-ring network with N

nodes and a probability β. The rewiring consists of removing existing edges and con-

necting to another random node. When β = 0, we have a ring lattice, and for β = 1,

it produces a random graph. The lattice structure of the model when β = 0 produces a

locally clustered network, while the rewiring mechanism reduces the average path length

by creating shortcuts. The algorithm introduces about βNk/2 of non-lattice edges. Even

though produces a random graph it does not actually approach the ER model as every

node will be connected to at least k/2 vertices when β = 1.

For a ring lattice, the average path length L = N/2k. In the limiting case of β → 1,

the graph approaches a random graph with L = lnN/ ln k. In the region of 0 < β < 1,

the average path length diminishes quickly when increasing β.

Similarly, the clustering coefficient to the ring lattice C = 3(k−2)/4(k−1) as k grows.

When β → 1, the clustering coefficient is of the same order as the classical random graphs,

C = k/(N − 1). For intermediate values, the model produces networks with the small-

world property and a nontrivial clustering coefficient [13].

In the attempt to perform quantitative analysis for clustering coefficient in small-

world networks, and considering a relationship with the average path length, Humphries

et al. [30] proposed the small-world-ness S∆, defined as

S∆ =
C∆/C∆

rand

L/Lrand

, (3.17)

where C∆ and L are, respectively, the clustering coefficient (transitivity) and average

path length, and C∆
rand and Lrand are the results computed for an ensemble of 100 ER

networks, simulated with the same link density ξ as the real network. With this approach,

Humphries et al. [30] state that for S∆ > 1, the network can be considered small-world.

Here, we evaluate the behavior of the Watts-Strogatz model with the Shannon-Fisher

plane, in order to understand how this model varies according to its parameters. Figure 3.3

shows the same analysis as presented previously for random networks. Figure 3.3a shows
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that the relationship between Network Entropy and link density is consistent with the

observed in Random Networks and that there is a little variation concerning β. Therefore,

the Network Entropy H by itself does not provide information to identify different Small-

World models.

Figure 3.3b shows the relationship between the Fisher measure and link density, in-

dexed by the rewiring probability β (shades of blue). As expected, the behavior in the

limit β = 1 is the same (linear decay) as the one observed for RN; cf. Figure 3.3b. There

is a lower bound, which corresponds to k-rings (red dots). We see in Figure 3.3 that for

k = 1, we start with a ring lattice where H = 0.1, I∗ = 0.5, and increasing β, we see I∗

increasing until it reaches a random graph.

Figure 3.3: Relationship between Shannon Entropy and Fisher Information Measure
with link density ((a) and (b)), and between Fisher Information Measure and Shan-
non Entropy for Watts-Strogatz networks (c). We restricted the analysis to N = 1000,
k ∈ {1, 2, 3, . . . , 499, 500} and β ∈ {0, 0.001, 0.002, . . . , 0.99, 1}; the downward red trian-
gles correspond to k-rings (GN,k with β = 0); the upwards blue triangles are random
graphs (GN,k with β = 1). The blue gradient from dark to light corresponds to the
rewiring probability β: the intensity of the blue color is inversely proportional to the
value of β.

3.4.3 Scale-free Networks

The literature often uses scale-free networks as models for real networks. They have a

degree distribution that can be fitted by a power-law, i.e., P (k) ∼ k−γ, where γ is the

degree exponent usually in 2 ≤ γ ≤ 3, as for γ > 3 the scale-free property can easily

be confused with random networks [9]. We will evaluate the Barabási-Albert [10] model

(BA) for evolving scale-free networks, as it has two essential features: network growth

and the preferential attachment mechanism.

For network growth, at each time step t, we insert new nodes with m links connecting

with N0 existing nodes in the network. We create these links according to a probability

given by the preferential attachment: the probability that a node i connects with j is
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proportional to the actual degree of node i:

Π(i) =
ki∑
j kj

. (3.18)

In this way, the preferential attachment (PA) induces hubs (highly connected nodes), and

peripheral communities, where nodes have a similar degree. We know that the Barabási-

Albert model is unable to reproduce all the diversity existing for scale-free networks, as

it captures only the power-law with degree exponent γ = 3. Therefore, throughout the

years, we found many variations of this model. In this work, we extend our analysis for

non-linear preferential attachment, the fitness property, the aging property, and, finally,

the configuration model.

Non-linear preferential attachment

Krapivsky et al. [32] introduced a non-linear preferential attachment that creates different

regimes for the network according to an exponent α controlling the network topology. The

non-linear PA is given by

Π(i) =
kαi∑
j k

α
j

. (3.19)

For α 6= 1, the growth model stops resulting in a power-law degree distribution. There

are, thus, three different growth regimes:

• The sublinear regime (α < 1) has a power-law with an exponential cutoff, where the

preferential attachment is not strong enough to produce a pure power-law degree

distribution.

• The linear regime (α = 1) has a pure power-law behavior corresponding to the

Barabási-Albert [10] model, with a resulting γ = 3.

• The superlinear regime (α > 1) presents a particular behavior where the network

condensates, i.e., very few nodes win all connections; it also does not result in a

power-law degree distribution.

We mapped outcomes of the BA model with a non-linear preferential attachment

using the Krapivsky’s model onto the Shannon-Fisher plane, as shown in Figure 3.4a. For

α = 0, we have a random network, since Π(i) = 1 for every i, the network no longer obeys

the preferential attachment mechanism, just the evolving growth property; the result is

H = 0.072, sH = 0.001 and I∗ = 0.87, sI∗ = 0.001. Increasing α in steps of 0.01 changes

the network’s regime slowly, and we see this transition in the Shannon-Fisher plane until

it reaches α = 1. In the linear regime H = 0.063, sH = 0.001 and I∗ = 0.874, sI∗ = 0.001.

In the superlinear regime H → 0 and I∗ starts decreasing above α > 1.4, as seen in
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Figure 3.4b. Figure 3.4a shows no intersections between Barabási-Albert networks (BA)

and any other network class (e.g. Random or Small-world).

Figure 3.4: (a) Barabási-Albert networks, non-linear preferential attachment with N =
1000, and α ∈ [0, 3]. For the sake of visualization, we plot the red downward triangles
representing GN,k with β = 0, i.e., k -ring graphs; blue upward triangles are GN,k with
β = 1, i.e., random graphs. (b) shows how changing α causes disturbances in the Fisher
Information Measure, when evaluating the Barabási-Albert model with non-linear PA.

Similar to earlier sections, we evaluated the link density ξ along with Network En-

tropy H and Fisher Information Measure I∗. This time, the results with link density in

comparison with Network Entropy, shown in Figure 3.5b, have more interesting behavior.

Although the link density does not change (ξ = 0.002), H absorbs the changes and when

increasing α, H → 0. In Figure 3.5a, we observe how Fisher Information Measure I∗

against link density ξ produces varying results, as in between 0 < α < 1.4, I∗ increases,

then, for α > 1.4, the values of I∗ decrease.

Fitness property

Some networks have nodes that create connections with more ability, e.g., a popular web

page. Usually, these nodes gain relationships faster than common nodes. The Bianconi-

Barabási model [12, 1] describes this property named fitness. We can model it using the

preferential attachment considering a fitness coefficient ηi alongside the node degree ki:

Π(i) =
ηiki∑
j ηjkj

. (3.20)

In Eq. 3.20, the dependence of Π(i) on ηi models the fact that even younger nodes can

acquire links faster if they have sufficiently higher fitness than older nodes. Therefore, we

draw 30 networks with N = 1000, considering a uniform distribution for the fitness ηi of

each node i. For this, we do not expect a perfect power law, but we expect γ = 2.255,

asymptotically.
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Figure 3.5: (a) Relationship between link density and Fisher Information Measure for
Barabási-Albert networks using a non-linear preferential attachment; the gradient indi-
cates how the preferential attachment exponent α changes. (b) Relationship between the
Network Entropy and link density, where ξ = 0.002 for any α. To help the visualization
of the region where Barabási-Albert networks stand in relation to the other synthetic
networks, red downward triangles represent GN,k with β = 0, i.e., k -ring graphs; blue
upward triangles are GN,k with β = 1, i.e., random graphs.

Figure 3.6 shows the Fitness model falls into a region similar to BA, but with some

networks closer to Random rather than Scale-Free.

Figure 3.6: Relationship between Shannon Entropy and Fisher Information Measure with
link density (a) and (b), and between Fisher Information Measure and Shannon Entropy
(c) for Biaconi-Barabási (Fitness model). Black points indicate the thirty networks with
N = 1000 generated using a uniform distribution for the fitness scores of each node.

Aging property

Another aspect we can also consider for a scale-free network is the aging property [20].

Regularly, for the Barabási-Albert model, we account only for the node degree or, as

seen before, the fitness coefficient. However, what happens when a node starts to reduce



3.4. RESULTS: SYNTHETIC NETWORKS 22

the rate of acquiring new links with time? This aging process causes the nodes to lose

relevance; thus, it changes the network structure and dynamics. We can model this

property considering:

Π(i)(ki, t− ti) ∼ k(t− ti)−ν , (3.21)

where ν is a parameter controlling the dependence of the attachment probability on the

node’s age. According to ν, we can define three scaling regimes:

• If ν < 0, new nodes will connect to older nodes. If ν → −∞, each new node

connects to the oldest node, resulting in a condensed network or hub-and-spoke

topology. Hence, we have a more heterogeneous network with a few hubs and many

peripheral nodes.

• If ν > 0, nodes connect to younger nodes. By aging, nodes lose the ability of

preferential attachment. In this case, the network tends to be more homogeneous.

• For ν > 1, the aging effect dominates the preferential attachment effect, the network

loses its scale-free property, and it eventually approaches a random network. When

ν →∞, each node connects to its immediate predecessor.

For evaluating the aging property, we generate distinct networks with N = 1000 and

ν ∈ {−3.0,−2.9,−2.8, ..., 2.9, 3.0} with 30 replications of each setting; thus, we have a

total of 18030 networks. Figure 3.7a shows the results for networks with a growing Net-

work Entropy H and a steady link density ξ = 0.002, the same result as for BA model.

Figure 3.7b shows the results for the aging property, and once more, we can observe the

“oscillation” that happens to all the other scale-free models previously discussed. Fig-

ure 3.7c presents the results considering the Network Entropy H and Fisher Information

Measure I∗, where we can see the Aging model transition in the plane according to its

scaling regimes.

The numerical results for the Aging model are the following: for ν = −3, H = 0.024,

sH = 0.0014 and I∗ = 0.74, sI∗ = 0.032 i.e., we have a condensed network; when ν > 0, H
and I∗ continue to grow until ν = 1, wherefore H = 0.072, sH = 0.0009 and I∗ = 0.857,

s∗I = 0.004; for ν > 1, H grows steadily and I∗ decays, reaching a random regime. Finally,

we noticed that the scale-free regime expected for ν ∈ [0, 1] is observed in the Shannon-

Fisher plane, where the values for H = 0.063, sH = 0.005 and I∗ = 0.866, sI∗ = 0.007.

The configuration model

A recurrent problem is “how do we generate networks with an arbitrary P (k)?”. For

this, we use the configuration model, also known as a random network with a pre-defined

degree sequence [45]. According to Ref. [9], the algorithm consists of the following steps:
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Figure 3.7: Relationship between Shannon Entropy and Fisher Information Measure with
link density (a) and (b), and between Fisher Information Measure and Shannon Entropy
(c) for the Aging model. The gradient indicates the aging exponent ν ∈ [−3, 3] and how
its growth controls the network scaling regimes.

1. Assign a degree to each node as stubs or half-links. We have to start from an even

number of stubs; otherwise, we will have unpaired stubs.

2. Randomly selects a pair of half-links and connects them; then randomly choose

another pair from the remaining 2L− 2 half-links.

3. Repeat this process until paired up all stubs. Depending on how we pair them

up, we may obtain distinct networks. Some networks include cycles, self-loops, or

multi-links. In this work, we consider only simple graphs, thus, after generating the

network for a degree sequence, we “simplify” the graph, removing self-loops and

multi-links.

As we are trying to reproduce scale-free properties using the configuration model, we

assign a pure power-law distribution P (k) = k−γ with γ ∈ [2, 5]. For this model, we

expect that for 2 ≤ γ ≤ 3, the network is in the scale-free regime; when γ > 3, the

network starts to condensate, as the distribution has a steep curve. It means that few

nodes have most of the links, and most nodes have few links. Such networks present

structure and dynamics more similar to a hub-and-spoke topology. It is interesting to

assess the configuration model; now, the networks built using a power-law with γ ∈ [2, 3]

represent a small area of the Shannon-Fisher plane (Fig. 3.8a), where the allegedly Scale-

Free networks present themselves. This behavior provides an interesting perspective when

evaluating real networks.

Finally, we evaluate these networks with N = 1000 using a pure power-law distribution

with γ ∈ {2.0, 2.1, 2.2, ..., 4.9, 5.0}; as we cannot guarantee that networks with the same

degree exponent have the same topology, we replicate this experiment 30 times, then, we

have 1312 networks. In Figure 3.8a we have that ξ = 0.001, with sξ = 0.0006 while the

Network EntropyH decreases as we increase the degree exponent. This behavior is similar

for all the other scale-free models when we are in the condensed regime. In Figure 3.8c,
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we observe how FIM I∗ is capturing the changes, wherefore the degree exponent γ ∈ [2, 3]

we have H = 0.045, sH = 0.017 and I∗ = 0.886, sI∗ = 0.026; and for γ ∈ (3, 5], we have

H = 0.010, sH = 0.005 and I∗ = 0.952, sI∗ = 0.018.

Figure 3.8: Relationship of Shannon Entropy and Fisher Information Measure with link
density (a,b), and between Fisher Information Measure and Shannon Entropy (c) for the
configuration model with a degree distribution following a pure power-law P (k) ∼ k−γ.
The gradient indicates the degree exponent γ ∈ [2, 5] and how it controls the network
scaling regimes.

3.5 Discussion

Complex networks have many faces, thus attempting to label them considering a single

network property may be misleading. Real networks have many components and distinct

interactions among them, for example, a scale-free network may have peripheral communi-

ties that lead to the small-world structure. Our proposal quantifies network structure and

dynamics, considering a simplified plot. We show consistent results with other network

features when we apply this methodology to synthetic networks.

The Shannon-Fisher plane enhances our ability to evaluate complex networks:

• The transition that the Watts-Strogatz model exhibits in between k-ring and random

graphs, leading us to define the small-world region;

• The two distinct regimes for the Erdős-Rényi model when reaching the critical

linking probability;

• The three regimes for the non-linear preferential attachment on scale-free networks

and distinct growth models, which transits between random, scale-free and con-

densed networks;

• The fitness model’s behavior when we consider a uniform distribution for each node’s

fitness, and how it has similar features to the Barabási-Albert model;
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• The effect of aging for scale-free networks and how the aging exponent can control

the system’s behavior in the same manner to what happens with the non-linear

preferential attachment;

• And finally, how we can generate networks with a pure power-law considering dis-

tinct degree exponent.



Chapter 4

Characterizing network traffic

Network traffic plays a critical role in network planning and control. The researchers as-

sume that traffic from Ethernet and other IP-related networks have a self-similar nature:

high-variability and long-term correlations. Many studies try to model these characteris-

tics for simulation and further optimization. One of the most straightforward approaches

to model these characteristics is to consider ON/OFF sources (packet-train), where ON-

and OFF-periods are i.i.d., generated with random heavy-tailed distributions. Using infor-

mation theory quantifiers, in particular the Causality Complexity-Entropy Plane, we show

that heavy-tailed distributions do not capture most of the network traffic dynamics. They

only reproduce the stochastic dynamics of traffic, which accounts for one of the smallest

parts. We conduct this study by observing the Abilene dataset, fitting the LogNormal

and LogLogistic distributions, and evaluating them onto Causality Complexity-Entropy

Plane in comparison with 1/f -noise, which is one of the most observed long-term corre-

lated noises in nature stochastic processes. Also, to enhance our illustrated results, we

use the k-nearest-neighbors (kNN) to classify the real and generated traffic according to

the results obtained.

4.1 Self-similarity and network traffic

The evaluation of network traffic is the subject of extensive analysis for decades. Initially,

it was common knowledge that network traffic was similar to a Poisson process with finite

variance and aggregated dynamics close to white noise. Leland et al. [37] identified two

distinct characteristics of Ethernet traffic collected from local area networks (LAN): (i)

they identified the bursty traffic nature: high-volume demands within short-time periods

with a substantial positive variance; and (ii) they observed periodic volume within daily

periods, named “ripples”. Hence, they showed that Poisson-related processes were not

ideal for modeling network traffic, as traffic time-series were self-similar. This achievement

shifted the previously randomness assumed, towards pattern identification into network

traffic time-series. These discoveries helped the network researchers to address traffic



4.1. SELF-SIMILARITY AND NETWORK TRAFFIC 27

modeling and performance evaluation with a new perspective.

Self-similarity [40] implies a stochastic process with high-variability and long-term

correlation that can be measured by the Hurst exponent [41]. High-variability can be

represented by heavy-tailed distribution with infinite variance, while long-term correlation

implies a self-correlation that presents a power-law decay. In simple words, a stochastic

process is self-similar with the proper self-similarity degree given by the Hurst exponent,

if it presents the same correlation structure for distinct time-scale.

Willinger et al. [66, 58] discussed the self-similarity and long-range dependent nature

regarding strictly alternating ON/OFF sources (or packet-train). The ON-period (or

packet-train length) is the time of sending the packets; the OFF-period (or inter-train

distances) is when the source does not send any packet. Both ON- and OFF-periods

are i.i.d. with infinite variance and linearly independent between themselves. Then,

ON/OFF sources, in the aggregated traffic, present characteristics of self-similar stochastic

processes. As an example of reference self-similar processes [49], we have: 1/f -noise,

fractional Brownian motion (fBm), and fractional Gaussian noise (fGn) processes.

Many studies continued exploring the notion of self-similarity within network traf-

fic. Lakhina et al. [35] extended the fact that the Poisson models can not replicate the

dynamics of LAN traffic. Using principal component analysis (PCA), they evaluate the

Sprint and Abilene datasets. From a long-range perspective, they show that most of the

network traffic is periodic with daily cycles (the ripples); and the remaining traffic con-

sists of bursty events and noise. This work corroborated the existence of the three traffic

components (or categories), with precise pictorial results showing the traffic behavior.

Several researchers use this approach of using PCA to characterize traffic, leading

to further studies of anomaly detection using machine learning techniques. Lakhina et

al. [34] applied the subspace method to the three different types of flow traffic identified,

being able to tell when some particular anomaly behavior appeared. So far, all these

studies evaluated traffic obtained from aggregating the origin-destination flow statistics.

Nucci et al. [47] assess the same datasets from Lakhina et al. Using this data, they fit

a few probability distribution functions (e.g., Log-normal and Log-logistic), showing that

heavy-tailed curves can describe most of the aspect identified at [37, 35]. The community

extensively acknowledges this work, and regularly, it guides the simulation parameters

of computer networks in many environments: Vishwanath et al. [62] developed a traffic

generator that captures traffic of distinct services in the network, automatically extracts

the distribution parameters and it reproduces the traffic structure with statistical signif-

icance. Similarly, Benson et al. [11] introduced a similar analysis for the traffic of data

center networks. More recent, Varet et al. [60] developed a traffic generation tool using

the concept of ON/OFF sources [66] and the fitted models of [47].

In this chapter, we question the dynamical properties captured by fitted distributions

of traffic flows with information-theory-based quantifiers. Usually, these distributions fit
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the empirical cumulative distribution functions with a low error rate considering K-S

(Kolmogorov-Smirnov) and C-S (Chi-Squared) tests. Although low error with relevant

p-values indicates a good fit, it does not guarantee that the dynamics of the systems are

similar, and as [47] pointed out, this fit may not account for noisy events that can usually

happen.

Rosso et al. [52] evaluates chaotic systems and compared them with correlated and

non-correlated stochastic processes in the causal complexity-entropy plane (CCEP). This

bidimensional representation plane can distinguish the chaotic or stochastic nature of these

systems. Aquino et al. [5] applied this methodology to characterize vehicle velocities that,

so far, were represented by Poisson-related models, showing that these velocities present

a long-term correlated nature, similar to 1/f -noise. A contribution similar to what was

done by Willinger et al. [37] concerning network traffic flow time-series. Later, the same

methods were successfully applied to characterize the electric load consumption with the

same purpose [4].

We suggest the use of information-theory quantifiers for distinguishing traditional and

self-similar traffic. Our main question is:

“Does existent traffic models reproduce the dynamics of real network traffic?”

Nevertheless, we compared the real data from origin-destination traffic flows with the

proposed models in the causal complexity-entropy plane. According to our results, these

models do not appear to reproduce the dynamics of real data.

We observe the distinct dynamics presented by real traffic data, in comparison with

the models used in network planning and simulation. Further, we show that real data

have similar dynamics to ideal self-similar processes (e.g., 1/f -noise, fBm, and fGn) with

proper parameter setting, confirming the existing discussion about network traffic in the

CCEP. Also, we observe that existing fitted models, according to the results of CCEP,

have dynamics closer to white noise, rather than long-term correlated processes. Thus,

these results can be beneficial for the development of decision-making solutions concerning

traffic engineering. Although the existing models satisfy planning requirements, it is not

sufficient to guide the comparison of existing solutions.

4.2 Time-series and information theory quantifiers

The characterization of the traffic flow time series takes two steps: first, we apply the

Bandt-Pompe technique [7], transforming the time series into a symbolic sequence his-

togram that retains time causal information; second, we map this sequence onto the

Causality Complexity-Entropy Plane (CCEP) [52], and its results indicate its underlying

physical nature.
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Bandt and Pompe [7] presented a simple method that compares neighboring values

given: a time series X (t) = {xt : t = 1, . . . , T}; an embedding dimension D ≥ 2 (D ∈ N),

for practical purposes D = 2, . . . , 7; and an embedding delay time τ ∈ N that determines

the time separation between the data. Then, we can find the D! ordinal patterns of length

D. Let us take this simple example presented by Bandt and Pompe [7]. Consider a time

series with seven values:

X = {4, 7, 9, 10, 6, 11, 3}, (4.1)

we can find four pairs which xt < xt+1 and two pairs for which xt > xt+1. Hence, four

pairs will be transformed to the symbolic representation π = 01 (xt < xt+1), while the

remaining two will be represented by π = 10 (xt > xt+1). In order to have a unique result,

if we had xt = xt+1, it would be treated the same as if xt < xt+1. This example considered

D = 2 (and τ = 1), let us take an D = 3, τ = 1 example, also given by Ref. [7]. First, we

have this sequence (4, 7, 9) and (7, 9, 10) that represent the permutation symbol π = 012

since they are in increasing order. Then, we may have (9, 10, 6) and (6, 11, 3) having the

permutation symbol π = 201 since xt+2 < xt < xt+1, and (10, 6, 11) has π = 102, and so

forth.

The definition stands that for all the D! possible permutations {π} of order D, their

associated relative frequencies can be computed by the number of times that we found

this particular order sequence (permutation symbol) in the time series divided by the

total number of sequences. Hence, the relative frequency of each symbol π is given by

p(π) =
#{t | t ≤ T −D, (xt+1, . . . , xt+D) has type π}

T − (D − 1)τ
, (4.2)

where # means the cardinality (number) of the set. This should estimate the frequency

of π as good as possible for a finite time-series. The ordinal patterns associated with P ≡
{p(π)} are invariant with respect to nonlinear monotonic transformations. Accordingly,

nonlinear drifts or scaling artificially will not modify the estimation of quantifiers.

We evaluate the normalized Shannon Entropy [55] and the Statistical Complexity [36]

of the frequency distribution P obtained with the Bandt-Pompe technique over time

series of network traffic flows. Since this method consists of counting order sequences of

permutation symbols, the former quantifier is named Permutation Normalized Shannon

Entropy and the latter Permutation Statistical Complexity. Although, for the sake of

simplicity, from this point further, we refer to both quantifiers only as: Shannon Entropy

and Statistical Complexity.

Let θ : Ω → R be a discrete random variable with T < ∞ possible values and

Ω = {ξi : i = 1, . . . , T} and probability distribution P = {pj ≥ 0 : j = 1, . . . , N},
whereas

∑N
j=0 pj = 1. The Shannon Entropy S[P ] = −

∑N
j=1 pj ln pj, where, by conven-

tion, 0 ln 0 = 0. This quantifier is related to the amount of uncertainty described by P
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and its underlying physical process.

Thus, we can define permutation Shannon Entropy as S[P ] = −
∑
p(π) ln p(π). It

is easy to follow that 0 < S[P ] < lnD!, where the lower bound is observed when we

have a strictly increasing or decreasing sequence, and the upper bound is obtained for an

i.i.d. sequence (a completely random system) where all the D! permutations appear with

the same probability, i.e., a uniform distribution. The uniform distribution is taken as

reference distribution Pe, which is given by pj = 1/N for every 1 ≤ j ≤ N . It is immediate

that S[Pe] = lnN . Given the frequency distribution, N = D!, hence, S[Pe] = lnD!,

describing the situation of less information about the observed time-series.

Further, Lamberti et al. [36] introduced the Statistical Complexity CJS and the Jensen-

ShannonQJS disequilibrium measure; the disequilibrium is the “distance” between a given

probability distribution P and the equilibrium reference distribution Pe:

QJS[P, Pe] = Q0 · JS[P, Pe]

= Q0 ·
{
S
[
P + Pe

2

]
− S[P ] + S[Pe]

2

}
;

(4.3)

with JS[P, Pe] being the Jensen-Shannon divergence [38]. This information-theoretical-

based divergence measure is intimately related to the Kullback-Leibler relative entropy.

Also, Q0 is a normalization constant equal to the inverse of the maximum possible value

of JS so that QJS ∈ [0, 1]. Q0 is obtained when one of the probabilities of P is equal to

one, and the remaining are equal to zero.

Statistical Complexity measure CJS can detect essential details of the underlying dy-

namics that gives rise to the observations. We define this measure according to the

functional product proposed by López-Ruiz et al. [39]:

CJS = HS [P ] · QJS[P, Pe], (4.4)

where

HS[P ] = S[P ]/Smax (4.5)

is the normalized Shannon entropy HS ∈ [0, 1] with Smax = S[Pe], and the disequilibrium

QJS is the Jensen-Shannon disequilibrium measure.

Finally, we analyze the time-series using a bidimensional diagram, named Complexity-

Entropy Plane (CCEP). The CCEP is obtained by plotting CJS (vertical axis) versus HS

(horizontal axis) [52]. For a given value of HS, the range of possible CJS values, in

this plane, varies between Cmin
JS and Cmax

JS [42]. The term “causality” reminds the fact

that temporal correlations between successive samples are taken into account through

P = {p(π)}; the PDF computed with the Bandt-Pompe methodology is used to evaluate

both Information Theory quantifiers HS and CJS.

Rosso et al. [52] showed that this tool is particularly efficient at distinguishing between
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the chaotic and stochastic nature of time series since the permutation quantifiers have

distinct behaviors for different types of dynamics. For regular (periodic) processes, both

quantifiers have small values, close to zero. Totally uncorrelated stochastic processes are

close to HS ≈ 1 and CJS ≈ 0. Correlated stochastic processes with f−κ power spectrum

(0 < κ ≤ 3) are characterized by intermediateH with C values between Cmin
JS and Cmax

JS . We

found similar results for the self-similar stochastic processes: fractional Brownian motion

(fBm) and fractional Gaussian noise (fGn) [52].

4.3 Network traffic flow characterization

We consider the Abilene dataset [35] as the real data obtained from origin-destination

traffic flow measures. This dataset contains information from 121 origin-destination pairs,

measured at each 5 minutes (12 times per hour), for 24 hours and 7 days, giving us the

total of 12× 24× 7 = 2016 samples for each origin-destination pair.

Initially, this dataset was used by Lakhina et al. [35] to identify distinct flow categories.

Later, Nucci et al. [47] discussed the underlying characteristics of this data. They proposed

a dynamic stationary model that can be described by:

X(i, j, t) = x̄(i, j, T ) +W (i, j, t), (4.6)

where for (i, j)-th flow, the mean of the origin-destination flow is given by x̄(i, j, T ).

During the period T , W (i, j, t) captures the random fluctuation in (T − 1) ≤ t ≤ T , as

a zero mean random process whose variance needs to be determined. Later, this base

model is simplified to:

X(i, j, t) = x̄(i, j, T ). (4.7)

For this, we assume the random fluctuations to be so small, that the dynamic of the

system is not disturbed; we show that this is not the case. Nonetheless, for X(i, j, t), they

estimate distinct distribution fittings that consider the mean values of origin-destination

flows for each hour. In this work, we are interested in the 5-minutes granularity, as the

Abilene dataset is already a representation of complex network traffic, reducing this data,

even more, would reduce the amount of information dangerously.

Therefore, we choose the recommended distributions of Nucci et al. [47]: LogNormal

and LogLogistic. We estimate the distribution parameters using the Maximum Likelihood

Estimation method (MLE). A random variable X has a log-normal distribution if the

random variable lnX has a normal distribution. In the same fashion, a random variable

X has a log-logistic distribution, if the random variable lnX has a logistic distribution.

Using the proper log-likelihood functions and the estimator, we were able to achieve

the fit displayed in Figure 4.1. For statistical significance, we tested our distributions with

the Kolmogorov-Smirnov test that indicates the quality of the fitting [43]. We accept the
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Figure 4.1: Traffic values for the Abilene dataset and the fit of the LogNormal and
LogLogistic distributions.

fitting hypothesis if the p-value has significance level α < 0.05. Observing the table 4.1,

we can see that our fitting parameters have failed the hypothesis testing.

Table 4.1: K-S test results for traffic flow values.

Distributions Parameters
K-S

Test value p-value

LogNormal µ = 14.48, σ = 2.81 0.15594 <2.2e-16
LogLogistic α = 0.94, β = 14.58 0.086064 <2.2e-16

This estimation attempts to give us a proper way of generating mean traffic flow

values for a given scenario, but it is not enough. Several research papers have discussed

the presence of long-term correlation that is not captured by fitting a distribution. Even

though, Nucci et al. [47] suggest adding a zero-mean Gaussian noise for the intervals that

the real data, it is not enough. Using CCEP, we observed that (Section 4.4) the Abilene

dataset, in comparison with the random distributions fitting, present a distinct dynamics;

in fact, the dataset present dynamics closer to the 1/fκ-noise.

The 1/fκ-noise phenomena is widely found in nature, and it is often related with long-

memory processes and long-term correlations for f−κ with 0.5 ≤ κ ≤ 1.5. This noise is

an intermediate between the well understood white noise (κ = 0) with no correlation in

time and random walk (Brownian motion) noise with no correlation between increments.

There are no simple, even linear stochastic differential equations generating signals with

1/fκ-noise. The widespread occurrence of this phenomenon suggests that a generic math-

ematical explanation might exist. The standard definition of 1/fκ-noise [63] refers to a

phenomenon with spectral density given by

S(f) = constant/fκ, (4.8)
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where f is the frequency. To generate a process with constant spectral density, we use a

random uniform distribution.

4.4 Results

We characterize the traffic flow time series using the Bandt-Pompe symbolization with

D = {4, 5, 6} and τ = 1. Considering each origin-destination flow and the fit ob-

tained for the LogNormal and LogLogistic distribution, we generated 121 samples with

2016 length each, using the obtained parameters in Table 4.1. We compare the re-

sults from the Abilene dataset, LogNormal, and LogLogistic, alongside 1/fκ-noise with

κ = {0, 0.5, 1, 1.5, 2, 2.5, 3}, although κ = {0, 0.5} are left out of the planes to improve

visualization, as they are really close to κ = 1 and amongst each other.

The 1/fκ-noise has important properties to notice. First, for κ = 0, we have white

noise, with the constant power spectrum (entirely random state); for 0.5 < κ < 1.5, we

have a pink noise, as one of the most common phenomena observed in nature, easily

observable in music and arts; for κ > 1.5 we have distinct “colors” of noise with a highly

correlated structure. With this information, we proceed to evaluate the time-series in the

CCEP, as shown in Figure 4.2.

We change D to extend our analysis for distinct ordinal pattern lengths considering

that M � D!, as M = 2016. Figure 4.2 shows that the variation of D impacts the

spreading of the results, but the observed dynamics is maintained. For the 1/fκ-noise

and D = 5 (Fig. 4.2b): with κ = 0, the average Shannon Entropy is H = 0.994 and the

average Statistical Complexity is CJS = 0.011; when κ = 0.5, H = 0.993 and CJS = 0.012;

κ = 1.0, H = 0.988 and CJS = 0.210; κ = 1.5, H = 0.974 and CJS = 0.044; κ = 2.0,

H = 0.940 and CJS = 0.094; κ = 2.5, H = 0.862 and CJS = 0.178; and finally for κ = 3,

H = 0.699 and CJS = 0.268.

When evaluating the results in the CCEP for the Abilene dataset with D = 5, τ = 1,

we obtained the respective average values: H = 0.958 and CJS = 0.068. However, simply

observing the plots in Figure 4.2, we can see that Abilene has a considerable variance,

much higher than LogNormal and LogLogistic. The average results for LogNormal in the

CCEP are: H = 0.994 and CJS = 0.010; and for LogLogistic, we have H = 0.993 and

CJS = 0.001. Nevertheless, to a more robust comparison in between the traffics and 1/fκ-

noise, we use the k-Nearest-Neighbors (kNN) algorithm to “classify” the given traffic in

respect to the distinct spectrum of correlated noise.

We trained a kNN classifier with k = 3 and Euclidean distance for all the distinct set-

tings of 1/f -noise with D = {4, 5, 6} and κ = {0, 0.5, 1, 1.5, 2, 2.5, 3}. Then, we “predict”

the κ exponent according to the training dataset that considers the Shannon Entropy H,

Statistical Complexity CJS and the ordinal pattern length D, τ = 1. Table 4.2 presents

the results with the relative frequencies of each traffic data in the corresponding noise



4.4. RESULTS 34

●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●

●●●●●●●●●●●●●●

●

●

●
●

●

●
●

●

●

●

●●●
●

●

●●●

●

●
●

●
●●
●

●
●●

●

●

●
●
●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●●

●
●
●●

●
●●

●

●
●

●●●●
●●
●●

●●
●●

●

●●
●

●
●●

●
●

●●
●

●
●

●●
●

●
●

●●
●

●
●
●

●

●●
●●

●
●

●

●●

●
●●●

●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0.0

0.1

0.2

0.3

0.6 0.7 0.8 0.9 1.0
Normalized Shannon Entropy

S
ta

tis
tic

al
 C

om
pl

ex
ity

Traffic ● ● ●Abilene LogLogistic LogNormal

1/f−noise ● 1 1.5 2 2.5 3

D = 4

(a) D = 4, τ = 1

●●
●
●

●●
●●

●
●

●
●●●●●●●●

●
●●●●●●●●●●●

●
●●●

●●●●
●
●

●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●
●

●
●●●●●

●●●●●●●●●●●
●●
●●●
●●●●
●●●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●

●●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●●●●

●●

●●

●
●

●
●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

0.0

0.1

0.2

0.3

0.6 0.7 0.8 0.9 1.0
Normalized Shannon Entropy

S
ta

tis
tic

al
 C

om
pl

ex
ity

Traffic ● ● ●Abilene LogLogistic LogNormal

1/f−noise ● 1 1.5 2 2.5 3

D = 5

(b) D = 5, τ = 1

●●●●●●
●

●
●
●●●
●●
●

●●●
●●●●●
●
●

●●
●●

●
●

●●

●
●●●●●
●
●
●

●
●●●
●●

●
●●
●●
●●●
●
●●
●●

●●
●●●
●●●●

●
●●●●
●●●

●

●●●
●●●●●
●
●

●
●●
●●●●
●●

●●

●
●
●●●
●●●
●●
●●●●●
●●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●
●●

●
●
●●●

●
●
●●●●●●
●
●
●

●
●●●
●●●●
●

●
●●●
●
●
●●
●
●

●●
●●●
●

●
●
●●●
●
●

●
●●
●
●
●●●●●●●
●●
●

●
●●●

●
●●●
●●●●●●●●●
●●●
●●●
●●
●●
●

●●●●●●●
●●●●
●
●
●
●
●●●●●●
●●●●
●●●●●●●
●
●●●●
●●
●
●

●●●●
●●
●●●●●●●

●
●●●
●●●●●●●●
●●●●●●●●●●●●
●
●●●
●
●

●●●●●
●●●

●●●
●
●●

●
●●●●●
●●
●
●
●

●●
●●

●
●●
●●●
●
●

●●
●
●●●●●●●●●
●●●●●●●●

●

●●
●●

0.0

0.1

0.2

0.3

0.6 0.7 0.8 0.9 1.0
Normalized Shannon Entropy

S
ta

tis
tic

al
 C

om
pl

ex
ity

Traffic ● ● ●Abilene LogLogistic LogNormal

1/f−noise ● 1 1.5 2 2.5 3

D = 6

(c) D = 6, τ = 1

Figure 4.2: Causality Complexity-Entropy Plane for the traffic flow values with distinct
D values.
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category. We can see that the Abilene dataset has less than ten percent of its data with

dynamics similar to κ ≤ 1, while LogNormal and LogLogistic has 100% of its data on this

region. In fact, Abilene has 92% of its data in between 1.5 ≤ κ ≤ 2.5.

Table 4.2: Classification of the traffic time-series according to 1/f -noise exponent κ with
relative quantities.

Traffic data
1/f exponent κ

0 0.5 1 1.5 2 2.5 3

Abilene 0.01 0.01 0.06 0.48 0.42 0.03 0.00
LogLogistic 0.57 0.41 0.02 0.00 0.00 0.00 0.00
LogNormal 0.59 0.39 0.02 0.00 0.00 0.00 0.00

This result is understandable, as LogNormal and LogLogistic is a random-based dis-

tribution, considering Normal and Logistic processes. This observation implies that even

though these distributions fit the data correctly, they do not reproduce the system’s self-

similar dynamics. Therefore, we understand that using these distributions models for

simulation and reproducing real network scenarios may not be accurate. However, a ran-

dom stochastic nature is even harder to control; therefore, planning to random traffic is

better when addressing network capacity, as rare scenarios may appear without a pattern.

Finally, for a pictorial analysis, we can see Figure 4.3 with various origin-destination

traffic values. At first, we pick the traffic with the highest Statistical Complexity value

(Fig. 4.3a) this traffic contains the most amount of information content, i.e., patterns ; we

observe that this time-series has a close to periodic nature. Figure 4.3b shows the traffic

time-series with the lowest Shannon Entropy, which implies the most ordered traffic flow.

Figure 4.3c exhibits the traffic time-series with the highest Shannon Entropy; therefore,

the most chaotic traffic with the least amount of existing patterns. These figures ensure

our expectations, and we can see that network traffic is quite complicated, and it contains

many distinct dynamics that a simple distribution fitting does not capture.

4.5 Discussion

Many studies discuss the existing self-similar and complex dynamics of network traffic.

To our best knowledge, there is no discussion that these traffics are more complex than

any mathematical model can describe. Currently, flow-based models using packet-trains

are the most used approaches with ON- and OFF-periods. Heavy-tailed distributions

typically describe these periods [48]. In this paper, we show that this may be an inac-

curate approach that considers “random” traffic patterns. Our work uses the Causality

Complexity Entropy Plane, enhancing network traffic characterization with a simple and

efficient method. This characterization exhibits the differences between the traffic gener-



4.5. DISCUSSION 36

25

50

75

100

125

0 500 1000 1500 2000
Time instances

Tr
af

fic
 v

al
ue

s 
(M

B
)

(a) Highest Statistical Complexity

0.0

0.5

1.0

1.5

2.0

0 500 1000 1500 2000
Time instances

Tr
af

fic
 v

al
ue

s 
(M

B
)

(b) Lowest Shannon Entropy

0.0

2.5

5.0

7.5

10.0

0 500 1000 1500 2000
Time instances

Tr
af

fic
 v

al
ue

s 
(M

B
)

(c) Highest Shannon Entropy and
lowest Complexity

Figure 4.3: Traffic time series for the origin-destination flow. These Shannon Entropy
and Statistical Complexity results were calculated with D = 5 and τ = 1.

ated using the distributions and the real dataset. It is clear that even though a correlated

nature is present in real traffic, these distribution fittings do not reproduce this. The

distributions we evaluate are usually applied to generate both ON- and OFF- periods in

packet-train models. Although the discussion of OFF-periods models in comparison with

real data is left out, we expect to explore the characteristics of more complex packet-train

models traffic in our next steps.

Understanding the dynamics of these time-series is critical when trying to predict the

best approach to optimize a network that knows its current state, but it can not ensure

the proper future scenario. Besides that, this work will guide our future simulated sce-

narios to avoid considering unrealistic traffic. The proposal of a model that captures the

structure and dynamics of real traffic time-series remains an open-issue. Nevertheless,

the calculations of Statistical Complexity and Shannon Entropy are quite efficient, giv-

ing us the possibility of evaluating traffic in real-time with a sliding window approach.

Alongside recent breakthroughs of programmables networks can be an exciting scenario

for our discovery, as we can calculate these information theory quantifiers when monitor-

ing networks through APIs and reprogramming the network configuration based on the

results.



Chapter 5

Conclusions

Computer networks are complex systems composed of many devices that regulate and

determine how the network functions. Observing the network behavior can be tricky,

as we have a considerable amount of data that is continually changing and increasing.

The current state-of-the-art machine-learning models still can not fully model a computer

network adequately. This often happens because these systems’ features, such as topol-

ogy or traffic, have enough complexity to become a problem of itself. In this work, we

believe information-theoretic solutions can low the burden of complexity in many of these

problems. Instead of developing a solution for monitoring topology or traffic time-series,

we can instead monitor how the information-theory quantifiers change within a certain

period.

Even though monitoring is quite feasible, changing the network behavior based on

data can be tricky, as many devices have closed software that does not inter-operate

amongst them. Software-defined networking attempts to solve this issue by bringing

the network configuration from hardware to software and allowing even more flexible

monitoring solutions.

Nonetheless, in this, we conducted an extensive analysis of network traffic and topolo-

gies. In summary, our contributions are:

• We propose the Network Fisher Information Measure for characterizing the network

topology.

• We carried an extensive analysis of many network models to show the feasibility of

monitoring network topologies through information-theory quantifiers.

• The identification of a network as random, small-world or scale-free can ensure the

development of fault-management solution, as we know the failures to expect in

each of these models.

• We evaluate network traffic time-series using the Complexity-Entropy plane.
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• We show that the usage of heavy-tailed distributions in traffic generation can be

misleading, and we confirm the literature discussion upon it.

Finally, we believe the information-theoretic framework applied for the monitoring

and evaluation of Computer Networks can bring many advantages to the current state-of-

the-art. These quantifiers are sensitive to many phase transitions within these systems,

being very prone to develop solutions of failure detection and even prediction.

Unfortunately, we were unable to develop information-theoretic solutions for current

SDNs infrastructure. Many of our attempts were frustrated by many instabilities of the

open-source platforms. Due to the novelty of SDN and the many challenges expected

when trying to communicate with network devices using only software, we understand

these limitations. Although we hope that as the community gains strength and matures

its knowledge soon, our analysis’s applications can be many.
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