
UNIVERSIDADE FEDERAL DE ALAGOAS

INSTITUTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

Dissertação de Mestrado

On the agreement among developers when detecting code
smells aided by decision tree

Christiano Rossini Martins Costa
christianorossini@ic.ufal.br

Orientador:

Baldoino Fonseca dos Santos Neto

MACEIÓ, ABRIL DE 2020

Christiano Rossini Martins Costa

On the agreement among developers when
detecting code smells aided by decision tree

Dissertação apresentada como requisito parcial para
obtenção do grau de Mestre pelo Curso de Mestrado em
Informática do Instituto de Computação da Universidade
Federal de Alagoas.

Orientador:

Baldoino Fonseca dos Santos Neto

Maceió, abril de 2020

Catalogação na fonte
Universidade Federal de Alagoas

Biblioteca Central
Divisão de Tratamento Técnico

Bibliotecário: Marcelino de Carvalho Freitas Neto – CRB-4 - 1767

 C837o Costa, Christiano Rossini Martins.

 On the agreement among developers when detecting code smells
aided by decision tree / Christiano Rossini Martins Costa. – 2020.

 59 f. : il.

 Orientador: Baldoino Fonseca dos Santos Neto.
 Dissertação (mestrado em Informática) - Universidade Federal de

Alagoas. Instituto de Computação. Maceió, 2020.

 Texto em inglês.
 Bibliografia: f. 52-54.
 Apêndices: f. 56-59.

 1. Code smells. 2. Concordâncias. 3. Sistemas de suporte de

decisão. I. Título.
 CDU: 004.424.25

To my parents, who gave me all support to overcome life’s challenges, despite all hardnesses.

Now here I am. Thank you, for everything.

Acknowledgements

I would like to express my gratitude to my family for all the support and encouragement
throughout this journey.

To the members of the examining board, Prof. Márcio de Medeiros Ribeiro and Prof. Rafael
Maiani de Mello, for kindly accepted the invitation to participate and collaborate with this
dissertation.

To the research group EASY and my classmates for the uncountable kindnesses and the
companionship that guided my entire trajectory in this difficult challenge.

Especially, I’d like to thank my advisor Prof. Baldoino Fonseca dos Santos Neto for all his
patience, support and constructive criticism during this period. This work, as in every major
challenge in life, was made up of good and bad times. But it was the bad times that made me
understand how important a good orientation work is in the life of a student.

Resumo
O code smell é um sintoma de um mau design de código em desenvolvimento de software.
Geralmente ocorre quando os desenvolvedores conceberam mal o design de um componente de
código ou porque não projetaram a solução adequadamente devido a prazos rígidos. Na literatura,
o code smell é descrito informalmente, isto é, não é possível identificá-lo objetivamente. Essa
informalidade pode levar dois ou mais desenvolvedores a raciocinar sobre cada ocorrência de
smell a sua maneira. Como conseqüência de diferentes pontos de vista, percepções conflitantes
nas mesmas bases de código podem ser notáveis, afetando a consistência entre as revisões de
código. Trabalhos anteriores que abordam a subjetividade do code smell carecem de elementos
informativos que possam descrever por que certos códigos-fonte foram anteriormente classifi-
cados como code smell, a fim de ajudar os desenvolvedores a raciocinar sobre a ocorrência de
um code smell com mais eficácia. Em nossa pesquisa, propomos mostrar ao desenvolvedor uma
visualização de um classificador de árvore de decisão, composto por regras baseadas em métricas
de software, com o objetivo de informar as razões pelas quais algum código-fonte foi classificado
anteriormente como um host de um code smell. O fornecimento de novos insights pode levar o
desenvolvedor a raciocinar de forma mais ampla sobre a ocorrência de um code smell, não se
restringindo a fatores relacionados apenas a experiências e vida profissional. Nosso objetivo é,
após várias avaliações de code smells, investigar como a concordância entre desenvolvedores
pode ser influenciada pela visualização fornecida por um modelo de classificação compreensí-
vel, o classificador de árvore de decisão. Realizamos um experimento on-line onde reunimos
colaborações de 30 desenvolvedores da indústria e da academia. Os resultados indicam que: (i)
a detecção de code smells auxiliada por uma árvore de decisão leva a uma melhora relativa da
concordância em relação às detecções com base apenas na análise de código; (ii) a detecção de
code smell auxiliada pela árvore de decisão não diminui o esforço para detectar smells (iii) nosso
experimento sugere que as árvores de decisão usadas para dar suporte à detecção de code smells

são úteis para o desenvolvedor em termos de insights para tomada de decisão.

Palavras-chave: Odores de código. Concordâncias. Revisão de código. Árvore de Decisão.
Estudo empírico.

Abstract
Code smell is a symptom of poor code design on software development. It often occurs when
developers poorly conceived the design of the code component or because they did not properly
designed the solution due to strict deadlines. In literature, code smell is described informally,
i. e., it isn’t possible to identify a smelly code objectively. Such informality may lead two or
more developers to reason about each smell occurrence in their own way. As a consequence of
different viewpoints, conflicting perceptions on the same code bases may be notable, impacting
the consistency across code reviews. Previous works that addresses code smell subjectivity
lacks of some informative element that may describe why certain suspicions source code was
previously classified as code smell in order to aid developers to reasoning about the occurrence
of a code smell with more effectivity. In our research, we propose to show to the developer a
visualization of a decision tree classifier, composed by some metric-based rules, aimed to inform
the developer the reasons why some source code was previously classified as a host of a certain
code smell. Providing new insights may tease the developer to reasoning the occurrence of a
code smell widely, not restricting to factors concerned only to past experiences and backgrounds.
Our objective is, after several code smell evaluations, investigate how the agreements among
developers may be influenced by the visualization provided by a comprehensible classification
model, the decision tree classifier. We performed an on line experiment where we gather collab-
orations from 30 developers from industry and academy. The results indicate: (i) code smells
detection aided by a decision tree leads to a relative improvement of agreement in relation to
detections based solely on code analysis; (ii) the detection of code smell aided by decision tree
do not decrease the effort to detect smells (iii) our experiment suggests that the decision trees
used to support code smell detection are useful to the developer in terms of insights for decision
making.

Keywords: Code Smell. Agreements. Code Review. Decision Tree Classifier. Detection. Identi-
fication. Empirical study.

List of Figures

Figure 1 – Example: A decision tree to guess an animal. (GRUS, 2019) 17
Figure 2 – Decision tree model which indicates a Long Parameter List. 24
Figure 3 – Experiment design. A 2x2 latin square. 25
Figure 4 – Steps of the experiment . 26
Figure 5 – Task environment without decision tree . 28
Figure 6 – Task environment with decision tree . 28
Figure 7 – During a task evaluation, a highlighted path of a decision tree model is shown

to the participant. 29
Figure 8 – Self-rated experience from participants . 30
Figure 9 – Average agreement for all participants. 35
Figure 10 – Average agreement comparison: Overall × participants from academy. . . . 36
Figure 11 – Average agreement comparison: Overall × Experienced participants in code

smell detection . 37
Figure 12 – Average agreement comparison: Overall × Experienced in Java Language . 39
Figure 13 – Average agreement comparison: Overall × Experienced participants in de-

velopment . 40
Figure 14 – Time spent to answer the tasks . 41
Figure 15 – The frequency of categorized contributions stated by participants 43
Figure 16 – The frequency of categorized patterns from statements which considers the

decision tree not useful to the context . 45
Figure 17 – The sum of all opinions about the usefulness (contributions) of the classifica-

tion models (decision tree) . 45

List of Tables

Table 1 – Types of code smells selected (FOWLER et al., 1999) 20
Table 3 – Open source projects involved in the study 21
Table 4 – Effectivity result . 23
Table 5 – Classes or methods that belongs to tasks of group 1 27
Table 6 – Classes or methods that belongs to tasks of group 2 27
Table 7 – Participants’ evaluations for tasks group 1, in DT scenario. The grey cell

represents the ’Agree’, the white is ’Disagree’. 31
Table 8 – Agreement strength categories . 34
Table 9 – Overall evaluations . 34
Table 10 – Overall Fleiss Kappa agreement measures 34
Table 11 – Evaluation table of participants from academy 36
Table 12 – Kappa agreement measures of participants from academy 36
Table 13 – Evaluation table of experienced participants on code smell detection 37
Table 14 – Kappa measure of experienced participants on code smell detection 37
Table 15 – Evaluation table of experienced developers on Java language 39
Table 16 – Kappa measure of experienced Java language participant 39
Table 17 – Evaluation table of experienced participants in development 40
Table 18 – Kappa measure of experienced participants on development 40
Table 19 – Example of statements from participants and the detected insight/contribution 42
Table 21 – Examples of statements from participants who disagrees about the usefulness

of decision tree visualization for detecting smells. 44
Table 22 – List of class-level metrics . 58
Table 23 – List of method-level metrics . 59

Contents

1 INTRODUCTION . 12
1.1 Context and Problem . 12
1.2 Objective . 13
1.3 Execution and main results . 14
1.4 Contributions . 14
1.5 Research structure . 15

2 STUDY BACKGROUND . 16
2.1 Code Smell . 16
2.2 Machine Learning . 16
2.3 Supervised and Unsupervised Learning 16
2.4 Decision Tree Classifier . 17

3 STUDY DESIGN . 19
3.1 Code smell types selection . 20
3.2 The oracle dataset . 20
3.3 Training the algorithm and generating the classifiers 22
3.4 Study Procedure . 23
3.5 Tasks accomplishment . 26
3.6 Experiment execution and data inspection 29
3.7 Data analysis . 30
3.7.1 Inter-rater agreement . 31
3.7.2 Time spent to accomplish tasks . 31
3.7.3 The usefulness of decision trees for decision making 32

4 RESULTS . 33
4.1 Overall participants’ agreement . 33
4.2 Developer’s agreement considering their origin 34
4.2.1 Participants from academy . 35
4.3 Agreements by experience . 36
4.3.1 Experienced participants on code smell detection 37
4.3.2 Experienced participants on Java language 38
4.3.3 Experienced participants on development 39
4.4 The effort spent to answer the tasks 41
4.5 The usefulness of decision tree visualization for decision making 42

5 DISCUSSIONS . 46
5.1 RQ1: Do an aided approach of code smell detection - using a

tree classifier representation – influence on agreement among
developers? . 46

5.2 RQ2: How much effort do developer spend during code smell
detection with a tree classifier support? 47

5.3 RQ3: How useful is the decision tree visualization for decision
making? . 47

6 RELATED WORK . 48

7 THREATS TO VALIDITY . 50

8 CONCLUSION AND FUTURE WORKS 52

BIBLIOGRAPHY . 53

APPENDIX A – SOFTWARE METRICS 57
A.1 List of class-level software metrics 57
A.2 List of method-level software metrics 58

APPENDIX B – PARTICIPANT BACKGROUNDQUESTION-
NAIRE . 60

12

1 Introduction

1.1 Context and Problem

Code smell is a symptom of poor code design on software development (FOWLER et al.,
1999). It often occurs when developers poorly conceive the design of the code component or
because they did not properly design the solution due to strict deadlines (PALOMBA et al.,
2014). Empirical studies indicate that code smells leads to a lack of code comprehensibility
(ABBES et al., 2011) and increases change and fault-proneness, affecting negatively the software
maintainability (YAMASHITA; MOONEN, 2013b). Refactoring (FOWLER et al., 1999) is a
useful technique that relies on fixing software code that hosts a smell through applying the best
Oriented Object practices as long as keeping the core business logic untouched.

Fowler and Beck (FOWLER et al., 1999) describes each type of code smell informally,
i. e., they do not provide formal rules for detecting code smells. Such informal definition of
code smell may lead two or more developers to reason about each smell occurrence in their
own way, subjectively. For example, from Long Method emerges some questions such as (i)
When a method is actually long? (ii) How many responsibilities characterize a long method?
(iii) What is the threshold of source code lines that characterize a long method? These questions
may result in divergent opinions, depending on each developer’s experiences and backgrounds
(HOZANO et al., 2018). The subjectivity issue turns more relevant when we assume that a
considerably large proportion of software professionals (32%) states that they did not know
about code smells (YAMASHITA; MOONEN, 2013a). As a consequence of different viewpoints,
conflicting perceptions on the same code bases may be notable, impacting the consistency across
code reviews (HOZANO et al., 2018).

Peer code review, a manual inspection of source code by developers other than the author,
is recognized as a valuable tool for reducing software defects and improving the quality of
software projects (BACCHELLI; BIRD, 2013). Although the availability of tools (FONTANA;
BRAIONE; ZANONI, 2012) and machine learning techniques (AZEEM et al., 2019) for smell
detection, code reviewers still need to analyze code design problems individually to confirm its
occurrence on the system. For instance, in pull-based development (GOUSIOS et al., 2015), a
distributed software development that allows developers to work on a software project even being
geographically dispersed, there is a reviewer staff of core developers that is responsible to accept
or reject pushed changes to the repository. In the reviewing process, most of the rejected changes
refer to design problems, including architecture violations, use of bad programming practices,
violations of good object-oriented design principles, lack of abstraction and poor implementation
(SILVA; VALENTE; TERRA, 2016). Thus, a code review process requires them to detect smells
in unfamiliar code.

Chapter 1. Introduction 13

The subjectiveness concerned with individual code smells assessment was addressed by pre-
vious studies (HOZANO et al., 2018; PALOMBA et al., 2014; TAIBI; JANES; LENARDUZZI,
2017). These were empirical studies aimed to expose developers to software code snippets and
gather their viewpoints about the occurrence of certain types of code smells, obtaining qualitative
findings regards to how similar they detect code smells (HOZANO et al., 2018) and how they
perceive and associate the problem to the symptoms of smell definition (PALOMBA et al.,
2014). In the case of Hozano et al. (HOZANO et al., 2018), they explored personal factors,
such as experiences and heuristics formulated by developers to discover agreements among
them when evaluating code smells in code. In the experimental phase, the authors present to the
developer a suspicious source code that hosts a code smell as well as a description of the informal
definition of the smell to be evaluated, asking the developer to confirm or not the occurrence
of the described code smell type in source code. However, it lacks some informative element
that may describe why certain suspicions source code was previously classified as code smell in
order to aid developers in reasoning about the occurrence of a code smell with more effectivity.

In our research, rather than merely show a suspicions source code and the respective informal
definition of the code smell, we propose to show to the developer a visualization of a decision tree
classifier, composed by some metric-based rules, aimed to inform the developer the reasons why
some source code was previously classified as a host of a code smell. Thereafter, the developer
can confirm or not the occurrence of certain code smell aided by such rules that indicates the
reason why the source code is "smelly". Inspecting a decision tree model representation, through
its nodes and rules, can give new insights to developers in order to identify which attributes
(metrics) are the strongest predictors of the class variable (smelly or not) (FREITAS, 2014).
These new insights may tease the developer to reasoning the occurrence of a code smell widely,
not restricting to factors concerned only to past experiences and backgrounds.

1.2 Objective

As an evolution of previous study (HOZANO et al., 2018), we aim at investigating how
the code smell agreement among developers may be influenced by the visualization provided
by a comprehensible classification model, the decision tree classifier. (FREITAS, 2014). This
classifier was largely employed (AZEEM et al., 2019) in recent studies focused on automatic
smell detection and offered good effectivity measures (AMORIM et al., 2015). Moreover,
decision trees have an output that is pretty easy to interpret, giving the opportunity to properly
understand the mechanisms that lead to the detection of a certain code smell instance (AZEEM
et al., 2019).

In this study we address the following hypotheses:

• (H1) developers exposed to the rules of a classification model, each rule with transparent
software metric, tends to agree on the ocurrence of a code smell, minimizing the subjectivity
inherited from code smell informality.

Chapter 1. Introduction 14

• (H2) the evaluation process takes less effort to be concluded when the developer is exposed
to elements which characterize the smelly code.

• (H3) from the perspective of decision making, the decision tree visualization is useful to
the evaluation process.

1.3 Execution and main results

To perform the objectives aforementioned, we gather collaborations from 30 developers from
industry and academy. They evaluated 2 groups with 4 tasks each with source codes potentially
affected by some type of smell. Each group of task expose the developer to a source code in
distinct perspectives, so one shows the classification model that predicted the code as "smelly"
whereas the another group doesn’t (blind evaluation). The experiment was carry out through
a web-based app created exclusively to collect the evaluations from participants, designed to
comply with the requirements of study design.

The main results obtained are:

• We got evidence that code smells identification aided by a decision tree leads to a relative
improvement of agreement in relation to detections based solely on code analysis. After
detaching different kinds of participants from the whole set of participants, we discovered
groups that behave distinctly. The agreement on the detections aided by decision tree
performed better with experienced code smell detection participants, which brings the
evidence that such profile got the best out of our approach.

• As for the effort, the identification of code smell aided by decision tree did not decrease in
time compared to detection based only on code inspection. For both groups of tasks, there
isn’t any evidence that indicates the benefits related to the effort reduction when detecting
code smells with decision tree, i. e., the time spent to detect smells with decision tree tend
to be equivalent or worst than the time spent to detect code smells based solely in code
inspection.

• Finally, based on the answers provided by the majority of participants, our experiment
suggests that the decision trees used to support code smell detection are useful to the
developer for decision making. The classification models (decision trees) that represent
the detection rules of a God Class and a Long method were the best-evaluated models in
terms of usefulness, i. e., models that offered good contributions to decision making.

1.4 Contributions

Our approach offered a novel way to detect code smells using metric-based rules to improve
reasoning about the smelliness of the source code under analysis. From this study emerges the

Chapter 1. Introduction 15

following contributions:

• favors the decision making during the code review process;

• minimization of conflicting code smell evaluations, favoring the consistency across code
reviews;

• identification of the most concerned issues about the metric-based rules provided by the
decision tree models.

1.5 Research structure

This research is structured as follows.

• Section 2 describes some background useful for the understanding of this work, including
a brief description of code smell and decision tree classifier.

• Section 3 presents the research study and its goals, the design of our online experiment,
and how the data will be analyzed.

• Section 4 and 5 present and discuss the results obtained.

• Section 6 discuss past research of related to code smells, agreements among developers
and detection methods.

• Section 7 details the limitations and threats to validity of this study.

• Section 8 presents our conclusion and ideas which could lead to future contributions in the
field of Software Engineering.

16

2 Study Background

In this chapter we contextualize our work, giving an overview of code smells and machine
learning, the base concepts used in this study.

2.1 Code Smell

Code anomaly, so-called "code smell", is an implementation choice that indicates a design
problem which violates the well-known principles of cohesion, abstraction and separation of
concerns (OIZUMI et al., 2016) on software development. There are more than 20 (FOWLER
et al., 1999) different types of code smells that contributes to increase comprehension effort
(ABBES et al., 2011) and leads to design degradation (OIZUMI et al., 2016). The adoption
of refactoring, a clean-up process that improves the code’s internal structure (FOWLER et al.,
1999), is the way out to prevent the presence of code smells in code. Fowler et. al. (FOWLER
et al., 1999) about 20 sets of symptoms of code smells. These include large classes, feature
envy, long parameter lists, and lazy classes. Each code-smell type is accompanied by refactoring
suggestions to remove it.

We chose four different types of code smells to carry out experiments, which are detailed in
Section 3.1.

2.2 Machine Learning

(VANDERPLAS, 2016) states that Machine learning involves building mathematical models
to help understand data. Once these models have been fit to previously seen data, they can be
used to predict and understand aspects of newly observed data. The learning process might be
categorized into two main types: supervised learning and unsupervised learning.

2.3 Supervised and Unsupervised Learning

Supervised learning is a method that attempts to discover the relationship between input
attributes (independent variables) and a target attribute (referred to as a dependent variable).
The relationship that is discovered is represented in a structure referred to as a Model. Models
describe and explain phenomena which are hidden in the dataset and which can be used for
predicting the value of the target attribute whenever the values of the input attributes are known.
The supervised methods can be implemented in a variety of domains such as marketing, finance
and manufacturing (ROKACH; MAIMON, 2008).

Chapter 2. Study Background 17

Unsupervised learning involves modeling the features of a dataset without reference to any
label. These models include tasks such as clustering, in which data is automatically assigned
to some number of discrete groups. As a result, the model can infer labels on unlabeled data
(VANDERPLAS, 2016).

2.4 Decision Tree Classifier

A decision tree is a type of supervised learning that uses a tree structure to represent a number
of possible decision paths and an outcome for each path. They’re very easy to understand and
interpret, and the process by which they reach a prediction is completely transparent (GRUS,
2019). Due to its transparency, this technique is frequently used in applied fields such as
finance, marketing, engineering and medicine (ROKACH; MAIMON, 2008). For having this
self-explanatory feature, there is no need to be a data mining expert in order to follow a certain
decision tree. (ROKACH; MAIMON, 2008)

Decision trees can easily handle a mix of numeric and categorical attributes and can even
classify data for which attributes are missing (GRUS, 2019). When a decision tree is used for
classification tasks (which produce categorical outputs), it is most commonly referred to as
a classification tree. When it is used for regression tasks, it is called a regression tree (which
produce numeric outputs) (ROKACH; MAIMON, 2008). The Figure 1 shows a typical decision
tree classifier, an example that predicts an animal, based on a set of characteristics. Instances are
classified by navigating them from the root of the tree down to a leaf according to the outcome
of the tests along the path.

Figure 1 – Example: A decision tree to guess an animal. (GRUS, 2019)

Chapter 2. Study Background 18

As seen in Figure 1, the decision tree consists of a node called a “root” that has no incoming
edges. All other nodes have exactly one incoming edge. A node with outgoing edges is referred
to as an “internal” node or a “test” node. All other nodes are called “leaves”. In a decision tree,
each internal node splits the instance space into two or more sub-spaces according to a certain
discrete function of the input attributes values. In the simplest and most frequent case, each test
considers a single attribute, such that the instance space is partitioned according to the attributes
value. In the case of numeric attributes, the condition refers to a range. Each leaf is assigned to
one class representing the most appropriate target value (ROKACH; MAIMON, 2008).

To comprehend any predictions, we start with a root of a tree; we consider the characteristic
that corresponds to the root and we define to which branch the observed value of the given
characteristic corresponds. Then, we consider the node in which the given branch appears. We
repeat the same operations for this node until we reach a leaf (ROKACH; MAIMON, 2008).

Algorithms for constructing decision trees work top-down, by choosing a feature at each
step that best splits the set of instances (ROKACH; MAIMON, 2008). Different algorithms use
different metrics for measuring the "best", generally measuring the homogeneity of the target
feature within the subsets. So these metrics are applied to each candidate subset, and the resulting
values are combined to provide a measure of the quality (or impurity) of the split. There are two
well known splitting criteria which can be cited:

Information Gain. is an impurity-based criteria that uses the entropy measure as the impurity
measure (ROKACH; MAIMON, 2008). Entropy is defined as:

Gini(T) = −
J∑

i=1
pi log2 pi (2.1)

where p1, p2, ... are fractions of samples and represent the percentage of each class present in
the child node that results from a split in the tree. Thus, the Information gain is the degree of
impurity among parent and children:

Information Gain︷ ︸︸ ︷
IG(T, a) =

Entropy (parent)︷ ︸︸ ︷
H(T) −

W eighted sun of Entropy (Children)︷ ︸︸ ︷
H(T |a) (2.2)

Gini Index. Is an impurity-based criteria that measures the divergences between the proba-
bility distributions of the target attributes (ROKACH; MAIMON, 2008) values and is defined
as:

Gini(p) = 1−
J∑

i=1
pi

2 (2.3)

where i ∈ {1, 2, ..., J} and pi the fraction of items labeled with class i in the set.

19

3 Study Design

The main challenge in the identification of code smells is that their definitions are based on
inaccurate concepts that make developers to have divergent reasoning whether a piece of code
is a smell or not. The divergences impact negatively the agreement on code smell evaluations
(HOZANO et al., 2018).

After a learning process, with software metrics as independent variables, we intend to discover
statistically to what extent the insights provided by the predictor’s rules (decision tree) may
influence the agreement among developers after several code smell evaluations. In summary, this
study intends to contribute to answering the following questions:

RQ1: Do an aided approach of code smell detection - using a tree classifier representation –

influence on agreement among developers?
The motivation for this question is to investigate how developers agree after evaluating

candidate source codes from real projects that are suspicious to host a certain type of code
smell. During the experiment, two distinct perspectives are considered: evaluations aided by
decision tree visualization and evaluations without any visualization (only "raw" source code).
We analyze the degree of agreement from both perspectives separately and compare. These
analysis and comparison are made considering the (i) totality of developers that contributes to
our work and (ii) by grouping according to common characteristics that they share. Thus, we
aimed at performing a deeper investigation in order to increase the knowledge about to what
extent the rules provided by a comprehensible classification model can influence the agreement
among developers when the developers detect smells in unfamiliar source code. Our results may
shed light on the construction of comprehensible machine learning models that are able to aid
developers during the process of code smell detection.

RQ2: How much time do developers spend during code smell detection with a tree classifier

support?

This RQ aims at measuring the time spent to accomplish each task evaluation of code smell
detection, separating evaluations aided by decision tree visualization and evaluations without
any visualization. We built an experiment that has a stopwatch integrated into each task. After
each task accomplishment, the experiment counts the time-lapse from the start of the task until
the task submission. Thus, we measure how long time the developer takes to detect smells when
he is aided by a decision tree classifier and when he is not.

RQ3: How useful is the decision tree visualization for decision making?

The motivation of this question aims at analyzing if transparent metric-based rules from
a decision tree classifier are relevant to aid the decision making during smell detection. By
collecting opinions through an open question, the empirical experiment gave us several insights
about to what extent a visual representation of a classification model contributes to detecting
a code smell. The result of this RQ is important to find out the strong and weak points of our

Chapter 3. Study Design 20

approach, mainly concerning the structure of the available classification trees.
In the next sections, we describe in detail the steps performed in our study.

3.1 Code smell types selection

In our study, we considered the four code smell types briefly described in Table 1. We chose
these types based on previous studies about the developer’s perceptions (PALOMBA et al., 2014)
and agreements (HOZANO et al., 2018). The list varies from highly perceived and identified
types (god class, long method) to moderate and less perceived ones (long parameter list, refused
bequest) (PALOMBA et al., 2014), similarly we chose types that vary from fair agreement level
(god class, long method) among developers to slight agreement (long parameter list, refused
bequest) (HOZANO et al., 2018). Therefore, these code smell types weren’t chosen randomly
but driven by how developers recognize each type of chosen smell.

Furthermore, these smell types affect different scopes of a program. While God Class and
Refused Bequest affect mainly classes, the Long Method and Long Parameter List are related to
methods.

Table 1 – Types of code smells selected (FOWLER et al., 1999)

name scope description

God Class (GC) class A God Class implements several different respon-
sibilities and centralize most of the system pro-
cessing.

Refuse Bequest (RB) class A class redefining most of the inherited methods,
thus signaling a wrong hierarchy.

Long Method (LM) method A method that is unduly long in terms of lines of
code.

Long Parameter List
(LPL)

method A method having a long list of parameters, some
of which avoidable.

3.2 The oracle dataset

We call our source to train the machine learning technique as an oracle dataset. This dataset
contains instances that represent java classes or methods mined from several projects and
columns composed by independent and dependent variables, which are software metrics and a
boolean-type classification attribute, that marks the occurrence of a code smell, respectively.

We imported the work made by Palomba et al. (PALOMBA et al., 2018) to gather occurrences
of java classes and methods that are affected by the code smell types listed in Table 1. They

Chapter 3. Study Design 21

Table 3 – Open source projects involved in the study

Project Version Description
Ant 1.8.3 Build System
Cassandra 1.1 Database Management System
Eclipse Core 3.6.1 Integrated Development Environment
Elastic Search 0.19 RESTful Search and Analytics Engine
Hadoop 0.9 Tool for Distributed Computing
Hbase 0.94 Distributed Database System
Hive 0.9 Data Warehouse Software Facilitates
Lucene 3.6 Search Manager
Nutch 1.4 Web-search Software
Karaf 2.3 Standalone Container
Pig 0.8 Large Dataset Analyzer
Qpid 0.18 Messaging Tool
Ivy 2.1.0 Dependency Manager
Wicket 1.4.20 Java Application Framework
Xerces 2.3.0 XML Parser

developed a tool to perform smell detection in 30 open source systems. Afterward, the authors
manually validated the candidate code smells suggested by the tool, classifying as true or false
positives all candidate code smells. Due to the difficulty faced to find some projects and version
on Github, we selected only 15 of 30 available projects with validated code smells. These projects
are listed in Table 3.

Largely used as an input for predictive code smell detection in machine learning-based
approaches (FONTANA et al., 2016; NUCCI et al., 2018; HOZANO et al., 2017; FONTANA
et al., 2013; AZEEM et al., 2019), software metrics are utilized to measure quality as well as
estimate the cost and effort of software projects (FENTON; BIEMAN, 2014). We used the
educational license of software Understand 1 to calculate and extract source code metrics by
analyzing the open-source projects listed in Table 3. After metric extraction, we got 32 class-level
metrics and 14 method-level metrics.

The complete list of the collected metrics is available in the Table 22 and Table 23, given in
Appendix A. These metrics cover different aspects of source code such as complexity, size, cohe-
sion and inheritance. Besides, many of them were mentioned in various publications that involve
software engineering (NUÑEZ-VARELA et al., 2017), mainly machine learning applications
(AZEEM et al., 2019).
1 https://scitools.com/

Chapter 3. Study Design 22

3.3 Training the algorithm and generating the classifiers

Decision tree refers to a hierarchical model of decisions and their consequences, used to
classify an object or an instance into a predefined set of classes based on their attributes values
(ROKACH; MAIMON, 2008). In artificial intelligence, this algorithm is known as an induction
algorithm because it obtains a training set and forms a model that generalizes the relationship
between the input attributes and the target attribute (ROKACH; MAIMON, 2008). Researches
recognize decision trees as a comprehensible (or interpretable) classifier for humans (GUIDOTTI
et al., 2018) due to its intuitive graphical structure and its capability to help users to focus their
analysis on the most relevant attributes, rejecting non-relevant ones (FREITAS, 2014).

An interpretable classification model is a relevant property that allows users to trust the
model’s predictions and follow the recommendations associated with those predictions. Besides,
comprehensible classification models can give new insights to users about important predictive
relationships in the data, i.e., identifying which attributes are the strongest predictors of the class
variable (FREITAS, 2014). To our context, the insights provided by rules, drawn in a tree format,
offer transparent pieces of information that may aid the developers to interpret each type of
code smell. Thus, new agreement patterns may be discovered, giving a novel approach regarding
previous studies (HOZANO et al., 2018) that similarly addressed the agreement subject. The
algorithm was trained using the values of software metrics from oracle dataset instances, i. e.,
from classes or methods of the pre-annotated training dataset. In other words, we have used
the oracle as a training dataset containing various metrics calculated for each java code, an
entire class or a code snippet (method), in addition to the information on whether that java code
contains each of the studied code smells - the target attribute. We adopted Python’s Pandas 2 and
Sklearn 3 API to carry out the training process, which includes data preparation, model fitting
and effectivity evaluation. Sklearn API implements C.A.R.T. (Classification and Regression
Trees), one of the variants of decision tree algorithm that include C5.0, C4.5 and ID3. During
algorithm training, some hyperparameters were tested in order to obtain the best tradeoff between
the number of leaves, tree depth and effectivity, i. e., we went towards generating trees with
low complexity considering the highest possible effectivity level. We were looking for such
tradeoff because, regarding user perspective, the number of leaves and tree depth have a straight
correlation with the interpretation difficulty (LUŠTREK et al., 2016) of the model, that’s why we
attempted to generate short trees to facilitate participant’s visualization during the experiment,
taking into account the best effectivity measurements.

To evaluate the effectivity of the trained models, we use the widely-adopted Information
Retrieval (IR) metrics, namely recall and precision (BAEZA-YATES; RIBEIRO-NETO et al.,
1999; ROKACH; MAIMON, 2008):

Precision = TP

FP + TP
2 https://pandas.pydata.org/
3 https://scikit-learn.org/

Chapter 3. Study Design 23

Code smell Leaves Depth TN TP FN FP Precision Recall F-measure
lpl 6 5 106 29 9 6 0,841 0,856 0,849
lm 6 3 462 137 4 2 0,973 0,976 0,972
gc 3 2 47 14 2 2 0,843 0,889 0,878
rb 3 2 84 27 9 5 0,750 0,724 0,721

Table 4 – Effectivity result

Recall = TP

FN + TP

where,

• TP: True positives is the number of positives instances correctly classified as positive.

• TN: True negatives is the number of negatives instances correctly classified as negative.

• FP: False positives is the number of negative instances incorrectly classified as positive.

• FN: False negatives is the number of positives instances incorrectly classified as negative.

As an aggregate indicator of precision and recall, F-measure, i.e., the harmonic mean of
precision and recall, is represented by:

F -measure = 2× precision× recall

precision + recall

Furthermore, we use a 10-fold cross-validation approach to assessing the performance of a
predictive model and preventing the over-fitting phenomenon. Thus, we calculated the average
effectivity measures over all folds. Table 4 shows the overall results obtained by the decision
tree classifier for each code smell type. After hyperparameter testing, we obtained decision tree
models that range from 3 until 6 leaves and from 2 until 5 of tree depth.

Finally, the C.A.R.T algorithm is able to generate distinct Decision Trees (as the one in
Figure 2), each one trained to determine whether a certain class (or method) contains a certain
Code Smell as long as its metrics are known. The nodes of the tree represent software metrics,
whereas the leaves represent the prediction that points to the existence of the code smell analyzed.
The decision tree algorithm tends to allocate the most significant metrics for the detection of the
Code Smell in the top of the tree, while the less significant metrics appear as the tree deepens
and gets more specialized.

3.4 Study Procedure

The core procedure of our study is to test two distinctive treatments for different subjects
(participants): evaluation of code smell with a decision tree visualization and evaluation of code

Chapter 3. Study Design 24

Figure 2 – Decision tree model which indicates a Long Parameter List.

smell without decision tree visualization. At the same time, we must assure the equivalence
of evaluations from participants splitting several code snippets into two groups: in each group,
each participant evaluates a task (a code snippet that hosts a code smell) along with a distinctive
treatment.

From the previous paragraph, we may infer two independent variables with two levels each:
two groups of tasks with two treatments each. Hence a 2 by 2 matrix-like design, or Latin Square
design (BOX; HUNTER; HUNTER, 2005), is suitable to accomplish our research needs. Figure
3 represents the experiment design applied to the present research and it is disposed as follows:

• Rows: participants are shuffled in rows, namely participant 1 and participant 2;

• Columns: in the columns, there are 2 fixed groups of tasks, each task containing a source
code (class or method) affected by a specific code smell type;

• Cells: treatment applied to some task, addressed to some participant. "DT" stands for
"Decision Tree" - the decision tree model is available to be visualized - whereas "No DT"
stands for "No Decision Tree" - the decision tree model visualization is omitted.

This experiment aims to collect the opinion of many participants about to what extent they
(dis)agree about the existence of certain code smell type in selected code snippets. A user-friendly
internet-based application was designed and suited to gather such opinions, having a business

Chapter 3. Study Design 25

Figure 3 – Experiment design. A 2x2 latin square.

logic that complies with the experiment design showed in Figure 3. The application is fully
available at Github 4.

The application’s URL was published on the Internet, mainly in social networks focused on
IT professionals involved with Software Engineering, to invite potential participants. After the
invitation acceptance, the candidate finds the following flow, illustrated in Figure 4:

1. Welcome page: In the beginning, we present a welcome page to the participant with a brief
description about the context of the study.

2. Participant’s background: the participant rates its own experience about software develop-
ment, object-oriented development, Java programming language, code revision and code
smell detection. Each developer had to assign a rating which varies from "I do not have
any experience" until "Very High". Besides, the participant is asked about his highest
academic degree so far, what’s his origin (Industry, academy or both) and what is his
experience in software development in years. The complete questionnaire can be found in
the Appendix B.

3. Startup instructions: at this stage, the experiment tool explains what is expected from the
participant throughout the experiment. It includes how many tasks must be accomplished,
what is the purpose of the tasks, what is the possible scenarios of code evaluation and a
brief introduction about what is a decision tree. An example of a decision tree, as similar
to those presented during experiment execution, is shown to the participant in order to get
familiarity with the metric-based rules. After clicking the button "Start experiment", the
participant is forwarded to the tasks accomplishment step, where he starts to evaluate Java
codes.

4. Tasks accomplishment: at this point, the participants should accomplish a sequence of 12
tasks. This step is detailed in Section 3.5.

4 https://github.com/christianorossini/masterSurvey

Chapter 3. Study Design 26

Figure 4 – Steps of the experiment

5. Finish page: once all tasks are accomplished, the experiment tool shows a page confirming
that the experiment is ended.

3.5 Tasks accomplishment

To our context, a task is an evaluation unit which has a correspondent Java code which is
suspicions to host one of the code smells of Section 3.1. As we can observe in the experiment
design illustrated in Figure 3, the tasks are divided into two groups, each group with six tasks.
Four of these tasks, i. e., 1/3 of the total, are merely control tasks or, as we call, "dummy" tasks.
The dummy tasks aim to limit the biased (PALOMBA et al., 2014) and carelessly participations,
so we might filter participants that indicate the same answers without any criterion. Therefore,
we have twelve tasks, but only eight are considered valid tasks (see Table 5 and Table 6).

In order to suits the experiment design (Figure 3), the experiment tool logically groups

Chapter 3. Study Design 27

Task ID Class or method Code smell Type

#11 org.apache.nutch.tools.Benchmark.benchmark lpl

#7
org.apache.qpid.ra.inflow.QpidActivationSpec
org.apache.qpid.ra.ConnectionFactoryProperties rb

#4 org.apache.ivy.plugins.resolver.BasicResolver.getDependency lm
#3 org.apache.tools.ant.DirectoryScanner gc

Table 5 – Classes or methods that belongs to tasks of group 1

Task ID Class or method Code smell Type

#12 org.apache.hadoop.fs.ProxyFileSystem.create lpl

#5
org.apache.qpid.ra.QpidRAStreamMessage
org.apache.qpid.ra.QpidRAMessage rb

#6 org.apache.pig.impl.logicalLayer.optimizer.PushUpFilter.check lm
#8 org.eclipse.jdt.internal.core.util.PublicScanner gc

Table 6 – Classes or methods that belongs to tasks of group 2

the participants in pairs, so each participant is assigned randomly as Participant 1 (row 1)
or Participant 2 (row 2). Therefore, the experiment tool continuously checks the number of
participants labeled as "1" or "2" in order to maintain the groups equalized.

Depending on the row that was chosen for the participant, first or second row of the Latin
Square, labeled Participant "1" or "2" respectively, it determines how they’re going to accomplish
each group of tasks, i. e., what is the sequence of treatment that will be applied for each group of
tasks. The treatments come inside each cell of the experiment design, so each treatment appears
only once in every row and every column (see Figure 3). As a result, each participant performs
both groups of tasks and has the opportunity to visualize the correspondent decision tree model
only in one of the groups of tasks. Such tasks divided into groups favor the minimization of the
learning effect because the treatments are completely isolated from each other.

From this point to further work the treatments mentioned above we refer as scenarios: in one
scenario the participant will have the opportunity to evaluate a Java code with the support of the
rules provided by a visual representation of the predictor (decision tree) while in another the
participant evaluates the code without any support.

The Figures 5 and 6 exhibit the environments designed to task accomplishment and they
represents the scenarios explained previously. In both cases, the experiment tool presents the
name and description of the current code smell that is being evaluated. This description is
based on an informal definition presented by Fowler (FOWLER et al., 1999) as well as derived
descriptions (HOZANO et al., 2018; PALOMBA et al., 2014), so it’s a starting point to the task
evaluation.

For the scenario without decision tree visualization (Figure 5), the task environment has the
following elements:

Chapter 3. Study Design 28

Figure 5 – Task environment without decision tree

Figure 6 – Task environment with decision tree

1. Task submission (left panel). For each task, the participant should submit a form com-
posed of the following questions:
1 - Do you agree? - based on the code smell type described by the task, in this question
the participants rates their degree of agreement regarding the smelliness of the Java code.
Inspired by the Likert scale (OPPENHEIM, 2000), four options are available:

• Agree Strongly;

• Agree Slightly;

• Disagree Slightly;

• Disagree Strongly.

2 - Could you please justify your choice above? - the participant should justify why he
agrees or disagrees.

2. Java code (middle panel). The java code has to be evaluated by the participant in order
to locate the suspicious code smell type described by the task.

Chapter 3. Study Design 29

The scenario with decision tree visualization (Figure 6) has almost the same elements as the
previous one, except by:

1. Task submission (left panel). Compared to the previous scenario, it has an extra question
:
3 - What insights (contributions) did the decision tree give you in order to support your

decision? - to this question the participant should explain whether the decision tree model
visualization contributes to reasoning about his evaluation.

2. Decision tree (right panel). The decision tree contains metric-based rules that lead to the
code smell type that affects the java code presented by the task. It serves as a support for
decision making. The highlighted path from the root node until leaf stands for the satisfied
conditions within nodes that lead the predictor (machine learning classifier) to classify the
current java code as smelly code (Figure 7). Additionally, the panel provides a sub-section
called "Nodes Glossary" which contains a list of metrics and its descriptions aimed to
facilitates the comprehension of the rules.

Figure 7 – During a task evaluation, a highlighted path of a decision tree model is shown to the
participant.

3.6 Experiment execution and data inspection

The experiment lasts about 4 weeks and had 30 participants who completed all the required
tasks successfully. Afterward, we collected all the data from a relational database and we
performed a data inspection to guarantee the quality of the data observed in the study. Thus, we
analyzed the evaluations and open questions in order to identify problems that could interfere
with the data analysis negatively.

As we mentioned in section 3.5, we created "Dummy tasks" which are randomly selected
java codes not affected by any of the code smells considered in our study. This was done to limit
careless participations (PALOMBA et al., 2014) in the study, i.e., avoid that participants who
always indicate that the code contains the suggested problem without reasoning about it. So, we
first search for participants that accomplish tasks in a careless and/or biased way, analyzing how

Chapter 3. Study Design 30

Figure 8 – Self-rated experience from participants

they performed tasks when faced with dummy tasks. For instance, we intentionally created a
dummy task that defines and describes a god class. However, the associated java code has just
a few lines of codes. Thus, we expected that the participant would mark "I strongly disagree"
or, at minimum, "I Slightly disagree" in most of the dummy tasks presented to him. After data
inspection, we noted that all of the participants not behave biased or carelessly.

As mentioned previously, we obtained answers from 30 participants with different experience
levels in software development, Java programming language and code smell detection. The
participants rated their personal experience that varies from "No experience" up to "Very High",
distributed as illustrated in Figure 8. We note that the participants reported different experience
levels (x-axis) and the great majority indicated experience higher or equal to "Low". For instance,
the graph shows us that most of the participants have excellent skills in development, some of
them having very high experience on it. It allows us to explore possibilities considering developers
with different experience levels and with at least certain knowledge about the investigated context.

3.7 Data analysis

After experiment execution and data collection we summarized the data to answer the
research questions. We use methods to (i) analyze the inter-rater agreement among developers as
well as developer’s experiences and backgrounds that may influence such agreement, (ii) compute
the confidence of evaluations considering the scenario with decision tree visualization and the
scenario without decision tree and (iii) analyse the time spent by participants to accomplish each
task considering both scenarios.

Chapter 3. Study Design 31

task
Participants

01 02 03 04 05 06 07 08 09 10 11 12 13 14

#3

#4

#11

#7

Table 7 – Participants’ evaluations for tasks group 1, in DT scenario. The grey cell represents
the ’Agree’, the white is ’Disagree’.

3.7.1 Inter-rater agreement

To answer the RQ1, we use a statistical method that calculates the inter-rater agreement
among the participants’ evaluations. Fleiss Kappa (FLEISS, 1971) measure the degree of agree-
ment of the nominal or ordinal assessments made by multiple participants when assessing the
same samples. Thus, this measure evaluates the concordance or agreement among multiple raters
(FLEISS, 1971). This measure reports a number lower or equal to 1. If the Kappa value is equal
to 1, then the raters are in complete agreement, unlike if the agreement is lower than 0 (zero), it
means that there is no agreement among raters or it is weaker than expected by chance. Thus, we
perform the following actions:

• We collect the evaluations made for each group of tasks and split in two: evaluations
aided by decision tree visualization and evaluations done without decision tree. Such
evaluations produce a 4×N matrix, where 4 is the number of tasks from a group and N is
the number of raters (participants), as exemplified in Table 7. The "Agrees" is obtained
by evaluations marked as "Strong Agree" or "Slight Agree" as long as the evaluations
assigned as "Strong Disagree" or "Slight Disagree" was computed as "Disagree". That
convergence of two levels of "agree" or "disagree" in one was mandatory to calculate the
Fleiss Kappa agreement properly.

• To each matrix of evaluations we compute the Fleiss’ Kappa measure in order to obtain
the degree of agreement. As a result, we obtain 4 numeric values, each one representing
the intersections (column × row) of the Latin Square design.

• We calculate the average of Kappa measures separated by scenario and compare.

3.7.2 Time spent to accomplish tasks

To answer the R2, we measure the time that the participant spend to accomplish tasks with or
without decision tree visualization, as a measurement of effort. During the experiment execution,
all tasks were time-sensitive. It means that the experiment tool was designed with a time trigger
that starts a time count whenever the participant explicitly starts a task and it stops when the

Chapter 3. Study Design 32

participant submits such task. The time interval is stored in seconds and after converted in
minutes to improve the readability.

3.7.3 The usefulness of decision trees for decision making

To answer the RQ3, we gathered all answers from the open question which asks the partici-
pant about what the insights/contributions were given by decision tree in order to support the
decision making, considering the context of the task that is under evaluation. All the answers were
analyzed by the authors and after we use the coding technique (SEAMAN, 1999) to categorize
the detected contributions from qualitative data. From the analysis of the answers, we classified
as good contributions to decision making the opinions which stated that the decision tree was
useful for the presented evaluation context.

33

4 Results

In the following sections, we present the study results for all the outcomes brought by data
analysis, which supports the research questions defined in our study. In the first subsection
(Section 4.1) we present the agreement considering all members who participate in our study, we
summarize the evaluations and calculate the agreement using Fleiss Kappa measure. In further
sections, we will refine the results from Section 4.1 presenting the agreement among participants
by considering different factors related to them, such as their origin (Section 4.2) and experience
(Section 4.3). These results help us to answer RQ1. In our study, we do our best to describe and
discuss only statistically significant Kappa values by considering a p-value < 0.05. Despite it
was not possible in some cases.

In Section 4.4 we address the effort spent by participants to accomplish the tasks considering
both evaluation modes - with and without decision tree visualization, whose result answers the
RQ2. Finally, the results related to the usefulness of decision tree for decision making, which
helps to answer the RQ3, is described in Section 4.5. The results and materials used in our
empirical study are available at https://git.io/Jv6cM.

4.1 Overall participants’ agreement

We summarize all evaluations provided by participants separated by scenarios, i. e., the
scenario with decision tree visualization (DT) and without decision tree visualization (No DT),
as we may see in Table 9. Each row corresponds to the task accomplished by the participants,
the column Code Smell identifies the type of code smell that was suggested by the task. Each
cell, under the columns named Disagreed and Agreed, represents the sum of evaluations made
by participants.

The inter-rater agreement is calculated using Fleiss Kappa statistical method and the results
are showed in Table 10, with associated p-Value ranged from 0.0388 to 0.2710. The agreement
values were calculated considering all tasks from the same group, divided by evaluations made
considering the scenario with decision tree (DT) and without decision tree (No DT). In other
words, the agreements were calculated based on each cell of the experiment design illustrated
previously in Figure 3.

To classify the agreement strength properly, we interpret what is the degree of agreement of
a measured sample based on a scale of categories. These categories were proposed by Landis e
Koch (LANDIS; KOCH, 1977) and have been adopted by previous works (SCHUMACHER et
al., 2010; ZHANG; HALL; BADDOO, 2011) in order to verify the strength of the Kappa value.
The scale of categories is shown in Table 8. Therefore, we may see that all measures of Table
10 have a slight agreement strength, regardless of task group or scenario. It confirms the thesis
(HOZANO et al., 2018) that the agreement among developers is commonly low.

Chapter 4. Results 34

Kappa Agreement Strength

< 0 Less than chance agreement
0.01–0.20 Slight agreement
0.21– 0.40 Fair agreement
0.41–0.60 Moderate agreement
0.61–0.80 Substantial agreement
0.81–0.99 Almost perfect agreement

Table 8 – Agreement strength categories

DT scenario No DT scenario

Group Task ID Code Smell Disagreed Agreed Disagreed Agreed

1

3 god class 1 13 2 14
4 long method 1 13 0 16
11 long parameter list 0 14 5 11
7 refused bequest 5 9 4 12

2

8 god class 2 14 1 13
6 long method 2 14 3 11
12 long parameter list 7 9 7 7
5 refused bequest 8 8 5 9

Table 9 – Overall evaluations

Task Group 1 Task Group 2 Avg

DT 0.108 0.087 0.098

No DT 0.041 0.058 0.049

Table 10 – Overall Fleiss Kappa agreement measures

The showed Kappa measures tell us that the values from the DT scenario (highlighted in bold)
overcome the No DT scenario in both assessed groups, as well as the average considering the
two groups. Hence, the DT scenario presented a better agreement among participants compared
to the No DT scenario. Therefore, it means that the scenario in which the participant obtained
insights provided by a visualization from a decision tree model (DT) has a relative advantage in
terms of agreement.

4.2 Developer’s agreement considering their origin

During the experiment, we collected information about what is the participant’s origin, if he
is from Academy, Industry or both. In the analysis described in the previous section - the overall
agreement among participants - we evaluated the inter-rater agreement among all participants
responsible for evaluating tasks. At this point, in order to investigate the influence of the origin

Chapter 4. Results 35

Figure 9 – Average agreement for all participants.

on the agreement among their evaluations, we split the whole set of participants into subgroups.
Due to limitations regarding the number of participants, the only subgroup that deserves a deeper
investigation in this subsection is the participants from the academy.

Afterward, we calculate the agreement among the evaluations considering scenarios with
and without decision tree visualization. Finally, we compare such subgroup agreement with the
overall agreement calculated in section 4.1. Such comparison allows us to understand whether the
origin of the participant plays some role to increase or decrease the agreement among developers
when compared to the whole set of participants.

4.2.1 Participants from academy

In this section, we investigate the agreements reached by participants from the academy, a
similar approach as the previous section (Section 4.1). The Table 12 shows the Kappa values
and the Table 11 clarifies how was distributed the evaluations through tasks and scenarios. The
obtained Kappa measures show us that the agreement strength across task groups and scenarios
is classified starting from Poor (Kappa < 0) up to Slight (0.01 < Kappa < 0.2). The Kappa
measures highlighted in bold indicate that the agreement in No DT scenario overcomes the
DTscenario in Task Group 1 whereas the agreement in DT scenario overcomes the No DT

scenario in Task Group 2. Despite the average Kappa agreement indicates the DT scenario has a
better agreement in general, the agreement reached by the DT scenario was not better in both
tasks group.

Figure 10 illustrates the average agreement observed in the evaluations done by the par-
ticipants from the academy and the average agreement from the whole set of participants. In
this figure, we use a dark gray bar to represent the overall agreement levels replicated from the
average Kappa value of section 4.1. This plot shows that the average agreement provided by
evaluations made by participants from the academy is lower than the overall agreement, both in
the DT scenario and in the No DT scenario. Therefore, the average agreement from participants
from academy is fewer compared to the overall.

Chapter 4. Results 36

DT scenario No DT scenario

Group Task ID Code Smell Disagreed Agreed Disagreed Agreed

1

3 god class 1 7 1 12
4 long method 1 7 0 13
11 long parameter list 0 8 5 8
7 refused bequest 1 7 3 10

2

8 god class 1 12 1 7
6 long method 2 11 3 5
12 long parameter list 6 7 3 5
5 refused bequest 7 6 2 6

Table 11 – Evaluation table of participants from academy

Task Group 1 Task Group 2 Avg

DT -0.103 0.112 0.004

No DT 0.082 -0.082 0

Table 12 – Kappa agreement measures of participants from academy

Figure 10 – Average agreement comparison: Overall × participants from academy.

4.3 Agreements by experience

Previously we investigate the inter-rater agreement based on participants’ origin. In this turn,
we investigate the agreements taking into account the participants’ experience. In this way, we
analyze the agreement among the more experienced participants in three different profiles: code
smell detection, Java programming and development.

During the experiment execution, the developer rated his experience by choosing one of
five options: "I do not have any experience", "Very low", "Low", "High" and "Very high". So
the experience of each developer is defined by the self-assigned ratings reported by him, so we
consider an experienced developer the one who have experience rating above "High". Due to the

Chapter 4. Results 37

constraints regarding the number of participants, we also include participants self-rated "Low",
it contributed to becoming the results more statistically significant.

4.3.1 Experienced participants on code smell detection

In this section, we extract a subset of participants who are experienced in code smell detection,
putting side by side the agreements obtained by the DT scenario and the No DT scenario.

DT scenario No DT scenario

Group Task ID Code Smell Disagreed Agreed Disagreed Agreed

1

3 god class 0 9 2 7
4 long method 0 9 0 9
11 long parameter list 0 9 2 7
7 refused bequest 4 5 2 7

2

8 god class 1 8 0 9
6 long method 1 8 2 7
12 long parameter list 2 7 6 3
5 refused bequest 3 6 3 6

Table 13 – Evaluation table of experienced participants on code smell detection

Task Group 1 Task Group 2 Avg

DT 0.299 -0.064 0.116

No DT -0.050 0.183 0.066

Table 14 – Kappa measure of experienced participants on code smell detection

Figure 11 – Average agreement comparison: Overall × Experienced participants in code smell
detection

Chapter 4. Results 38

The Table 13 shows the total of assignments divided by scenario and group of tasks, the
Table 14 shows the comparison of inter-rater kappa measure among DT scenario and No DT

scenario and the Figure 11 compares the average agreement that was performed by experienced
developers on code smell detection in contrast to the average agreement performed by overall
participants.

In the Table 14, we can see that the task evaluations carried out by a decision tree visualization
(DT) have a better agreement on average than the evaluations done without decision tree rules
(No DT), even though the agreement in No DT overcomes the DT in Task Group 2. Thus, despite
the average of Kappa agreement indicates the DT scenario have a better agreement in general, it
is not better considering both task group individually.

Comparing the agreement computed through the average of Fleiss Kappa measure with
the overall agreement, as shown in Figure 11, the average of agreement from experienced
developers on code smell detection performed better than the overall participants. Such result
indicates that the expertise of such type of participant in detecting code smells in several software
projects brings some uniformity of evaluations, as both scenarios of agreement from experienced
developers overcome the overall agreement. Moreover, we may infer that the rules from the
decision tree were an important factor for increasing the agreement among developers, thus it
may help for accurate reasoning about the smelliness or absence of smell during its detection.

4.3.2 Experienced participants on Java language

In this section we analyze how the experienced participants on Java language agree in code
smell detection, computing the Kappa agreements obtained by DT scenario and No DT scenario.

Table 16 shows the Kappa agreement values and Table 15 shows a detailed view of the
distribution of evaluations across tasks and scenarios. Differently of previous participant profiles,
the obtained Kappa measures indicate that the agreement ranges from 0.018 up to 0.233, i. e., the
table indicates that the agreement strength ranges from slight agreement up to fair. The Kappa
measures highlighted in bold indicate that the agreement in No DT scenario overcomes the DT

scenario in Task Group 2 whereas the agreement in DT scenario overcomes the No DT scenario
in Task Group 1. The average agreement considering both tasks group indicates that No DT

scenario has, in general, a better agreement than the DT scenario.
Comparing the average agreement with the overall agreement, as shown in Figure 12, the

agreement average of experienced Java language developers performed better than the overall
participants in both scenarios. But, among experienced participants in Java language, unlike the
experienced participants on code smell detection, the DT scenario had a lower agreement than
the No DT scenario. So we may infer that the decision tree didn’t have such importance on the
agreement, taking into account that, when it was omitted, they reached a better agreement.

Chapter 4. Results 39

DT scenario No DT scenario

Group Task ID Code Smell Disagreed Agreed Disagreed Agreed

1

3 god class 0 10 2 10
4 long method 1 9 0 12
11 long parameter list 0 10 3 9
7 refused bequest 4 6 4 8

2

8 god class 1 11 0 10
6 long method 1 11 2 8
12 long parameter list 4 8 7 3
5 refused bequest 5 7 3 7

Table 15 – Evaluation table of experienced developers on Java language

Task Group 1 Task Group 2 Avg

DT 0.162 0.046 0.104

No DT 0.018 0.233 0.125

Table 16 – Kappa measure of experienced Java language participant

Figure 12 – Average agreement comparison: Overall × Experienced in Java Language

4.3.3 Experienced participants on development

Now we investigate how the experienced developers agree in code smell detection, computing
the Kappa measures obtained by DT scenario and No DT scenario.

The Table 18 shows the Kappa agreement values and the Table 17 shows a detailed view of
the distribution of evaluations from tasks and scenarios. From the obtained results of the Kappa
measure, we observe that the measures for both scenarios keep the low agreement as usual, with
an agreement strength classified as slight. The Kappa measures highlighted in bold indicate
that the agreement in DT scenario overcomes the No DT scenario in Task Group 1 whereas the
agreement in No DT scenario overcomes the DT scenario in Task Group 2.

Chapter 4. Results 40

DT scenario No DT scenario

Group Task ID Code Smell Disagreed Agreed Disagreed Agreed

1

3 god class 1 13 2 12
4 long method 1 13 0 14
11 long parameter list 0 14 4 10
7 refused bequest 5 9 3 11

2

8 god class 2 12 1 13
6 long method 2 12 3 11
12 long parameter list 5 9 7 7
5 refused bequest 7 7 5 9

Table 17 – Evaluation table of experienced participants in development

Task Group 1 Task Group 2 Avg

DT 0.108 0.044 0.076

No DT 0.012 0.058 0.035

Table 18 – Kappa measure of experienced participants on development

Figure 13 – Average agreement comparison: Overall × Experienced participants in development

Comparing the average agreement of experienced developers with the overall agreement,
as shown in Figure 13, the agreement of experienced developers performed lower than the
overall participants, considering both scenarios. Considering the agreement among experienced
participant in development, the DT scenario had a better agreement than the agreement from No

DT scenario. That result suggest that, for such participant profile, the decision tree visualization
have a relative importance on agreement when compared to code inspection without decision
tree.

Chapter 4. Results 41

4.4 The effort spent to answer the tasks

For each task of the experiment, we measured the time that the participant spent to accomplish
tasks in order to measure effort. Figure 14 illustrates boxplots containing the time distribution
evolving the two groups of tasks. We dismissed the outliers to adjust the range of analysis from
0 to 16 minutes (y-axis), increasing the comprehension of the graph.

Figure 14 – Time spent to answer the tasks

In the Tasks group 1, the time spent to detect code smells aided by decision tree (DT) is
slightly higher than detecting without it (No DT). The slowest time when not aided by the
decision tree is faster than the slowest time when detecting code smell aided by a decision tree.
The same happens with the quantiles and the minimum.

The Tasks group 2 presents a higher difference between scenarios DT and No DT than
group 1 regarding the time spent to detect code smells (tasks accomplishment). For this group,
the time spent to detect code smells aided by decision tree (DT) is considerably higher than
detecting without it. The slowest time for No DT reaches almost the median of the sample from
the opposite scenario DT. According to T-Test, applied to tasks of Group 2, there is statistically
significant evidence (p-value = 5.331e-05) that the decision tree visualization doesn’t reduce the

Chapter 4. Results 42

Table 19 – Example of statements from participants and the detected insight/contribution

ID Statement Detected contribution

491 "The lack of cohesion in methods is something I would
not be able to compute visually. Thus, the decision tree
was handy."

Information provided
by metrics

260 "Made the decision more objective (saves time)." Facilitates decision

222 "Another psychological effect on decision making. A little
more confidence in what I had in mind."

Improved confidence

time to detect code smells, so the time is increased though.
Therefore, for both tasks group, there isn’t any evidence that indicates the benefits related

to the effort reduction when detecting code smells with a decision tree, i. e., the time spent to
detect code smells visualizing the rules provided by a decision tree tends to be equivalent or to
overcome the time spent to detect code smells based solely on code inspection.

4.5 The usefulness of decision tree visualization for decision

making

Throughout the participation in the experiment, when faced with the scenario with a decision
tree, the participant answered an open question that asked him to inform what insight or contri-
bution the decision tree gave him in order to accomplish the task. We analyzed manually each
answer to discover patterns that may indicate the importance of the decision tree for decision
making. From these answers, we apply a coding technique (SEAMAN, 1999) to recognize these
patterns.

During the analysis of the open answers, we reject the vague ones. It means that those
answers which look like "Helped me so much" or "It’s very helpful" weren’t considered. Rather
we considered as valid answers those which mention some relevant characteristics like "Number
of declarative Lines of Code and Declarative Statements", in this case referring to the metrics
within nodes.

Table 19 shows some examples of the statements and the recognized patterns assigned to
each, presented in the third column (Detected contribution). Each statement belongs to an answer
instance which refers to a task. The ID identifies uniquely the answer given by a participant.
The complete list of statements is available in the artifact’s repository which accompanies this
research1. In total, we categorized 3 contributions that the participants wrote in open question.

Figure 15 presents an overview of number of times these detected contributions was observed
in total. From the domain of categorized contributions, the most seen was "The information
1 https://github.com/christianorossini/masterProject

Chapter 4. Results 43

Figure 15 – The frequency of categorized contributions stated by participants

provided by metrics". So amongst the answers provided by participants, around 85% stated that
the metrics was a important insight to guide their decisions, followed by the fact that the decision
tree facilitates the decision of detecting smell (13%) and the fact that it improves confidence
(2%). From the last two detected contributions, we can infer that the metric-based rules were
a key factor to facilitate smell detection and improve confidence, respectively. Hence, all the
categorized contributions involves the rationale of gaining information by metric-based rules.

When analyzing all the detected contributions in Figure 15 focusing on a type of code smell
(that is, a single color), we obtain quantitative information on how many code smells (each one
represented by a single decision tree) are present in each detected contribution. For example,
the classification models that represent God Class and Long Method are the most evidenced
models by those who consider the information provided by metrics as a relevant contribution.
Following theses models, on a smaller scale, are the classification models that represent the Long
Parameter List and Refused Bequest. Among the available representations of code smell, the
Long Parameter List is the only one that is included in all detected contributions.

On the other hand, we also captured the opinions stated by participants who disagree about
the usefulness of the decision tree visualization on smell detection, i. e., the participants that
stated that certain decision tree didn’t contribute to decision making. As previously, we apply a
coding technique (SEAMAN, 1999) to recognize patterns obtained from the open question and
the Table 21 shows some examples of the statements and the recognized patterns assigned to
each one manually. Again, the complete list of statements is available in the artifact’s repository2.
In total, we categorized 7 different patterns mined from the open answers.

In the Figure 16, we present the number of occurrences of the categorized patterns from
the type of statements exemplified in Table 21. A large amount of participants states that "The
tree rules mismatch the smell", corresponding to 54% of occurrences, followed by "Useless
2 https://github.com/christianorossini/masterProject

Chapter 4. Results 44

ID Statement example Recognized pat-
tern

242 "The choose by shown decision tree is based only number of
lines, this is bad."

Lack of confi-
dence

192 "I was a kind of confuse if number of physical lines are
related with only the lines of the parent, used in the child
class."

Confusing rules

224 "None. In fact, the tree does not explicitly present "parame-
ters" as a decision criterion."

Lack of essencial
informations

361 "couldn’t quite understand the "Percent Lack of Cohesion in
Methods" metric"

The metrics un-
derstanding

152 "Looking at the code was better for me than looking at the
tree."

Code analy-
sis was more
effective

121 "Not much. The low number of declarative statements says
nothing to me about a long parameter list. From my point
of view, a method with no declarative statements and few
parameters is perfectly possible."

Useless informa-
tions from DT

488 "This decision tree gave me the impression of ignoring com-
plexity when deciding on the method’s smelliness. Particu-
larly, I disagree with that, because some long methods are
not smelly at all. They may be long and, still, easy to read
and understand."

The tree rules mis-
match the smell

Table 21 – Examples of statements from participants who disagrees about the usefulness of
decision tree visualization for detecting smells.

informations from DT" (14%), "Code analysis was more effective" (10.71%), "Lack of essential
informations" (7.1%), "The metrics understanding" (7.1%), "Lack of confidence" (3.5%) and
"Confusing rules" (3.5%). Unlike the answers that characterized the classification models as
useful for detecting code smells (Figure 15), in this case the classification model that represents
the God Class has a minor number of occurrences in relation to the other smells. For instance, in
the answer categorized as "The tree rules mismatch the smell", the classification model which
represents the god class has the lowest number of occurrences. This indicates that the rules
contained in the decision tree that represents a god class, basically composed of metrics of size
and complexity, proved to be very useful for decision making. The classification model that
represents the Long Parameter List has the majority of opinions that point to the mismatch of the
tree rules and the smell that is under evaluation. Besides, it is the only smell representation that
is characterized as it lacks essential information for decision making.

In order to summarize the number of opinions categorized as useful or useless, we plot the
chart presented in Figure 17. Through the figure we can see, by the number of ocurrences, that
the decision tree (or classification model) which represents the God Class was the most qualified

Chapter 4. Results 45

Figure 16 – The frequency of categorized patterns from statements which considers the decision
tree not useful to the context

Figure 17 – The sum of all opinions about the usefulness (contributions) of the classification
models (decision tree)

model in terms of the contribution to decision making among the models used, followed by the
long method. They have more qualifications defined as ’useful’ and less qualifications defined as
’useless’. Therefore, in general, we can conclude that, from the perspective of the participants,
there are more answers which indicate that the decision trees gives important insights to the code
smell detection process (’Useful’ - 63%) than the opposite (’Useless’ - 37%).

46

5 Discussions

In this section we discuss the results aiming at answering the research questions.

5.1 RQ1: Do an aided approach of code smell detection - us-

ing a tree classifier representation – influence on agreement

among developers?

Based on the results obtained in the experiments conducted to respond to RQ1, considering
the total number of participants involved, there is evidence that code smells detection aided by a
decision tree leads to a relative improvement of agreement in relation to code smell detection
based solely on pure and simple code analysis, although in both scenarios the resulting Kappa
measure was considered slight regarding the agreement strength scale shown in Table 8. However,
this low agreement (less than 0.1) agrees with past publications (HOZANO et al., 2018) when it
was stated that by default the agreement between developers is predominantly low, regardless of
the analyzed smell.

Soon after, we segregated the total number of participants to investigate the agreement
considering different experiences and backgrounds. In this case, 4 different types of user profiles
were analyzed, including participants originating from the academy, experienced participants in
code smell detection, experienced in java language and experienced in development. Considering
the average agreement obtained in each profile, the inspection of code aided by decision tree
favored the agreement for all user profiles except for the profile of experienced participants in
the Java language. However, considering each group of tasks individually, even for the profiles
in which the decision tree favored the agreement, the agreement of the DT scenario did not take
advantage over the No DT in all comparisons.

The profiles of participants that stood out were the participants experienced in code smell
detection and those experienced in Java language. The resulting agreement obtained by both
exceeded the agreement considering all participants (overall agreement), both for the scenario
with decision tree (DT) and for the scenario without decision tree (No DT). Nevertheless, the DT

scenario was more relevant on the agreement for the most experienced participants in code smell
detection, i. e., the analysis of the metric-based rules in the decision tree favored the agreement
for such type of participant.

Chapter 5. Discussions 47

5.2 RQ2: How much effort do developer spend during code

smell detection with a tree classifier support?

In relation to RQ2, the detection of code smell aided by decision tree did not decrease in
time compared to detection based only on code inspection. For both groups of tasks, there isn’t
any evidence that indicates the benefits related to the effort reduction when detecting code smells
with decision tree, i. e., the time spent to detect smells with decision tree tend to be equivalent
or to overcome the time spent to detect code smells based only on code analysis. This result
can be considered a non-fortuitous case, given that the participant had to observe other screen
elements during task evaluation to obtain more information on the metrics presented, as is the
case of the metrics glossary presented in the environment represented in Figure 6. In addition,
as discussed in section 4.5, for a good portion of the open answers given concerned to the
decision tree contribution for the task accomplishment, many generated models were endowed
with inappropriate information, the rules contained in the tree did not exactly match the smell
presented, essential information regarding the smell was omitted and the bad understanding of
the metrics presented by certain models. These are evidence that made the experience of viewing
the decision tree costly from an effort perspective.

5.3 RQ3: How useful is the decision tree visualization for deci-

sion making?

Regarding RQ3, our experiment suggests that the decision trees used to support code smell
detection are useful to the developer. About 63% of the participants, who completed the ex-
periment and had their responses analyzed, considered the decision trees useful for supporting
smell detection. From this percentage, about 85% opined that the information provided by the
presented software metrics was important for decision making. On the other hand, 37% of the
participants considered that the decision trees were not useful for decision making and, from this
percentage, the majority considered that the presented decision tree mismatch the code smell
under evaluation. The classification models that represent the detection rules of a God Class and
a Long method were the best-evaluated models in terms of usefulness, i. e., models that offered
good contributions to decision making. On the other hand, the models that represented the Long
Parameter List and the Refused Bequest performed worse in terms of usefulness.

From these findings, for future works, we are going to consider reviewing the independent
variables used for training the classification algorithms in order to generate models more refined
to the chosen types of code smells, since the main complaints of the participants is related to
useless information that is presented by the decision tree, the difficulty of understanding the
metrics used and the lack of essential information related to the smell under evaluation.

48

6 Related Work

To the best of our knowledge, this is the first work that utilizes a comprehensible machine
learning classifier to aid developers to detect code smell and how this approach deals with
the agreement among them. However, there are some studies that investigate the agreement
among developers when detecting code smells and the factors that influence their evaluations.
The decision tree algorithm, which is an important part of this study, was also included in the
literature addressing the effectiveness of the automatic code smell detection.

In (MANTYLA, 2005), the author presented a study that investigated the agreement among
developers about 3 types of code smells: Long Method, Long Parameter List and Feature Envy.
Their research results indicated a low agreement regarding Feature Envy, but a good agreement
on Long Method and Long Parameter List evaluations. According to the authors, these smells are
easier to understand and detect, becoming evaluations more similar. The results showed also that
the number of lines of code (MLOC) and the number of parameters in a method (NPARAM)
could be used, respectively, as predictors of the evaluations related to Long Method and Long
Parameter List. Even though the results of the study reported interesting findings concerning how
similar the developers detect smells in code, the study analyzed the agreement among developers
on evaluating only 3 smell types.

Mika Mäntylä et al. (MÄNTYLÄ; LASSENIUS, 2006) expanded the previous research by
involving 12 developers analyzing code snippets of 23 types of code smells. The author presented
a definition and an example of each type of code smell to the developers as well as the study
asked them to evaluate some code snippets related to the analyzed code smell. The participants of
the empirical study evaluated the presence or absence of each smell across several code snippets.
The authors noticed a perfect agreement of 5 developers in only 1 of 46 analyzed code snippets
presented in their publication, regarding the analysis of a Long Method smell. Otherwise, the
authors reported a high disagreement in the evaluations of the Switch Statement, Inappropriate
Intimacy and Message Chains smells. Although the interesting findings regarding the agreement
among developers, the authors stated that the data used in the experiment was not enough to
make the results more reliable. Furthermore, the reduced number of analyzed code snippets and
developers involved in the experiment made it harder to check the statistical significance of the
agreement among the developers.

Hozano et al. (HOZANO et al., 2018) presented a study aimed to investigate how similar the
developers detect smells in code and identify possible factors that influence in the agreement of
their evaluations. They made an empirical study involving 75 developers evaluating 15 types of
code smells into code snippets of 5 open source projects. In total, more than 2700 evaluations of
code snippets from real software projects were performed. From the collected evaluations, they
identified a great disagreement among the developers’ evaluations considering the code smells
investigated in the study. The results evidenced, in general, that developers detect code smells in

Chapter 6. Related Work 49

different ways. In contrast, developers that followed the same heuristic to evaluate a given code
smell presented a consistent agreement when analyzed separately, so the authors stated that the
heuristics plays an important role to determine the agreement among the developers.

The effectiveness of the decision tree on code smell detection was addressed by Amorim et al.
(AMORIM et al., 2015). In their work, they presented a practical experience report that evaluates
the use of Decision Tree classification algorithm to recognize code smells in different software
projects. They aimed at contributing to the state-of-the-art on code smells detection by analyzing
the use of the Decision Tree algorithm to detect code smells automatically. They evaluated the
performance of the Decision Tree to detect 12 types of different smells across 4 open source
projects. They compared the precision, recall and F-measure results with other machine learning
techniques, such as SVM and Bayesian Beliefs Networks, as well as the results generated by
general rules-based approaches. For both cases, the decision tree reaches better performance.

50

7 Threats to Validity

In this section, we discuss the threats to validity, including internal, external, construct, and
conclusion validity.

Conclusion validity. Threats in this category impact the relationship between treatment and
outcome. The biggest threat to the conclusion validity was the statistical significance obtained in
the calculation of agreement using the technique proposed by Joseph L. Fleiss (FLEISS, 1971).
Given the time constraints to conduct the research, it was not possible to prospect a sufficient
number of subjects (participants) in order to create a satisfactory database, although every effort
was made to publicize and expand the number of participants to the experiment. Thus, despite
the mitigation efforts, for a significant part of the agreement scores established in RQ1, the
expected statistical significance was not achieved.

Internal validity. Threats refer to the factors that may have influenced our study. First,
our concern when designing the experiment was to make it easy to use and that its duration
occurs in the shortest possible time, to prevent the experiment from being boring. Although
there was a concern to mitigate this issue, including a brief pilot experimentation, the duration
of each participation was approximately 60 minutes on average. Given the amount of time
that or experiment lasts, we can assume that, after a certain point, the participants felt tired or
unmotivated, directly affecting the quality of the information provided.

Second, we are aware that social interactions can be another threatening factor to the validity
of the results: due to the fact that the experiment execution was not controlled, the participants
who performed the experiment had time to interact with the applicants. Therefore, we assume
that this social interaction can cause changes in the behavior of the candidate participants during
the execution of the experiment. However, we detected that this situation is a necessary trade-off:
we needed to create a web experiment that could reach the largest possible number of software
engineering professionals in exchange for exposure to the threats resulting from the interaction
between people.

External Validity. The threats here concern the degree to which the findings can be gen-
eralized to the wider classes of subjects. Our study is based on an experiment published on
the internet to reach as many volunteers as possible. Due to the number of participants that
committed our research instrument, less than expected, we are aware that our research may be
subject to the problem of representativeness, which may affect the generalization of the results.
Possible mitigation to this problem would be to substantially increase the number of participants
and make our experiment reach different profiles of professionals, which we aim for further
works.

As for the number of types of code smells, we chose 4 out of 20 possible types cataloged
by Fowler (FOWLER et al., 1999). This small sample was necessary to make the experiment
executable within a reasonable time. To mitigate possible threats to the generalization validity, we

Chapter 7. Threats to Validity 51

focus our choice on how developers recognize each type of code smell in terms of perceptiveness
and level of agreement pointed out by previous studies (PALOMBA et al., 2014; HOZANO et
al., 2018), going from the most perceived smell to the least as a criterion of choice.

Construct Validity. This is an uncontrolled experiment, which raises some concerns. The
most important is that which affects the dedicated effort to solve tasks, as discussed in RQ2.
Without the effective control of the participants’ activities, it is not possible to accurately measure
the time actually spent on completing the activities. As a result, eventual dispersions by the
participants may overestimate the completion time of the activities, impacting the result of RQ2.

52

8 Conclusion and Future Works

In this research, an empirical study was presented to investigate the agreement among
developers when they are aided by a comprehensible classification model to support decision on
smell detection. Following the same way, the study investigates the required effort to perform
evaluations by visualizing the classifier model and the usefulness of our approach by participant
perspective.

To answer the raised questions, we made an empirical study involving 30 participants
who evaluate 8 tasks, divided into 2 groups, with source codes potentially affected by 1 of
4 selected types of smell. Each group of tasks exposed the developer to a source code with
different perspectives, so one shows the classification model that predicted the code as "smelly"
whereas another group doesn’t. The experiment was carried out through a web-based app
developed exclusively to collect the evaluations performed by participants. In total, more than
230 evaluations of code snippets from real software projects were performed.

Throughout our work, we got evidence that code smells detection aided by a decision tree
leads to a relative improvement of agreement in relation to detections based solely on pure and
simple code analysis, although in both scenarios the resulting Kappa measure was considered
slight regarding the agreement strength. After detaching different profiles of participants from
the whole set of participants, we discovered groups that behave distinctly. The agreement on
the detections aided by decision tree performed better with experienced code smell detection
participants, which brings the evidence that such profile got the best out of our approach. As for
the effort, the detection of code smell aided by decision tree did not decrease in time compared
to detection based only on code inspection. For both groups of tasks, there isn’t any evidence that
indicates the benefits related to the effort reduction when detecting code smells with decision tree,
i. e., the time spent to detect smells aided by decision tree tend to be equivalent or to be highest
than the time spent to detect code smells based solely in code inspection. Finally, based on the
answers provided by the majority of participants, our experiment suggests that the decision trees
used to support code smell detection are useful to the developer in terms of insights to decision
making.

As future work, we intend to use the feedback from participants to improve the generated
models and made it more useful to detecting smells. Moreover, in the next works we intend to
cover a wider range of code smells and study new agreements covering these smells.

53

Bibliography

ABBES, M. et al. An empirical study of the impact of two antipatterns, blob and spaghetti code,
on program comprehension. In: IEEE. Software maintenance and reengineering (CSMR), 2011
15th European conference on. [S.l.], 2011. p. 181–190. Citado 2 vezes nas páginas 12 and 16.

AMORIM, L. et al. Experience report: Evaluating the effectiveness of decision trees for
detecting code smells. In: IEEE. 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE). [S.l.], 2015. p. 261–269. Citado 2 vezes nas páginas 13 and 49.

AZEEM, M. I. et al. Machine learning techniques for code smell detection: A systematic
literature review and meta-analysis. Information and Software Technology, Elsevier, 2019.
Citado 3 vezes nas páginas 12, 13, and 21.

BACCHELLI, A.; BIRD, C. Expectations, outcomes, and challenges of modern code review. In:
IEEE. 2013 35th International Conference on Software Engineering (ICSE). [S.l.], 2013. p.
712–721. Citado na página 12.

BAEZA-YATES, R.; RIBEIRO-NETO, B. et al. Modern information retrieval. [S.l.]: ACM press
New York, 1999. v. 463. Citado na página 22.

BOX, G. E.; HUNTER, J. S.; HUNTER, W. G. Statistics for experimenters. In: Wiley Series in
Probability and Statistics. [S.l.]: Wiley Hoboken, NJ, USA, 2005. Citado na página 24.

FENTON, N.; BIEMAN, J. Software metrics: a rigorous and practical approach. [S.l.]: CRC
press, 2014. Citado na página 21.

FLEISS, J. L. Measuring nominal scale agreement among many raters. Psychological bulletin,
American Psychological Association, v. 76, n. 5, p. 378, 1971. Citado 2 vezes nas páginas 31
and 50.

FONTANA, F. A.; BRAIONE, P.; ZANONI, M. Automatic detection of bad smells in code: An
experimental assessment. Journal of Object Technology, v. 11, n. 2, p. 5–1, 2012. Citado na
página 12.

FONTANA, F. A. et al. Comparing and experimenting machine learning techniques for code
smell detection. Empirical Software Engineering, Springer, v. 21, n. 3, p. 1143–1191, 2016.
Citado na página 21.

FONTANA, F. A. et al. Code smell detection: Towards a machine learning-based approach. In:
IEEE. Software Maintenance (ICSM), 2013 29th IEEE International Conference on. [S.l.], 2013.
p. 396–399. Citado na página 21.

FOWLER, M. et al. Refactoring: improving the design of existing code. [S.l.]: Addison-Wesley
Professional, 1999. Citado 6 vezes nas páginas 9, 12, 16, 20, 27, and 50.

FREITAS, A. A. Comprehensible classification models: a position paper. ACM SIGKDD
explorations newsletter, ACM, v. 15, n. 1, p. 1–10, 2014. Citado 2 vezes nas páginas 13 and 22.

GOUSIOS, G. et al. Work practices and challenges in pull-based development: the integrator’s
perspective. In: IEEE PRESS. Proceedings of the 37th International Conference on Software
Engineering-Volume 1. [S.l.], 2015. p. 358–368. Citado na página 12.

Bibliography 54

GRUS, J. Data science from scratch: first principles with python. [S.l.]: O’Reilly Media, 2019.
Citado 2 vezes nas páginas 8 and 17.

GUIDOTTI, R. et al. A survey of methods for explaining black box models. ACM computing
surveys (CSUR), ACM, v. 51, n. 5, p. 93, 2018. Citado na página 22.

HOZANO, M. et al. Evaluating the Accuracy of Machine Learning Algorithms
on Detecting Code Smells for Different Developers. In: Proceedings of the 19th
International Conference on Enterprise Information Systems. SCITEPRESS - Science and
Technology Publications, 2017. p. 474–482. ISBN 978-989-758-247-9. Disponível em:
<http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006338804740482>.
Citado na página 21.

HOZANO, M. et al. Are you smelling it? investigating how similar developers detect code
smells. Information and Software Technology, Elsevier, v. 93, p. 130–146, 2018. Citado 10
vezes nas páginas 12, 13, 19, 20, 22, 27, 33, 46, 48, and 51.

LANDIS, J. R.; KOCH, G. G. The measurement of observer agreement for categorical data.
biometrics, JSTOR, p. 159–174, 1977. Citado na página 33.

LUŠTREK, M. et al. What makes classification trees comprehensible? Expert Systems with
Applications, Elsevier, v. 62, p. 333–346, 2016. Citado na página 22.

MANTYLA, M. V. An experiment on subjective evolvability evaluation of object-oriented
software: explaining factors and interrater agreement. In: IEEE. 2005 International Symposium
on Empirical Software Engineering, 2005. [S.l.], 2005. p. 10–pp. Citado na página 48.

MÄNTYLÄ, M. V.; LASSENIUS, C. Subjective evaluation of software evolvability using code
smells: An empirical study. Empirical Software Engineering, Springer, v. 11, n. 3, p. 395–431,
2006. Citado na página 48.

NUCCI, D. D. et al. Detecting code smells using machine learning techniques: are we there
yet? In: IEEE. 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). [S.l.], 2018. p. 612–621. Citado na página 21.

NUÑEZ-VARELA, A. S. et al. Source code metrics: A systematic mapping study. Journal of
Systems and Software, Elsevier, v. 128, p. 164–197, 2017. Citado na página 21.

OIZUMI, W. et al. Code anomalies flock together: Exploring code anomaly agglomerations
for locating design problems. In: IEEE. Software Engineering (ICSE), 2016 IEEE/ACM 38th
International Conference on. [S.l.], 2016. p. 440–451. Citado na página 16.

OPPENHEIM, A. N. Questionnaire design, interviewing and attitude measurement. [S.l.]:
Bloomsbury Publishing, 2000. Citado na página 28.

PALOMBA, F. et al. Do they really smell bad? a study on developers’ perception of bad code
smells. In: IEEE. 2014 IEEE International Conference on Software Maintenance and Evolution.
[S.l.], 2014. p. 101–110. Citado 7 vezes nas páginas 12, 13, 20, 26, 27, 29, and 51.

PALOMBA, F. et al. On the diffuseness and the impact on maintainability of code smells: a
large scale empirical investigation. Empirical Software Engineering, Springer, v. 23, n. 3, p.
1188–1221, 2018. Citado na página 20.

http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006338804740482

Bibliography 55

ROKACH, L.; MAIMON, O. Z. Data mining with decision trees: theory and applications. [S.l.]:
World scientific, 2008. v. 69. Citado 4 vezes nas páginas 16, 17, 18, and 22.

SCHUMACHER, J. et al. Building empirical support for automated code smell detection.
In: Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement. [S.l.: s.n.], 2010. p. 1–10. Citado na página 33.

SEAMAN, C. B. Qualitative methods in empirical studies of software engineering. IEEE
Transactions on software engineering, IEEE, v. 25, n. 4, p. 557–572, 1999. Citado 3 vezes nas
páginas 32, 42, and 43.

SILVA, M. C. O.; VALENTE, M. T.; TERRA, R. Does technical debt lead to the rejection of
pull requests? arXiv preprint arXiv:1604.01450, 2016. Citado na página 12.

TAIBI, D.; JANES, A.; LENARDUZZI, V. How developers perceive smells in source code:
A replicated study. Information and Software Technology, Elsevier, v. 92, p. 223–235, 2017.
Citado na página 13.

VANDERPLAS, J. Python data science handbook: Essential tools for working with data. [S.l.]:
" O’Reilly Media, Inc.", 2016. Citado 2 vezes nas páginas 16 and 17.

YAMASHITA, A.; MOONEN, L. Do developers care about code smells? an exploratory survey.
In: IEEE. 2013 20th Working Conference on Reverse Engineering (WCRE). [S.l.], 2013. p.
242–251. Citado na página 12.

YAMASHITA, A.; MOONEN, L. Exploring the impact of inter-smell relations on software
maintainability: An empirical study. In: IEEE. 2013 35th International Conference on Software
Engineering (ICSE). [S.l.], 2013. p. 682–691. Citado na página 12.

ZHANG, M.; HALL, T.; BADDOO, N. Code bad smells: a review of current knowledge.
Journal of Software Maintenance and Evolution: research and practice, Wiley Online Library,
v. 23, n. 3, p. 179–202, 2011. Citado na página 33.

Appendix

57

APPENDIX A – Software metrics

A.1 List of class-level software metrics

Table 22 show the entire list of class-level metrics1 used to collect independent variables.

metric name description

Average Cyclomatic Complexity Average cyclomatic complexity for all nested functions or methods.
Avg Number of Blank Lines Average number of blank lines for all nested functions or methods.
Avg Number of Lines Average number of lines for all nested functions or methods.
Avg Number of Lines of Code Average number of lines containing source code for all nested functions

or methods.
Avg Number of Lines with Comments Average number of lines containing comment for all nested functions or

methods.
Base Classes Number of immediate base classes
Class Methods Number of class methods
Class Variables Number of class variables
Comment to Code Ratio Ratio of number of comment lines to number of code lines.
Coupling Between Objects The Coupling Between Object Classes (CBO) measure for a class is a

count of the number of other classes to which it is coupled. Class A is
coupled to class B if class A uses a type, data, or member from class B.
Any number of couplings to a given class counts as 1 towards the metric
total.

Declarative Statements Number of declarative statements
Depth of Inheritance Tree (DIT) The depth of a class within the inheritance hierarchy is the maximum

number of nodes from the class node to the root of the inheritance tree.
The root node has a DIT of 0. The deeper within the hierarchy, the more
methods the class can inherit, increasing its complexity.

Executable Lines of Code Number of lines containing executable source code.
Instance methods Number of instance methods
Instance Variables Number of instance variables - variables defined in a class that are only

accessable through an object of that class
Lines with Comments Number of lines containing comment.
Lines with Source Code The number of lines that contain source code.
Local Default Visibility Methods Number of local default visibility methods
Max Cyclomatic Complexity Maximum cyclomatic complexity of all nested functions or methods.
Maximum nesting level Maximum nesting level of control constructs (if, while, for, switch, etc.)

in the function.
Number of blank lines Number of blank lines
Number of Children Number of immediate subclasses. (i.e. the number of classes one level

down the inheritance tree from this class).
Number of declarative Lines of Code Number of lines containing declarative source code. Note that a line can

be declarative and executable. Example: int i = 0;
Number of Local Methods (WMC) Number of local (not inherited) methods.

1 https://scitools.com/feature/metrics/

APPENDIX A. Software metrics 58

metric name description

Number of Methods Number of methods, including inherited ones.
Physical lines Number of physical lines.
Percent Lack of Cohesion in Methods 100% minus average cohesion for class data members. Calculates what

percentage of class methods use a given class instance variable. A lower
percentage means higher cohesion between class data and methods.

Private Methods Number of local (not inherited) private methods.
Protected Methods Number of local protected methods.
Public Methods Number of public methods. Only counts local (not inherited) methods.
Statements Number of declarative plus executable statements.
Sum of Cyclomatic Complexity Sum of cyclomatic complexity of all nested functions or methods.

Table 22 – List of class-level metrics

A.2 List of method-level software metrics

Table 23 show the entire list of method-level metrics2 used to collect independent variables.

metric name description

Number of inputs The number of inputs a function uses plus the number of unique subprograms
calling the function. Inputs include parameters and global variables that are
used in the function.

Number of blank lines Number of blank lines.
Source Lines of Code The number of lines that contain source code. A line can contain source and

a comment and thus count towards multiple metrics.
Number of declarative lines of Code Number of lines containing declarative source code. A line can be declarative

and executable. Example: int i =0;
Executable Lines of Code Number of lines containing executable source code.
Lines with Comments Number of lines containing comment.
Number of outputs (FANOUT) The number of outputs that are SET. This can be parameters or global

variables.
Paths Number of unique paths though a body of code, not counting abnormal exits

or gotos.
Statements Number of declarative plus executable statements.
Declarative Statements Number of declarative statements.
Executable Statements Number of executable statements.
Cyclomatic Complexity The cyclomatic complexity of any structured program with only one entrance

point and one exit point is equal to the number of decision points contained
in that program plus one. It counts the keywords for decision points (FOR,
WHILE, etc) and then adds 1.

Maximum nesting level Maximum nesting level of control constructs (if, while, for, switch, etc.) in
the function.

2 https://scitools.com/feature/metrics/

APPENDIX A. Software metrics 59

metric name description

Comment to Code Ratio Ratio of number of comment lines to number of code lines. Some lines are
both code and comment, so this could easily yield percentages higher than
100.

Table 23 – List of method-level metrics

60

APPENDIX B – Participant background
questionnaire

	Title page
	Approval
	Dedication
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Context and Problem
	Objective
	Execution and main results
	Contributions
	Research structure

	Study Background
	Code Smell
	Machine Learning
	Supervised and Unsupervised Learning
	Decision Tree Classifier

	Study Design
	Code smell types selection
	The oracle dataset
	Training the algorithm and generating the classifiers
	Study Procedure
	Tasks accomplishment
	Experiment execution and data inspection
	Data analysis
	Inter-rater agreement
	Time spent to accomplish tasks
	The usefulness of decision trees for decision making

	Results
	Overall participants' agreement
	Developer's agreement considering their origin
	Participants from academy

	Agreements by experience
	Experienced participants on code smell detection
	Experienced participants on Java language
	Experienced participants on development

	The effort spent to answer the tasks
	The usefulness of decision tree visualization for decision making

	Discussions
	RQ1: Do an aided approach of code smell detection - using a tree classifier representation – influence on agreement among developers?
	RQ2: How much effort do developer spend during code smell detection with a tree classifier support?
	RQ3: How useful is the decision tree visualization for decision making?

	Related Work
	Threats to Validity
	Conclusion and Future Works
	Bibliography
	Software metrics
	List of class-level software metrics
	List of method-level software metrics

	Participant background questionnaire

