
UNIVERSIDADE FEDERAL DE ALAGOAS

INSTITUTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

Dissertação de Mestrado

Understanding and Classifying Code Harmfulness

Rodrigo dos Santos Lima
rsl@ic.ufal.br

Orientador:

Baldoino Fonseca dos Santos Neto

MACEIÓ, FEVEREIRO DE 2020

Rodrigo dos Santos Lima

Understanding and Classifying Code

Harmfulness

Dissertação apresentada como requisito parcial para

obtenção do grau de Mestre pelo Curso de Mestrado em In-

formática do Instituto de Computação da Universidade Fed-

eral de Alagoas.

Orientador:

Baldoino Fonseca dos Santos Neto

Maceió, Fevereiro de 2020

Catalogação na fonte
Universidade Federal de Alagoas

Biblioteca Central
Divisão de Tratamento Técnico

 Bibliotecária Responsável: Helena Cristina Pimentel do Vale – CRB4 - 661

 L732u Lima, Rodrigo dos Santos.

 Understanding and classifying code harmfulness / Rodrigo dos Santos

 Lima. – 2020.

 54 f. : il.

 Orientador: Baldoino Fonseca dos Santos Neto.

 Dissertação (mestrado em Informática) - Universidade Federal de Alagoas.

 Instituto de Computação. Maceió, 2020.

 Bibliografia: f. 33-38.

 Apêndices: f. 39-54.

 1. Code smells. 2. Software – Qualidade. 3. Aprendizagem de máquina.

 I. Título.

 CDU: 004.4

Agradecimentos

Nesses anos de mestrado, de muito estudo, esforço e empenho gostaria de agradecer a

algumas pessoas que me acompanharam e foram fundamentais para realização de mais este

sonho.

Aos meus pais Manoel e Neli por todo o apoio e incentivo ao longo dessa caminhada.

Também por entender que a educação é a base fundamental do ser humano.

Agradeço ao meu orientador Prof. Dr. Baldoino Fonseca dos Santos Neto por toda

a paciência, apoio e críticas construtivas durante esse período. Seus ensinamentos foram

fundamentais para a minha formação como pesquisador.

Aos membros da banca, os professores Dr. Márcio de Medeiros Ribeiro e ao Dr.

Leopoldo Motta Teixeira pela disposição e interesse em contribuir para a melhoria desse

estudo.

Ao grupo de pesquisa EASY e seus integrantes que se tornaram colegas de trabalho e

pessoas que pretendo ter amizade pelo resto da vida. Sem dúvida, fizeram parte da minha

formação. Obrigado pelas discussões, cafezinhos e convivência diária no laboratório.

Agradeço também à Fundação de Amparo à Pesquisa do Estado de Alagoas (FAPEAL)

pelo apoio financeiro para realização da pesquisa. Por último, a todos aqueles que direto ou

indiretamente fizeram parte da minha formação: O meu muito obrigado!

i

Resumo

Code Smells geralmente indicam más opções de implementação que podem prejudicar a

qualidade do software. Portanto, eles precisam ser detectados com cuidado para evitar

degradação do software. Nesse contexto, alguns estudos tentam entender o impacto dos

Code Smells na qualidade do software, enquanto outros propõem regras ou técnicas baseadas

em aprendizado de máquina para detectar Code Smells. No entanto, nenhum desses estudos

/ técnicas se concentram na análise de trechos de código que são realmente prejudiciais à

qualidade do software. Nosso estudo tem como objetivo entender e classificar a nocividade

do código. Analisamos a nocividade em termos de código CLEAN, SMELLY, BUGGY

e HARMFUL. Por código nocivo, queremos dizer código que já prejudicou a qualidade

do software e ainda está sujeito a danos. Realizamos nosso estudo com 22 tipos de Smells,

803 versões de 12 projetos de código aberto, 40.340 bugs e 132.219 Code Smells. Os re-

sultados mostram que, embora tenhamos um número alto de Code Smells, apenas 0,07%

desses Smells são prejudiciais. O Abstract Call From Constructor é o tipo de Smell mais

relacionado ao código nocivo. Para validar empiricamente nossos resultados, também re-

alizamos uma pesquisa com 77 desenvolvedores. A maioria deles (90,4%) considera Code

Smells prejudiciais ao software e 84,6% desses desenvolvedores acreditam que as ferramen-

tas de detecção de Code Smells são importantes. Mas, esses desenvolvedores não estão pre-

ocupados em selecionar ferramentas capazes de detectar Code Smells. Também avaliamos

técnicas de aprendizado de máquina para classificar a nocividade do código: elas atingem

a eficácia de pelo menos 97% para classificar o código nocivo. Enquanto Random Forest é

eficaz na classificação de Code Smells e nocivos, o Gaussian Naïve Bayes é a técnica menos

eficaz. Nossos resultados também sugerem que as métricas de software e desenvolvedores

são importantes para classificar códigos nocivos.

Palavras-chave: Code Smells, Qualidade de Software, Aprendizagem de Máquina

ii

Abstract

Code smells typically indicate poor implementation choices that may degrade software qual-

ity. Hence, they need to be carefully detected to avoid such degradation. In this context,

some studies try to understand the impact of code smells on the software quality, while oth-

ers propose rules or machine learning-based techniques to detect code smells. However,

none of those studies/techniques focus on analyzing code snippets that are really harmful

to software quality. Our study aims to understand and classify code harmfulness. We ana-

lyze harmfulness in terms of CLEAN, SMELLY, BUGGY, and HARMFUL code. By harmful

code, we mean code that has already harmed software quality and is still prone to harm.

We perform our study with 22 smell types, 803 versions of 12 open-source projects, 40,340

bugs and 132,219 code smells. The results show that even though we have a high number

of code smells, only 0.07% of those smells are harmful. The Abstract Function Call From

Constructor is the smell type more related to harmful code. To cross-validate our results,

we also perform a survey with 77 developers. Most of them (90.4%) consider code smells

harmful to the software, and 84.6% of those developers believe that code smells detection

tools are important. But, those developers are not concerned about selecting tools that are

able to detect harmful code. We also evaluate machine learning techniques to classify code

harmfulness: they reach the effectiveness of at least 97% to classify harmful code. While

the Random Forest is effective in classifying both smelly and harmful code, the Gaussian

Naive Bayes is the less effective technique. Our results also suggest that both software and

developers’ metrics are important to classify harmful code.

Keywords: Code Smells, Software Quality, Machine Learning

iii

List of Figures

Figure 1 – Harmful Code. 9

Figure 2 – Study Design. 10

Figure 3 – Dataset Structure. 10

Figure 4 – Study Design Machine Learning Effectiveness. 12

Figure 5 – Switch Statements Smell. 18

Figure 6 – Bug Fix in code smell snippets. 19

Figure 7 – Long Parameter List. 19

Figure 8 – Survey Results. 21

Figure 9 – Results for Harmful Code (f1-score). 23

Figure 10 – Results for Smelly Code (f1-score). 24

Figure 11 – Most Important metrics among code smells (SHAP values). 25

List of Tables

Table 1 – Analyzed Projects. 6

Table 2 – Selected Code Smells and Tools . 7

Table 3 – Code Category . 15

Table 4 – Harmful Smell Types. 16

Contents

List of Figures . iv

List of Tables . v

Contents . vi

1 Introduction . 1

1.1 Context and Problem . 1

1.2 Objectives and Methodological Aspects 2

1.3 Contributions . 2

1.4 Thesis Structure . 3

2 Study Design . 4

2.1 Research Questions . 4

2.2 Projects Selection . 5

2.3 Code Smells . 5

2.4 Metrics . 7

2.5 Locating Bug Fixes . 8

2.6 Locating the buggy code . 8

2.7 Locating Harmful Code . 9

2.8 Dataset Structure . 9

2.9 Calculating Effectiveness . 10

2.10 Machine Learning Techniques . 13

2.11 Evaluating the Importance of Features 13

2.12 Data Analysis . 13

3 Results and Discussions . 15

3.1 RQ1. To what extent are smells harmful to the software? 15

3.1.1 WHY IS THIS SMELL TYPE HARMFUL? 17

3.2 RQ2. Do developers perceive and handler code smells as harmful? . 20

3.3 RQ3. How effective are Machine Learning techniques to classify

harmful code? . 22

3.4 RQ4. Which metrics are most influential on classifying harmful code? 24

4 Implications . 27

5 Related Work . 28

6 Threats to Validity . 31

7 Conclusions and Future Works . 32

Bibliography . 33

APPENDIX A Supplementary Material . 38

1 Survey . 38

2 Tables: How effective are Machine Learning techniques to detect harmful

code? . 46

3 Table: Which metrics are most influential on detecting harmful code? . . . 50

4 Software Metrics (CK) . 53

5 Developer Metrics . 54

vii

1 Introduction 1

1 Introduction

In this chapter, we present a summary of the research, starting with the context and

problem, connecting them with the objectives and contributions of this work.

1.1 Context and Problem

During software development, developers perform changes to implement new require-

ments, to improve the code or to fix bugs. While those changes contribute to the evolu-

tion of the software, they may introduce code smells, which represent symptoms of poor

design and implementation choices (FOWLER, 1999). The growing incidence of code

smells is also an indicator of design degradation (MACIA et al., 2012), change and fault-

proneness (PALOMBA et al., 2018) as well as it may hinder comprehensibility (ABBES et

al., 2011). Thus, code smell detection is an elementary technique to improve the software

longevity.

Several approaches have been proposed to identify code smells in an automatic way. For

instance, some studies (Marinescu, 2004; MARINESCU, 2001; LANZA; MARINESCU,

2010; MUNRO, 2005) propose techniques that rely on smell detection rules defined by

developers or reused from other projects or tools. Other studies (Di Nucci et al., 2018;

AMORIM et al., 2016; Arcelli Fontana et al., 2016; Maiga et al., 2012; KESSENTINI et al.,

2011; KHOMH et al., 2009) indicate that Machine Learning techniques (ML-techniques)

such as Decision Trees (AMORIM et al., 2016; Arcelli Fontana et al., 2016), Support Vec-

tor Machines (Maiga et al., 2012), Genetic Programming (KESSENTINI et al., 2011), and

Bayesian Belief Networks (KHOMH et al., 2009), are a promising way to automate part of

the detection process, without asking the developers to define their own strategies of code

smell detection. Even though studies (MACIA et al., 2012; PALOMBA et al., 2018; ABBES

et al., 2011) have analyzed the impact of code smells and there are techniques to detect those

smells (Marinescu, 2004; MARINESCU, 2001; LANZA; MARINESCU, 2010; MUNRO,

2005; Di Nucci et al., 2018; AMORIM et al., 2016; Arcelli Fontana et al., 2016; Maiga et

al., 2012; KESSENTINI et al., 2011; KHOMH et al., 2009), none of those works focus on

analyzing code snippets that are really harmful to software quality.

1 Introduction 2

1.2 Objectives and Methodological Aspects

As explained above, to understanding and classifying code harmfulness is essential to

identify pieces of code that were really harmful to the software, helping developers prioritize

them while refactoring the code. Based on that, we set the following objectives.

This study is to understand and classify code harmfulness. We consider faults (in terms

of bugs) as the main harmfulness aspect analyzed, since they are closely related to software

failures. This way, we assess the harmfulness of code snippets in terms of four categories:

CLEAN: there is no smell or bug historically associated with the code; SMELLY: code con-

tains smells, but has no bug associated with it; BUGGY: code already had bugs associated

with it, but no smell has been detected into the code; HARMFUL: code contains smells and

it already had bugs associated with it. First, we analyze the occurrence of each category

in open-source projects and which smell types are more related to harmful code. We also

investigate the developers’ perceptions regarding the harmfulness of code smells. Moreover,

we evaluate the effectiveness of machine learning techniques to classify the harmfulness of

code snippets, focusing on smelly and harmful code. Finally, we investigate which metrics

are most influential in harmful code detection.

To perform the objectives above mentioned, we define an experiment with 22 smell types,

803 versions of 12 open-source projects, 40,340 bugs mined from GitHub issues and 132,219

code smells collected by the tools Designite, PMD, and IntelliJ. Along with the execution of

the study we perform a survey with 77 developers.

1.3 Contributions

The main contributions of this study are:

• Identify which types of smells are more related to Harmful Code: Only a few types

of smells are associated with bugs, Abstract Function Call From Constructor presents

the highest association.

• Identify Developers’ Perception about how harmful are code smells, where the vast

majority of the developers (90.4%) consider code smells harmful to the software.

1 Introduction 3

• Evaluate the effectiveness of ML-techniques to detect Harmful code in open-source

projects, checking that ML-techniques classify harmful code as effective as they iden-

tify code smells.

• Identify which metrics are most influential on classifying harmful code, where the

software metrics reached the highest importance. Weight Method Class (WMC) is the

metric that presented the highest importance in most of the smells.

• A large dataset containing software metrics, developers metrics, smells, and bugs. Is

available on our website (HARMFUL. . . , 2020).

From this study, we provide valuable information for the developers. The developers

could focus their efforts on refactor only code smells that are really harmful to the software,

reducing their efforts and the probability of a bug introducing change.

1.4 Thesis Structure

The rest of this thesis is structured as follows:

• Chapter 2 describes the design of our mixed study going over the research questions,

how the data will be collected and analyzed.

• Chapter 3 presents the results and discussions of this study. We start analyzing the

occurrence of CLEAN, SMELLY, BUGGY, and HARMFUL code in open-source projects

as well as which smell types are more related to harmful code. Then, we investigate

the developers’ perceptions regarding the harmfulness of code smells. Then evaluate

the effectiveness of machine learning techniques to detect harmful and smelly code

and investigate which metrics are most important.

• Chapter 5 discuss the related works that have been done in the fields of the Impact,

Detection Tools and Techniques, Developers’ Perceptions. This chapter focuses

more on comparing the existing works, contributions, and limitations.

• Chapter 6 details the limitations and threats to validity of this study.

• Chapter 7 presents our conclusion and ideas which could lead to future contributions

in the field of Software Engineering.

2 Study Design 4

2 Study Design

In this chapter, we describe the process that leads to the results of our study. First, we

present the research questions of our work, and we present the steps of the study.

2.1 Research Questions

Several studies have investigated the impact of code smells (MACIA et al., 2012;

PALOMBA et al., 2018; ABBES et al., 2011) as well as tools and techniques to detect

smells (Marinescu, 2004; MARINESCU, 2001; LANZA; MARINESCU, 2010; MUNRO,

2005; Di Nucci et al., 2018; AMORIM et al., 2016; Arcelli Fontana et al., 2016; Maiga et

al., 2012; KESSENTINI et al., 2011; KHOMH et al., 2009). However, none of those works

focus on analyzing code snippets that are really harmful to software quality. In this context,

we try to answer four main research questions:

RQ1. To what extent are smells harmful to the software?

This research question assesses the presence of CLEAN, SMELLY, BUGGY, and HARM-

FUL code. As a result, we expect to understand the frequency of each category in open-source

projects. This way, we can analyze whether smells might indicate bugs in such projects, as

well as finding out the frequency of smells that are considered harmful. A high frequency

of HARMFUL code indicates a close relation between smells and bugs. On the other hand, a

low frequency of harmful code suggests that smells may not be a good proxy for bugs and,

consequently, developers should focus their efforts on refactoring harmful code, instead of

refactoring a high number of smells. After assessing HARMFUL code, we investigate which

smell types are more harmful. The recognition of such smell types may help developers to

be more cautious during software development to avoid these smell types.

RQ2. Do developers perceive and handle code smells as harmful?

In this research question, we analyze the developers’ perceptions about how harmful

are code smells. This analysis may help us to understand if developers believe that code

smells are really harmful to the software quality. Also, we investigate if developers handle

code smells as harmful or not. In particular, we analyze if developers concern about using

appropriate tools not only to detect smelly but also harmful code.

RQ3. How effective are Machine Learning techniques to detect harmful code?

2 Study Design 5

After analyzing the existence of harmful code in open-source projects and how harmful

are code smells for developers, we evaluate the effectiveness of ML-techniques to detect

HARMFUL code in open-source projects. Several studies have indicated ML-techniques as

an effective way to detect smells (AMORIM et al., 2016; Arcelli Fontana et al., 2016; Arcelli

Fontana; ZANONI, 2017), but there is no knowledge if they are as effective in detecting

HARMFUL code. As a result, we expect to shed light toward the use of ML-techniques to

detect smells that are really harmful to the software. This way, developers could use existing

tools and techniques not only to detect smelly but also harmful code.

RQ4. Which metrics are most influential on detecting harmful code?

Once we recognize the more effective Machine Learning techniques, we also analyze the

metrics that have more influence to identify HARMFUL code. Identifying these influential

metrics may help developers to avoid common code structures that are more likely to produce

harmful code.

2.2 Projects Selection

We manually selected 12 Java projects according to the following criteria: (i) they must

be open-source and hosted at GitHub; (ii) they must use the GitHub issues bug-tracking tool,

to standardize our process of collecting bug reports (Section 2.5); and (iii) they must have

had at least 3,000 smells and 20 bugs along their development.

Table 1 summarizes the characteristics of the selected projects. For each project, we ana-

lyze its complete history, from the first commit until the last one at the moment we collect the

project information. The number of code smells ranges from 1,523 (Apollo) up to 121,165

(Dubbo), and the number of bugs varies from 22 (Apollo) up to 10,085 (Okhttp). The high

numbers are due to analyzing the whole history of the projects.

2.3 Code Smells

In our study, we analyze 22 smell types, as reported in Table 2. We select these smell

types because: (i) they affect different scopes, i. e., methods, and classes; (ii) they are also in-

vestigated in previous works on code smell detection (SHARMA; MISHRA; TIWARI, 2016;

ALENEZI; ZAROUR, 2018; FONTANA et al., 2015; KHOMH et al., 2009; KHOMH et al.,

2 Study Design 6

Table 1 – Analyzed Projects.

Project Name Domain # Versions # Smells # Bugs

Acra Application 52 3,470 163
ActiveAndroid Library 1 141 754
Aeron Application 76 10,914 1,634
Aerosolve Library 100 1,863 443
Apollo Library 32 1,524 27
Butterknife Library 45 1,636 861
Dubbo Framework 62 27,843 2,216
Ethereumj Cryptocurrency 50 9,169 2,763
Ganttproject Application 31 8,275 4,365
Joda-time Library 64 7,421 684
Lottie-android Library 75 4,143 58
Okhttp Library 80 9,412 10,111
Spring-boot Framework 136 46,551 40

2011; Maiga et al., 2012; AMORIM et al., 2016; Arcelli Fontana et al., 2016); (iii) they have

detection rules defined in the literature or implemented in available tools (HARMFUL. . . ,

2020; DESIGNITE. . . , 2020; PMD. . . , 2020); and (iv) studies (PALOMBA et al., 2018; MA

et al., 2018; HALL et al., 2014) indicate a negative impact of those smell types on software

quality.

To collect code smells, we use three smell detection tools: Designite, PMD, and IntelliJ.

These tools have already been used in previous studies (SHARMA; MISHRA; TIWARI,

2016; ALENEZI; ZAROUR, 2018; FONTANA et al., 2015). We execute these tools for each

version of the software, in the entire history of the repository. For each class and method, we

register the smells associated with it along with the software versions. One might argue that

smell may be registered several times to the same class or method along with the versions. To

mitigate this issue, we only count the smell if a class or method has changed when compared

to the previous version. Furthermore, we conduct a careful manual validation on a sample

of smells detected. Two pairs of researchers (familiar with code smells detection) from our

research lab validated this sample. Each pair was responsible for a fraction of the sample,

and each individual validated the same candidate smells. We conducted the validation due

to the high numbers of false-positives (changes reported as bug-introducing when they are

actually not) reported in previous studies (KIM et al., 2006; WILLIAMS; SPACCO, 2008;

GRIFFOR et al., 2017). In Table 2, we present names, scope (i.e., method or class), and the

tool used to collect each smell. More details about the instrumentation used by each tool to

detect the analyzed smell types are available on our website (HARMFUL. . . , 2020).

2 Study Design 7

Table 2 – Selected Code Smells and Tools

Code Smell Affected Code Tool

Broken Hierarchy

Class Designite

Cyclic-Dependent Modularization
Deficient Encapsulation
Imperative Abstraction
Insufficient Modularization
Multifaceted Abstraction
Rebellious Hierarchy
Unnecessary Abstraction
Unutilized Abstraction

Long Method

Method

PMD / Designite / Intellij
Long Parameter List
Long Statement
Switch Statements
Simplified Ternary
Abst Func Call From Const

Designite

Magic Number
Missing default
Missing Hierarchy
Unexploited Encapsulation
Empty catch clause

Long Identifier Class / Method PMD / Designite / Intellij

2.4 Metrics

For each version of the analyzed projects, we compute metrics related to the source code

and developers involved.

Source Code Metrics. We collect 52 metrics at class and method level, covering six

quality aspects of object-oriented software: complexity, cohesion, size, coupling, encapsula-

tion, and inheritance. We chose the CK (Chidamber and Kemerer) metrics (CHIDAMBER;

KEMERER, 1994), which are well-known and have been used by previous studies to de-

tect code smells (KHOMH et al., 2011; YAMASHITA; MOONEN, 2013; PALOMBA et

al., 2013; PALOMBA et al., 2015; HOZANO et al., 2017; AMORIM et al., 2016). More

details about the metrics, as well as the tools used to collect them, are described at our web-

site (HARMFUL. . . , 2020) and appendix A.

Developer Metrics. Open-source environments, such as GitHub, made it easier for de-

velopers with different technical capabilities and social interactions to actively and simul-

taneously contribute to the same project. In such environments, developers can perform a

variety of activities, such as committing code, opening and closing pull requests and issues,

and discussing contributions. Even though developers can collaborate on different projects,

their technical capabilities and social interactions can be determinant factors to the software

2 Study Design 8

quality. For example, a novice developer can introduce bugs when performing some change.

Developer metrics may be a promising way to recognize which developers’ actions may lead

to bugs. To perform our study, we collect 14 previously described developer metrics (FAL-

CÃO et al., 2018), related to three main factors: experience, contribution, and social aspects

(i.e., number of followers). We collect metrics using PyDriller (SPADINI; ANICHE; BAC-

CHELLI, 2018), a tool to support Git repository analysis. More details about the developer

metrics are described at our website (HARMFUL. . . , 2020) and appendix A.

2.5 Locating Bug Fixes

GitHub issues are useful to keep track of tasks, enhancements, and bugs related to a

project. Furthermore, developers can label issues to characterize them. For example, an

issue opened to fix a bug would typically be associated with the bug label. After fixing the

bug, the issue can be closed. To collect the reports of fixed bugs in the selected projects, we

mined the closed issues related to bugs in each project. To identify these issues, we verified

whether they contained the bug or defect labels. As a result of this process, we collected

40,340 bug reports from the 12 analyzed projects. A similar approach was made in recent

studies (SANTOS et al., 2020; KHOMH et al., 2011; PALOMBA et al., 2018).

2.6 Locating the buggy code

GitHub provides the functionality to close an issue using commit messages. For example,

prefacing a commit message with keywords “Fixes”, “Fixed”, “Fix”, “Closes”, “Closed” or

“Close”, followed by an issue number, such as, “Fixes #12345”, will automatically close the

issue when the commit is merged into the master branch. This way, when this strategy is

used to close a bug issue, we assume the commit that closed the issue as being the bug fixing

commit.

Associating a bug (issue) with a commit fixing allows us to identify the methods and

classes that were modified to fix the bug. This way, we conservatively establish that in

the immediate previous commit to the fix, these methods and classes are considered buggy.

We perform a similar approach by previous studies (PALOMBA et al., 2018; OLBRICH;

CRUZES; SJOØBERG, 2010; KHOMH et al., 2012; SANTOS et al., 2020), which consists

2 Study Design 9

of assuming that the class or method is directly or indirectly linked to the bug if they were

modified in the commit fix.

2.7 Locating Harmful Code

We consider a code snippet that already had bugs associated with it and still contains

smells as HARMFUL. To identify harmful code, we first collect the code smells detected

along with the software history (from the first software version until the current one). Then,

we verify which code smells already had bugs associated to it. As a result, we obtain the

code snippets that contain smells and already had bugs associated to it, i.e., the harmful code

snippets represented in Figure 2.

Figure 1 – Harmful Code.

The Figure 2 presents the steps made to build the dataset.

2.8 Dataset Structure

After collecting metrics and classifying code snippets, we build our dataset, structured as

Figure 3 presents. Each instance in the dataset represents a code snippet (class or method) ex-

tracted from the analyzed projects. Associated with each code snippet, we have the software

and developer metrics as well as its harmfulness (CLEAN, SMELLY, BUGGY, or HARMFUL).

While the metrics represent characteristics (e. g., number of lines of code), the harmful-

ness (CLEAN, SMELLY, BUGGY and HARMFUL) indicates the category that the code snip-

pet belongs. Our dataset is composed of 28,371,822 instances of code snippets, containing

28,216,238 CLEAN, 132,219 SMELLY, 40,340 BUGGY and 1,048 HARMFUL.

2 Study Design 10

Figure 2 – Study Design.

Figure 3 – Dataset Structure.

2.9 Calculating Effectiveness

We evaluate the effectiveness of seven ML-techniques to classify smelly and harmful

code as follows. First, we split the dataset into 11 smaller datasets, one for each smell. They

2 Study Design 11

are extremely imbalanced, i.e., the percentage of CLEAN code is higher compared to the

other categories (SMELLY, HARMFUL, BUGGY). Class imbalance can result in a serious

bias towards the majority class, thus reducing the evaluation or classifications tasks (GUE-

HENEUC; SAHRAOUI; ZAIDI, 2004). To avoid this, we apply an under-sampling tech-

nique that consists on randomly and uniformly under-sampling the majority across other

classes, similar to a recent study (Arcelli Fontana; ZANONI, 2017).

We chose under-sampling instead of over-sampling to avoid the generation of artificial

instances of SMELLY, HARMFUL, and BUGGY, as performed by over-sampling techniques.

Next, we preprocess the dataset to avoid inconsistencies and to remove irrelevant and

redundant features (Arcelli Fontana et al., 2016; Arcelli Fontana; ZANONI, 2017; AMORIM

et al., 2016). In particular, we normalize metrics with the default range between 0 and 1.

Moreover, if two metrics present a Pearson correlation higher than 0.8, we randomly remove

one of them.

After performing the preprocessing, we split each dataset into two sets: training and test-

ing set containing 2
3

and 1
3

of the entire data respectively. We use the training data to learn the

hyper-parameter configurations of the ML-techniques by applying a stratified 5-fold cross-

validation procedure to ensure that each fold has the same proportion of observations with

a given class outcome value, as previous studies do (Arcelli Fontana; ZANONI, 2017; Ar-

celli Fontana et al., 2016). Searching for the best hyper-parameter configuration for each

technique is a complex, time-consuming, and challenging task. Each technique has a set

of hyper-parameters that can be of different types, i.e., continuous, ordinal, and categorical,

making it more difficult to calibrate them, due to the large space of hyper-parameters. The

Grid Search algorithm (BERGSTRA; BENGIO, 2012) is the most common way to explore

different configurations for each ML-technique. However, it would be very time consum-

ing to explore the entire configuration search space for each technique. To avoid this, we

tune the hyper-parameters using Hyperopt-Sklearn (KOMER; BERGSTRA; ELIASMITH,

2014),1 which consists of an automatic hyper-parameter configuration for the Scikit-Learn

Machine Learning library. Hyperopt-Sklearn uses Hyperopt (BERGSTRA; YAMINS; COX,

2013) to describe a search space over possible parameters configurations for different ML-

techniques using Bayesian optimization (KOMER; BERGSTRA; ELIASMITH, 2014). The
1 <https://github.com/hyperopt/hyperopt-sklearn>

https://github.com/hyperopt/hyperopt-sklearn

2 Study Design 12

use of Bayesian optimization algorithms is very effective and less time-consuming than the

traditional approaches (KOMER; BERGSTRA; ELIASMITH, 2014).

Once we learn the hyper-parameters configuration of the techniques, we evaluate the

effectiveness of these techniques on unseen data — testing data. Previous studies (AMORIM

et al., 2016) have used this procedure to avoid overfitting of the techniques, i. e., to avoid

that, a technique becomes too specific to the training data, without it being generalized to

unseen data. We measure effectiveness in terms of f-measure, which is typically used for

evaluating the performance of classification tasks, providing a more realistic performance

measure of a test, since it is computed by the harmonic mean of the precision and recall, the

Figure 4 presents these steps.

Figure 4 – Study Design Machine Learning Effectiveness.

2 Study Design 13

2.10 Machine Learning Techniques

In this study, we apply a variety of techniques based on popular algorithms that had a

good performance in previous studies (AZEEM et al., 2019) on classifying code smells.

To perform that, we use the scikit-learn (PEDREGOSA et al., 2011) python library in

the following ML-techniques: K-nearest Neighbors (KNN) (ALTMAN, 1992); Decision

Tree (BREIMAN, 1984); Random Forest (HO, 1995); Gradient Boosting (BREIMAN

et al., 1984); Gaussian Naive Bayes (HAND; YU, 2001); Support Vector Machines

(SVM) (BOSER; GUYON; VAPNIK, 1992) and Ada Boost (SCHAPIRE, 1999)

2.11 Evaluating the Importance of Features

To evaluate the importance of each metric (feature) in the effectiveness of the ML-

techniques analyzed, we use the Shapley Additive Explanations (SHAP) framework. It con-

sists of a unified approach to explain the output of any ML model (LUNDBERG; LEE,

2017). The SHAP framework uses game theory with local explanations to give an impor-

tance value to each feature used by the ML-technique that had the highest score to detect

HARMFUL code. This way, we can find out which metrics are more important in the detec-

tion of HARMFUL code category.

2.12 Data Analysis

To answer RQ1, we analyze the frequency of CLEAN, SMELLY, BUGGY, and HARMFUL

code in the projects. Moreover, we assess the proportion of HARMFUL code when compared

to the number of smells. Such analysis helps us to understand how close is the relationship is

between SMELLY and BUGGY code. We further investigate the HARMFUL code by analyzing

which smell types are more harmful.

In RQ2, we use an online survey to collect developers’ perceptions on the harmfulness

of code smells. Also, we investigate if developers concerns on selecting tools able to detect

not only smelly but also harmful code.

RQ3 analyzes the effectiveness of ML-techniques to recognize smelly and harmful code.

In both cases, we apply the under-sampling method to balance the number of instances be-

tween the positives classes (i. e., smelly and harmful code) and negative classes associated

2 Study Design 14

with CLEAN and BUGGY code. A similar method has been used in previous studies (Arcelli

Fontana; ZANONI, 2017) to obtain a balanced dataset. Next, we use the balanced dataset to

evaluate the ML-techniques through a 5-fold cross-validation procedure. Finally, we evaluate

the effectiveness of each technique by using the f1-score metric in unseen data.

Finally, to answer RQ4, we analyze which metrics are more important to the prediction

model produced from the most effective ML-technique to detect HARMFUL code. Such im-

portance is calculated using SHAP values (LUNDBERG; LEE, 2017), which is a measure

to evaluate the impact of each feature on the output of the ML-technique. From this anal-

ysis, we can identify code implementations that are more related to HARMFUL code and,

consequently, help developers to avoid those implementations.

3 Results and Discussions 15

3 Results and Discussions

In this chapter, we describe and discuss the main results of the study. We structure the

data presentation and discussion in terms of our four research questions.

3.1 RQ1. To what extent are smells harmful to the software?

In this research question, we analyze the code smells harmfulness by assessing the pro-

portion of smells that are associated with bugs. Table 3 presents the number and proportion

of code snippets considered as CLEAN, SMELLY, BUGGY, or HARMFUL in the analyzed

projects.

CLEAN. All the analyzed projects present more than 96% of CLEAN code. This high

proportion is expected since we analyze all software versions along with its evolution history.

Although we have been careful by avoiding unchanged code snippets between versions, the

code snippets are frequently changed over time. This high proportion has pros and cons.

High proportion means that developers could focus their efforts on a small part of the

source code to identify smells or bugs. On the other hand, a lower proportion could mean

that the software has many smells or bugs, which can be harmful to quality but can also be

useful for researchers to better understand inherent characteristics of this type of code.

Table 3 – Code Category

Project # Clean # Smelly # Buggy # Harmful

Acra 195,874 (98.18%) 3,470 (1.74%) 141 (0.07%) 22 (0.01%)
Aeron 1,861,703 (99.33%) 10,914 (0.58%) 1,489 (0.08%) 145 (0.01%)
Aerosolve 532,715 (99.57%) 1,863 (0.35%) 308 (0.06%) 135 (0.03%)
Apollo 313,379 (99.51%) 1,523 (0.48%) 22 (0.01%) 5 (0%)
Butterknife 74,153 (96.74%) 1,636 (2.13%) 857 (1.12%) 4 (0.01%)
Dubbo 2,854,863 (98.96%) 27,843 (0.97%) 1,939 (0.07%) 277 (0.01%)
Ethereumj 1,690,701 (99.3%) 9,168 (0.54%) 2,638 (0.15%) 125 (0.01%)
Ganttproject 4,263,646 (99.7%) 8,275 (0.19%) 4,077 (0.1%) 288 (0.01%)
Joda-time 3,021,538 (99.73%) 7,420 (0.24%) 676 (0.02%) 8 (0%)
Lottie-android 499,291 (99.17%) 4,143 (0.82%) 52 (0.01%) 6 (0%)
Okhttp 1,422,553 (98.65%) 9,412 (0.65%) 10,085 (0.7%) 26 (0%)
Spring-boot 11,485,822 (99.6%) 46,551 (0.4%) 33 (0%) 7 (0%)

SMELLY. Different from CLEAN code, the projects present a low proportion of SMELLY

code. The projects have at most 2.13%. Although the proportion of SMELLY code is lower

than CLEAN, smells are still present in a large portion of the code snippets. The number

of smelly code snippets in the projects varies from 1,523 (Apollo) up to more than 27 thou-

3 Results and Discussions 16

sand (Dubbo). Such results indicate that code smells detection tools still identify a large

number of smells, making it difficult for developers to use them in practice.

BUGGY. The proportion of BUGGY code is lower than SMELLY code. The projects

contains a proportion lower than 2%. But, this low proportion does not mean a low number

of BUGGY code snippets. The projects contain from 22 (Apollo) up to more than 10,085

(Okhttp) BUGGY code snippets. Which means that developers still have to concern with a

considerable number of BUGGY code snippets to inspect.

HARMFUL. Similarly to BUGGY code, the projects also present low proportion of

HARMFUL code. The number of HARMFUL code snippets is much lower than the num-

ber of BUGGY ones, varying from only four (Butterknife) up to 288 (Ganttproject). This

suggests that even though existing tools detect a large number of smells, there is still a

high number of bugs that are not related to those smells. Such results reinforce a pre-

vious study (Palomba et al., 2014), indicating that only a few smells types are considered

as harmful by developers. Hence, we also analyze the smell types more related to SMELLY

and HARMFUL code. Table 4 describes the smell types analyzed in our study, the number of

smells, and harmful code associated with each type.

Table 4 – Harmful Smell Types.

Smell Type # Code Smells # Harmful Code
Abstract Function Call From Constructor 118 (92.2%) 10 (7.8%)
Broken Hierarchy 18,152 (99.8%) 30 (0.2%)
Cyclic-Dependent Modularization 20,448 (99.6%) 79 (0.4%)
Deep Hierarchy 88 (98.9%) 1 (1.1%)
Deficient Encapsulation 31,774 (99.8%) 56 (0.2%)
Empty catch clause 8,116 (99.7%) 23 (0.3%)
Imperative Abstraction 1,100 (98%) 23 (2%)
Insufficient Modularization 20,351 (99.6%) 75 (0.4%)
Long Identifier 4,588 (99.7%) 15 (0.3%)
Long Method 11,371 (99.4%) 70 (0.6%)
Long Parameter List 10,839 (99.4%) 61 (0.6%)
Long Statement 52,701 (99.7%) 169 (0.3%)
Magic Number 40,388 (99.6%) 155 (0.4%)
Missing default 3,888 (99.7%) 12 (0.3%)
Missing Hierarchy 908 (99.8%) 2 (0.2%)
Multifaceted Abstraction 885 (99.4%) 5 (0.6%)
Rebellious Hierarchy 671 (99.3%) 5 (0.7%)
SimplifiedTernary 314 (98.4%) 5 (1.6%)
Switch Statements 7,740 (99.3%) 58 (0.7%)
Unexploited Encapsulation 688 (99.7%) 2 (0.3%)
Unnecessary Abstraction 665 (99.7%) 2 (0.3%)
Unutilized Abstraction 128,751 (99.9%) 188 (0.1%)

Smell Types Harmfulness. Abstract Function Call From Constructor presents the

highest percentage of HARMFUL code, reaching 7.8% of HARMFUL smells. Both Imper-

3 Results and Discussions 17

ative Abstraction and SimplifiedTernary present a slightly lower percentage than Abstract

Function Call From Constructor, reaching 2% and 1.6% of harmful code, respectively.

While the Switch Statements, Rebellious Hierarchy, Long Method, Long Parameter List

and Switch Statements present percentage between 0.6% and 0.7%, the Magic Number,

Cyclic-dependent Modularization and Long Identifier present percentage between 0.3% and

0.4%. Even tough some smell types present a percentage higher 1%, in half of the smell

types analyzed the percentage of harmful code is close to zero.

3.1.1 WHY IS THIS SMELL TYPE HARMFUL?

We observe that some Smell Types are more harmful than others, they may lead to bug

proneness.

Long Statement. This smell occurs when a statement is excessively lengthy, it is a sign

that your branches in the switch are doing too much, this can be the main reason for the large

number of harmful code (SURYANARAYANA; SAMARTHYAM; SHARMA, 2015d).

Abstract Call From Constructor. Constructors should only call non-overridable meth-

ods, calling an overridable method from a constructor could result in failures or strange

behavious when instantiating a subclass which overrides the method (SURYANARAYANA;

SAMARTHYAM; SHARMA, 2015d). This is why the abstract call from constructor present

the highest percentage of harmful code.

Switch Statements. Case statement is used for conditional operations. Sometimes, it is

considered in category of code smells. In some cases switch statements provides redundant

code, similar switch statements are scattered throughout a program (FOWLER, 1999). If you

add or remove a clause in one switch, you often have to find and repair the others too. In this

way most of the harmful occurs when the developer forget to repair some of the copies of

the switch. The Figure 5 shows a change to fix a bug (#1255) of the project GanttProject, the

bug was on a piece of the code that has a Switch Statement smell and the developer repaired

it in all the copies of the code.

Long Method. It happens when a method contains too many lines of code, it is almost

always a violation of single responsibility principle (FOWLER, 1999). It’s is always hard

to test as the consequence of the fact that we coupling too many objects. This could be the

3 Results and Discussions 18

Figure 5 – Switch Statements Smell.

main reason of the harmful presence, as the long method is not well tested in most cases

it leads to the propagation of bugs. The Figure 6 show a bug fix in two classes, in the first

CompatibleTypeUtils in the method compatibleTypeConvert where the code was repaired we

have many code smells: the method itself is a Long Method, it has many Switch Statements

in the whole method, there is Magic Numbers on lines 57, 61, 109.

Long Parameter List. Long Parameter List indicates that there might be something

wrong with the implementation, it is hard to use a method call or to get the parameters

in the correct order, usually, this method calls has null parameters as optional parame-

ters (FOWLER, 1999). Usually, it is no clear what each parameter does. The bugs in these

methods are caused by changing the order of the parameters or not sending it correctly, that’s

why a long parameter list has a large number of harmful. Figure 7 shows a method recal-

culateActivities from the project GanttProject that contains this smell, it is called in many

places of the application for example in the class TaskImpl.java on lines (200, 681, 994

and 1022) each call passing different parameters in different order, this method was directly

related to a bug of the issue: #1413 fixed by the commit 156c4dc.

Deficient Encapsulation. This smell occurs when the declared accessibility of one or

more members of abstraction is more permissive than actually required. For example, a

class that makes its field public suffers from Deficient Encapsulation (SURYANARAYANA;

3 Results and Discussions 19

Figure 6 – Bug Fix in code smell snippets.

Figure 7 – Long Parameter List.

SAMARTHYAM; SHARMA, 2015a). Providing more access than required can expose im-

plementation details to the client, and security issues that lead to bugs.

Broken Hierarchy. The form of this smell occurs usually is when the inheritance re-

lationship between the supertype and its subtype is "inverted". In other words, the subtype

is the generalization of the supertype instead of the other way around. When this happens,

and the clients attempt to assign objects of subtype to a supertype references, they are ex-

posed to undesirable or unexpected behaviors that can cause bugs in the application (SURYA-

NARAYANA; SAMARTHYAM; SHARMA, 2015c).

3 Results and Discussions 20

Cyclic-Dependent Modularization. This smell arises when two or more abstractions

depend of each other directly or indirectly (creating a tight coupling between the abstrac-

tions). In the presence of cyclic dependencies, the abstractions that are cyclically-dependent

may need to be understood, changed, used, tested, or reused together. Further, in case of

cyclic dependencies, changes in one class (say A) may lead to changes in other classes in the

cycle (say B). However, because of the cyclic nature, changes in B can have ripple effects on

the class where the change originated (i.e., A). Large and indirect cyclic dependencies are

usually difficult to detect in complex software systems and are a common source of subtle

bugs (SURYANARAYANA; SAMARTHYAM; SHARMA, 2015b).

Magic Number. The use of numbers directly in the code is considered Magic Number.

The use of magic numbers in code obscures the developers’ intent in choosing that num-

ber (MARTIN, 2008), increasing the bug proneness on changes in this parts of the code.

Summary of RQ1. Code smell detection tools identify a large number of smells, but only a

few of them are associated with bugs. The Abstract Function Call From Constructor presents

the highest proportion of harmful code.

3.2 RQ2. Do developers perceive and handler code smells as harm-

ful?

Overall, 77 developers completed our survey. Figure 8 summarizes the survey results.

Developers’ Perceptions. The vast majority of the developers (90.4%) consider code

smells harmful to the software quality. In fact, 76.9% of the developers consider code smells

very harmful. Some of them left some comments regarding the code smells harmfulness:

“Code smells often indicate or lead to bigger problems. Those bigger problems

can make a code base fragile, difficult to maintain, and prone to errors."

“Code smells make software readability and comprehensibility worse. That it-

self already degrades software quality. Moreover, code smells can make it harder

to find bugs in the software, since you can only find bugs in code that you can

read, and understand."

Although developers believe that code smells are harmful, the results in RQ1 indicate that

3 Results and Discussions 21

Figure 8 – Survey Results.

the vast majority of code smells may not be harmful to the software. This contradictory result

introduces some questions that deserve to be discussed. Our study assesses the code smells

harmfulness only based on bugs. The developers’ comments suggest that they also consider

other factors related to readability, maintainability, cost, and effort to fix it. Even though

we only consider bugs in our analysis, they represent a determining factor for developers

to refactor a code. Note that 53.8% of the developers prioritize code associated with bugs.

Some comments of them help us to better understand this prioritization:

“When refactoring, it is ideal for dealing with all modules of the code, but due

to some limitations, such as time, it is most important to look at fragile parts as

harmful code."

“Since a smell only indicates there might be a problem and harmful code defi-

nitely does have a problem, you should look at that first."

Handling Code Smells. Our results indicate that developers can be convinced that code

3 Results and Discussions 22

smells are harmful to the software, but they may not be aware that the detection tools are

not previously configured to detect smells that are really harmful. In fact, we observe that

84.6% of the developers believe that code smell detection tools are important. But, when

we analyze the comments, there is no concern in selecting tools able to detect code smells

that are really harmful to the software quality. Most of the developers mention code smell

detection tools that we use in our study.

Summary of RQ2. Most of the developers (90.4%) perceive code smell as harmful to the

software, but they do not concern on selecting/customizing tools to detect harmful code.

3.3 RQ3. How effective are Machine Learning techniques to classify

harmful code?

In the previous section, we observed that even though code smells detection tools identify

a large number of smells, only a few of them are really harmful. Hence, it is important to

investigate whether ML-techniques classify harmful code as effective as they classify code

smells.

Although we analyze 22 smell types in our study, we evaluate the effectiveness of the ML

techniques in 11 types. The remaining smell types present a low number of bugs associated

with them, as described in Table 4. Figures 9 and 10 present the effectiveness of the ML-

techniques to recognize Smelly and Harmful code, respectively. In each figure, the y-axis

describes the f-measure value reached by each technique on classifying the analyzed smell

type. In addition, we attach the exact value to the bar associated with each technique.

HARMFUL. For the 11 smell types analyzed, the ML techniques could reach high effec-

tiveness on classifying HARMFUL code, reaching an effectiveness of at least 97% in all the

cases analyzed. In particular, Random Forest reaches an effectiveness equal or greater

than the other algorithms in ten of the 11 smell types. Also, Gradient Boosting present

an effectiveness slightly lower than Random Forest, reaching an effectiveness equal or

greater than the other algorithms in nine smell types analyzed. Both techniques are more ef-

fective in all smells types, except in the Deficient Encapsulation smell type, where Decision

Tree is more effective. On the other hand, GaussianNB reaches the lowest effectiveness in

six of the smell types (Magic Number, Insufficient Modularization, Unutilized Abstraction,

3 Results and Discussions 23

Cyclic-Dependent Modularization, Deficient Encapsulation and Long Statement).

Figure 9 – Results for Harmful Code (f1-score).

SMELLY. Differently from HARMFUL code, the ML techniques could not reach a high

effectiveness on classifying some smell types. While the ML techniques reach an effective-

ness of at least 97% on classifying harmful code, these techniques could not reach an effec-

tiveness greater than 75% in five of the 12 smell types analyzed (Switch Statements, Long

Identifier, Insufficient Modularization, Cyclic-Dependent Modularization and Deficient En-

capsulation). Similarly to HARMFUL code, GaussianNB presents a low effectiveness,

reaching the lowest value in six of the smell types analyzed.. On the other hand, Gradient

Boosting is the most effective algorithms with an effectiveness equal or greater than Ran-

dom Forest and SVM in six smell types (Long Identifier, Long Parameter List, Unutilized

Abstraction, Cyclic-Dependent Modularization, Long Method and Long Statement). Both

Random Forest and SVM reach the highest effectiveness in three smell types.
Summary of RQ3. ML-techniques classify harmful code as effective as they identify code

smells. While Random Forest and Gradient Boosting are effective on detecting both SMELLY

and HARMFUL code, GaussianNB is the less effective technique.

3 Results and Discussions 24

Figure 10 – Results for Smelly Code (f1-score).

3.4 RQ4. Which metrics are most influential on classifying harmful

code?

Figure 11 shows the results of the most important metrics in terms of SHAP values for

each smell. In each figure, the y-axis describes the SHAP value reached by each metric on

classifying harmful code according to the smell type analyzed. In addition, we attach the

exact value to the bar associated with each metric.

Parameters Amount (PA). The PA metric has the highest importance on detecting harm-

ful code in the Long Statement smell type, due the high number of parameters directly in-

fluence the Statements, becoming longer as the number of parameters increases. Reaching

an importance of 0.1951. In the case of the Deficient Encapsulation and Long Parameter

List, the PA metric has an importance slightly lower than QUW and NQ, reaching a value of

0.0709 and 0.1176 respectively.

Weight Method Class (WMC). The WMC metric has the highest importance on detect-

ing harmful code in the smell types Insufficient Modularization, Empty Catch Clause and

Deficient Encapsulation. It reaches an importance of 0.0446 in the Insufficient Modulariza-

tion and 0.1467 in the Empty Catch Clause. In the case of the Deficient Encapsulation, the

PA metric has an importance slightly lower than WMC, reaching a value of 0.0709. WMC is

3 Results and Discussions 25

Figure 11 – Most Important metrics among code smells (SHAP values).

directly related to the bunge’s definition of complexity of a thing, since methods are proper-

ties of object classes and complexity is determined by the cardinality of its set of properties,

the larger the number of methods in a class the greater the potential impact on children

(Shyam R. Chidamber; Chris F. Kemerer, 1994), insufficient modularization and deficient

encapsulation that involves more than one class making the influence of WMC higher.

Math Operations Quantity (MOQ), Numbers Quantity (NQ), and Couple Between

Objects (CBO). These metrics reach the highest importance in Long Identifier, Long Pa-

rameter List and Magic Number. While MOQ reaches an importance of 0.1035, in the Long

Identifier, NQ reaches an importance of 0.1211 in the Long Parameter List. In the case of

Magic Number, only CBO could reach an importance above 0.05.

Returns (RE) and Lines of Code Method (LOCM). The RE and LOCM metrics present

the highest importance in Cyclic-Dependent Modularization (0.0699) and Unutilized Ab-

straction (0.0723), respectively. Assignments Qty reaches the highest importance in the

Long Parameter List, (0.159). Also, these metrics metric have the second highest impor-

tance in the smell types Magic Number and Long Statement, reaching a value of 0.0430 and

0.0321 respectively. The cyclic-dependent modularization raises when two or more abstrac-

tions depend of each other (SURYANARAYANA; SAMARTHYAM; SHARMA, 2015b),

3 Results and Discussions 26

that dependency is directly related to the returns or no void methods, for e.g. the ClassA has

methods (methodA, methodB) that returns values used by methodC, methodD of ClasssB.

Variables Amount (VA), Response for a Class (RFC), Annonymous Classes Quantity

(ACQ), Unique Words Quantity (UWQ). The VA, RFC and UWQ reach the second highest

importance in Cyclic-Dependent Modularization, Empty Catch Clause and Long Identifier

with SHAP values of 0.0408, 0.0807 and 0.0516 respectively. Similar to these metrics, the

ACQ also reaches a higher importance of 0.0329 and 0.0260 in the smell types Insuficient

Modularization and Unutilized Abstraction.

Developer Metrics. Among the developer metrics analyzed in our study, only Number

of Commits (NC) reaches some importance. In this case, this metric presents the importance

of 0.0016 in the Deficient Encapsulation. Analyzing this case, we check that the developer

that has a low number of commits in a project usually are directly involved with class that

contains Deficient Encapsulation. The remaining metrics present importance below 0.001

in this smell type. One might argue that developer metrics are not important to detect

harmful code since only one reaches some importance. However, note that we analyze

the importance of 52 software metrics and only 11 developers’ metrics. Even analyzing a

greater number of software metrics, the developer ones could reach some importance in the

Deficient Encapsulation. These results show that it is worthwhile to investigate developer

metrics as other contexts in software engineering (i.e., bug prediction), but it is still early

to affirm that they are useful since it is the first study that utilizes developer metrics in the

context of code smells.

Summary of RQ4. Software Metrics reach the highest importance. Weight Method Class

(WMC) present the highest importance in three smells. RE, MOQ, NQ, PA, CBO, LOCM

metrics reach the highest importance in the remaining smells. Developers metrics (such as

Number of Commits (NC)) reach some importance in the smell Deficient Encapsulation.

4 Implications 27

4 Implications

The harmful code, developers’ perception, effectiveness and the most influential met-

rics, provide valuable knowledge for researchers to extend the work and for the developers

provides information about which smell types they should put more attention on the refac-

toring process.

Harmful Code. Existing studies have focused their researches on the impact of code

smells on the change and fault-proneness. Our results confirm the results of those studies,

and can be useful for researchers to further investigate and explore the relation between some

smell types and bugs, e. g., why switch statements are more harmful than long methods?.

Developers’ Perception. Our survey results show that most of the developers perceive

code smell as harmful to the software. Thus, we can create new tools to help them on smells

identification and refactoring.

Effectiveness. Our results show that machine learning techniques classify harmful code

as effective as they identify code smells. Developers and Researchers will be able to use

those techniques to help them in future works involving harmful code.

Influential Metrics. Our results show that Software Metrics reach the highest impor-

tance, and only one developer metric (Number of Commits (NC)) reached some importance,

however, we analyzed only 11 developers metrics against 52 software metrics, and even an-

alyzing a greater number of software metrics, the developer could some importance. This

confirms that it is worthwhile to investigate developer metrics as other contexts in software

engineering (i.e., bug prediction).

5 Related Work 28

5 Related Work

This chapter includes the related work performed on Impact, Detection Tools and Tech-

niques, Developers’ Perceptions, which provided inspiration for our study.

Impact. Recent studies (PALOMBA et al., 2018; MA et al., 2018) investigated the

impact of code smells in the change and fault-proneness. Palomba et al. (PALOMBA et al.,

2018) conduct a study on 395 releases of 30 open-source projects and considering 17,350

code smells manually validated of 13 different types. The results show that classes with

code smells have a higher change-and-fault-proneness than smell-free classes. Moreover,

another study (MA et al., 2018) investigated the relationship between smells and fine-grained

structural change-proneness. They found that, in most cases, smelly classes are more likely

to undergo structural changes.

Tracy et al. (HALL et al., 2014) investigated the relationship between faults and five

smells: Data Clumps, Switch Statements, Speculative Generality, Message Chains, and Mid-

dle Man. They collected the fault data from changes and faults in the repositories of the sys-

tems. Their findings suggest that some smells do indicate fault-prone in some circumstances,

and they have different effects on different systems.

Besides, all these studies provide evidence that bad code smells have negative effects on

some maintenance properties. Our study complements them on pointing the smells that are

really harmful to the software, helping developers prioritize them while refactoring the code.

Detection Tools and Techniques. Previous studies (KHOMH et al., 2009; KHOMH

et al., 2011; Maiga et al., 2012; AMORIM et al., 2016; Arcelli Fontana et al., 2016) have

indicated the use of machine learning techniques as a promising way to detect code smells.

These techniques use examples of code smells previously reported by the developer in order

to learn how to detect such smells.

In this way, Amorim et al. (AMORIM et al., 2016) present a preliminary study on the

effectiveness of decision tree techniques to detect code smells by using four open-source

projects. The results indicate that this technique can be effective to detect code smells. Other

studies (Maiga et al., 2012; KHOMH et al., 2009) also inferred ML techniques to detect

code smells by using Bayesian Belief Networks (KHOMH et al., 2009) or Support-vector

machine (Maiga et al., 2012).

5 Related Work 29

Hozano et al. (HOZANO et al., 2017) introduced Histrategy, a guided customization

technique to improve the efficiency on smell detection. Histrategy considers a limited set of

detection strategies, produced from different detection heuristics, an input of a customiza-

tion process. The output of the customization process consists of a detection strategy tailored

to each developer. The technique was evaluated in an experimental study with 48 develop-

ers and four types of code smell. The results show that Histrategy is able to outperform

six widely adopted machine learning algorithms – used in unguided approaches – both in

effectiveness and efficiency.

Fontana et al. (Arcelli Fontana; ZANONI, 2017) extended their previous work (Arcelli

Fontana et al., 2016) by applying several machine learning techniques, varying from multi-

nominal classification to regression. In this study, the authors modeled the code smell harm-

fulness as an ordinal variable and compared the accuracy of the techniques.

Even though the previous studies (KHOMH et al., 2009; KHOMH et al., 2011; Maiga et

al., 2012; AMORIM et al., 2016; Arcelli Fontana et al., 2016) have contributed to evidence

the effectiveness of ML-techniques in the detection of code smells, none of these studies

analyze how effective are these techniques to detect harmful code. Our study complements

all these approaches. Specifically, we focus on the identification of harmful code, supported

by the addition of new features (Developers’ Metrics and Bugs) approach similar to Catolino

et al. work (CATOLINO et al., 2019).

Developers’ Perceptions. Palomba et al. (PALOMBA et al., 2014) conducted a survey

to investigate developers’ perception on bad smells, they showed to developers code entities

affected and not by bad smells, and asked them to indicate whether the code contains a

potential design problem, nature, and severity. The results of their study distill the following

lessons learned: I. There are some smells that are generally not perceived by developers

as design problems. II. The instance of a bad smell may or may not represent a problem

based on the “intensity” of the problem. III. Smells related to complex/long source code are

generally perceived as an important threat by developers. IV. Developer’s experience and

system’s knowledge pay an important role in the identification of some smells.

Sae-Lim et al. (SAE-LIM; HAYASHI; SAEKI, 2017) investigated professional develop-

ers to determine the factors that they use for selecting and prioritizing code smells. They

found that Task Relevance and Smell Severity were most commonly considered during code

5 Related Work 30

smell selection, while Module Importance is employed most often for code smell selection.

Hozano et al. (HOZANO et al., 2018) performed a broader study to investigate how

similar developers detect code smells. They conducted an empirical study with 75 developers

who evaluated instances of 15 different code smells types. For each smell type, they analyzed

the agreement among developers. Their results indicated that the developers presented a low

agreement on detecting all 15 smell types analyzed, also factors related to background and

experience did not have a consistent influence on the agreement among the developers.

Our study supports those previous studies. Our survey results confirm their results on

suggesting that developers consider factors related to readability, maintainability, cost, and

effort to fix while detecting smells.

6 Threats to Validity 31

6 Threats to Validity

In this chapter, we present the threats to validity by following the (WOHLIN et al., 2012)

validity criteria.

Construct Validity. In our study, we collected a set of code smells that were not man-

ually validated. To mitigate this threat, we used tools and configurations used in previous

studies (HOZANO et al., 2017; HOZANO et al., 2018; FONTANA et al., 2011; FONTANA;

BRAIONE; ZANONI, 2012; Arcelli Fontana et al., 2016; Arcelli Fontana; ZANONI, 2017;

AMORIM et al., 2016; ZAIDMAN et al., 2017). Another threat to validity is to identify

commits that fixed bugs correctly. GitHub provides the functionality to close issues by com-

mits messages or pull requests comments. We mitigated this threat by identifying as the

bug-fix, the commits, or pull requests (the last commit) that close issues labeled as “bug”

or “defect” using this functionality. Besides, we identified methods and classes associated

with each bug and establish the immediate previous commit of these methods and classes as

buggy code. However, some buggy methods and classes could not have a bug directly as-

sociated with him since developers may be working on code improvements or new features

during a fix. Also, some types of harmful code may not be identified because the tools used

in the research not identify all the types of code smells.

Internal Validity. Another threat is the procedures of the steps adopted in Section 2.9.

These steps are related to the type of dataset splitting, selection of hyper-parameters, and

construction of the ML-techniques. To mitigate this, we relied on decisions made by previous

studies that obtained good results detecting code smells using ML-techniques (AZEEM et

al., 2019)

External Validity. Regarding the validity of our findings, we selected only projects in

which the primary language adopted is Java. Although we have selected a large number of

projects from six different domains with different sizes and developers, our results might not

be generalized to other projects which Java is not the primary language as those projects

may have different characteristics.

7 Conclusions and Future Works 32

7 Conclusions and Future Works

This chapter will draw conclusions based on the results, discussion, and contribution of

our work. Lastly, some ideas for future work will be discussed.

We presented a study to understand and classify code harmfulness. First, we analyzed

the occurrence of CLEAN, SMELLY, BUGGY, and HARMFUL code in open-source projects

as well as which smell types are more related to harmful code. Further, we investigated the

developers’ perceptions regarding the harmfulness of code smells. We also evaluated the

effectiveness of machine learning techniques to detect harmful and smelly code. Finally, we

investigated which metrics are most important in harmful code detection.

To perform our study, we defined an experiment with 22 smell types, 803 versions of

12 open-source projects, 40,340 bugs mined from GitHub issues and 132,219 code smells.

The results show that even though we have a high number of code smells, only 0.07% of

those smells are harmful. The Abstract Function Call From Constructor is the smell type

more related to harmful code. Also, we performed a survey with 77 developers to investigate

their perceptions regarding the harmfulness of code smells. Most of them (90.4%) consider

code smells harmful to the software, and 84.6% of those developers believe that code smells

detection tools are important. However, those developers do not concern about selecting tools

able to detect harmful code. Regarding the effectiveness of machine learning techniques to

detect harmful code, our results indicate that they reach effectiveness at least 97%. While

the Random Forest (HO, 1995) is effective in detecting both smelly and harmful code, the

Gaussian Naive Bayes (HAND; YU, 2001) is the less effective technique. Finally, our

results suggest software metrics (such as CBO (Couple Between Objects) and WMC (Weight

Method Class)) are important to customize machine learning techniques to detect harmful

code.

As future work, we intend to extend this investigation by adding more projects, eval-

uating the efficiency of harmful code using different machine learning techniques such as

multi-layer perceptron, and introduce change proneness features to improve the harmful code

detection.

7 Conclusions and Future Works 33

Bibliography

ABBES, M. et al. An empirical study of the impact of two antipatterns, Blob and Spaghetti
Code, on program comprehension. Proceedings of the European Conference on Software
Maintenance and Reengineering, CSMR, IEEE, p. 181–190, 2011. ISSN 15345351.

ALENEZI, M.; ZAROUR, M. An empirical study of bad smells during software evolution
using designite tool. i-Manager’s Journal on Software Engineering, v. 12, n. 4, p. 12–27,
Apr 2018. Disponível em: <https://search.proquest.com/docview/2148827386?accountid=
26580>.

ALTMAN, N. S. An introduction to kernel and nearest-neighbor nonparametric
regression. The American Statistician, [American Statistical Association, Taylor
Francis, Ltd.], v. 46, n. 3, p. 175–185, 1992. ISSN 00031305. Disponível em:
<http://www.jstor.org/stable/2685209>.

AMORIM, L. et al. Experience report: Evaluating the effectiveness of decision trees for
detecting code smells. 2015 IEEE 26th International Symposium on Software Reliability
Engineering, ISSRE 2015, IEEE, p. 261–269, 2016.

Arcelli Fontana, F. et al. Comparing and experimenting machine learning techniques
for code smell detection. Empirical Software Engineering, Empirical Software
Engineering, v. 21, n. 3, p. 1143–1191, 2016. ISSN 15737616. Disponível em:
<http://dx.doi.org/10.1007/s10664-015-9378-4>.

Arcelli Fontana, F.; ZANONI, M. Code smell severity classification using machine learning
techniques. Knowledge-Based Systems, Elsevier B.V., v. 128, p. 43–58, 2017. ISSN
09507051.

AZEEM, M. I. et al. Machine learning techniques for code smell detection: A
systematic literature review and meta-analysis. Information and Software Technology,
Elsevier B.V., v. 108, n. 4, p. 115–138, 2019. ISSN 09505849. Disponível em:
<https://doi.org/10.1016/j.infsof.2018.12.009>.

BERGSTRA, J.; BENGIO, Y. Random search for hyper-parameter optimization. J. Mach.
Learn. Res., JMLR.org, v. 13, n. 1, p. 281–305, fev. 2012. ISSN 1532-4435. Disponível em:
<http://dl.acm.org/citation.cfm?id=2503308.2188395>.

BERGSTRA, J.; YAMINS, D.; COX, D. D. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures. In:
Proceedings of the 30th International Conference on International Conference on Machine
Learning - Volume 28. JMLR.org, 2013. (ICML’13), p. I–115–I–123. Disponível em:
<http://dl.acm.org/citation.cfm?id=3042817.3042832>.

BOSER, B. E.; GUYON, I. M.; VAPNIK, V. N. A training algorithm for optimal margin
classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning
Theory. New York, NY, USA: ACM, 1992. (COLT ’92), p. 144–152. ISBN 0-89791-497-X.
Disponível em: <http://doi.acm.org/10.1145/130385.130401>.

https://search.proquest.com/docview/2148827386?accountid=26580
https://search.proquest.com/docview/2148827386?accountid=26580
http://www.jstor.org/stable/2685209
http://dx.doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1016/j.infsof.2018.12.009
http://dl.acm.org/citation.cfm?id=2503308.2188395
http://dl.acm.org/citation.cfm?id=3042817.3042832
http://doi.acm.org/10.1145/130385.130401

7 Conclusions and Future Works 34

BREIMAN, L. (34) Classification and regression trees Regression trees. Encyclopedia of
Ecology, v. 40, n. 3, p. 582–588, 1984. ISSN 1661-8564.

BREIMAN, L. et al. Classification and regression trees. [S.l.]: Wadsworth Publishing
Company, 1984.

CATOLINO, G. et al. Improving change prediction models with code smell-related
information. Empirical Software Engineering, 2019.

CHIDAMBER, S. R.; KEMERER, C. F. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, IEEE Press, Piscataway, NJ, USA, v. 20, n. 6, p. 476–
493, jun. 1994. ISSN 0098-5589. Disponível em: <http://dx.doi.org/10.1109/32.295895>.

DESIGNITE Site. 2020. Disponível em: <http://tusharma.in/smells/>.

Di Nucci, D. et al. Detecting code smells using machine learning techniques: Are we there
yet? In: 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). [S.l.: s.n.], 2018. p. 612–621.

FALCÃO, F. et al. Influence of Technical and Social Factors for Introducing Bugs. 2018.
Disponível em: <http://arxiv.org/abs/1811.03758>.

FONTANA, F. A.; BRAIONE, P.; ZANONI, M. Automatic detection of bad smells in
code: An experimental assessment. Journal of Object Technology, v. 11, n. 2, 2012. ISSN
16601769.

FONTANA, F. A. et al. On experimenting refactoring tools to remove code smells.
In: Scientific Workshop Proceedings of the XP2015. New York, NY, USA: ACM,
2015. (XP ’15 workshops), p. 7:1–7:8. ISBN 978-1-4503-3409-9. Disponível em:
<http://doi.acm.org/10.1145/2764979.2764986>.

FONTANA, F. A. et al. An experience report on using code smells detection tools.
Proceedings - 4th IEEE International Conference on Software Testing, Verification, and
Validation Workshops, ICSTW 2011, p. 450–457, 2011.

FOWLER, M. Refactoring: improving the design of existing code. [S.l.]: Addison-Wesley,
1999.

GRIFFOR, E. et al. Framework for Cyber-Physical Systems: Volume 1, Overview. 2017.

GUEHENEUC, Y.-G.; SAHRAOUI, H.; ZAIDI, F. Fingerprinting design patterns. In:
Proceedings of the 11th Working Conference on Reverse Engineering. USA: IEEE
Computer Society, 2004. (WCRE ’04), p. 172–181. ISBN 0769522432.

HALL, T. et al. Some code smells have a significant but small effect on faults. ACM
Transactions on Software Engineering and Methodology, v. 23, n. 4, 2014. ISSN 15577392.

HAND, D. J.; YU, K. Idiot’s bayes: Not so stupid after all? International Statistical
Review / Revue Internationale de Statistique, [Wiley, International Statistical Institute
(ISI)], v. 69, n. 3, p. 385–398, 2001. ISSN 03067734, 17515823. Disponível em:
<http://www.jstor.org/stable/1403452>.

http://dx.doi.org/10.1109/32.295895
http://tusharma.in/smells/
http://arxiv.org/abs/1811.03758
http://doi.acm.org/10.1145/2764979.2764986
http://www.jstor.org/stable/1403452

7 Conclusions and Future Works 35

HARMFUL Code. 2020. Disponível em: <https://harmfulcode.github.io/>.

HO, T. K. Random decision forests. In: Proceedings of the Third International Conference
on Document Analysis and Recognition (Volume 1) - Volume 1. Washington, DC, USA:
IEEE Computer Society, 1995. (ICDAR ’95), p. 278–. ISBN 0-8186-7128-9. Disponível
em: <http://dl.acm.org/citation.cfm?id=844379.844681>.

HOZANO, M. et al. Smells Are Sensitive to Developers! on the Efficiency of (Un)Guided
Customized Detection. IEEE International Conference on Program Comprehension, IEEE,
p. 110–120, 2017.

HOZANO, M. et al. Are you smelling it? Investigating how similar developers detect code
smells. Information and Software Technology, Elsevier B.V., v. 93, p. 130–146, 2018. ISSN
09505849. Disponível em: <https://doi.org/10.1016/j.infsof.2017.09.002>.

KESSENTINI, M. et al. Search-based design defects detection by example. In: Proceedings
of the 14th International Conference on Fundamental Approaches to Software Engineering:
Part of the Joint European Conferences on Theory and Practice of Software. Berlin,
Heidelberg: Springer-Verlag, 2011. (FASE’11/ETAPS’11), p. 401–415. ISBN 978-3-642-
19810-6. Disponível em: <http://dl.acm.org/citation.cfm?id=1987434.1987471>.

KHOMH, F. et al. An exploratory study of the impact of antipatterns on class change-
and fault-proneness. Empirical Software Engineering, v. 17, n. 3, p. 243–275, 2012. ISSN
13823256.

KHOMH, F. et al. A bayesian approach for the detection of code and design smells.
Proceedings - International Conference on Quality Software, p. 305–314, 2009. ISSN
15506002.

KHOMH, F. et al. BDTEX: A GQM-based Bayesian approach for the detection of
antipatterns. Journal of Systems and Software, Elsevier Inc., v. 84, n. 4, p. 559–572, 2011.
ISSN 01641212. Disponível em: <http://dx.doi.org/10.1016/j.jss.2010.11.921>.

KIM, S. et al. Automatic identification of bug-introducing changes. In: IEEE. Automated
Software Engineering, 2006. ASE’06. 21st IEEE/ACM International Conference on. [S.l.],
2006. p. 81–90.

KOMER, B.; BERGSTRA, J.; ELIASMITH, C. Hyperopt-sklearn: Automatic
hyperparameter configuration for scikit-learn. In: . [S.l.: s.n.], 2014. p. 32–37.

LANZA, M.; MARINESCU, R. Object-Oriented Metrics in Practice: Using Software
Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems.
1st. ed. [S.l.]: Springer Publishing Company, Incorporated, 2010. ISBN 3642063748,
9783642063749.

LUNDBERG, S. M.; LEE, S.-I. A unified approach to interpreting model predictions.
In: Proceedings of the 31st International Conference on Neural Information Processing
Systems. [S.l.]: Curran Associates Inc., 2017. (NIPS’17), p. 4768–4777. ISBN
978-1-5108-6096-4.

https://harmfulcode.github.io/
http://dl.acm.org/citation.cfm?id=844379.844681
https://doi.org/10.1016/j.infsof.2017.09.002
http://dl.acm.org/citation.cfm?id=1987434.1987471
http://dx.doi.org/10.1016/j.jss.2010.11.921

7 Conclusions and Future Works 36

MA, W. et al. Exploring the Impact of Code Smells on Fine-Grained Structural Change-
Proneness. International Journal of Software Engineering and Knowledge Engineering,
v. 28, n. 10, p. 1487–1516, 2018. ISSN 0218-1940.

MACIA, I. et al. On the relevance of code anomalies for identifying architecture degradation
symptoms. Proceedings of the European Conference on Software Maintenance and
Reengineering, CSMR, IEEE, p. 277–286, 2012. ISSN 15345351.

Maiga, A. et al. Support vector machines for anti-pattern detection. In: 2012 Proceedings
of the 27th IEEE/ACM International Conference on Automated Software Engineering. [S.l.:
s.n.], 2012. p. 278–281.

MARINESCU, R. Detecting Design Flaws via Metrics in Object-Oriented Systems A
Metrics-Based Approach for Problem Detection. International Conference and Technology
of Object-Oriented Languages and Systems (TOOLS), p. 173–182, 2001.

Marinescu, R. Detection strategies: metrics-based rules for detecting design flaws. In: 20th
IEEE International Conference on Software Maintenance, 2004. Proceedings. [S.l.: s.n.],
2004. p. 350–359. ISSN 1063-6773.

MARTIN, R. Clean code: A handbook of agile software craftsmanship. 01 2008.

MUNRO, M. J. Product metrics for automatic identification of “bad smell” design problems
in Java source-code. Proceedings - International Software Metrics Symposium, v. 2005, n.
Metrics, p. 125–133, 2005. ISSN 15301435.

OLBRICH, S. M.; CRUZES, D. S.; SJOØBERG, D. I. Are all code smells harmful? A
study of God Classes and Brain Classes in the evolution of three open source systems. IEEE
International Conference on Software Maintenance, ICSM, 2010.

PALOMBA, F. et al. Detecting bad smells in source code using change history information.
2013 28th IEEE/ACM International Conference on Automated Software Engineering, ASE
2013 - Proceedings, IEEE, p. 268–278, 2013.

PALOMBA, F. et al. Do they really smell bad? A study on developers’ perception of bad
code smells. Proceedings - 30th International Conference on Software Maintenance and
Evolution, ICSME 2014, IEEE, p. 101–110, 2014.

PALOMBA, F. et al. Mining version histories for detecting code smells. IEEE Transactions
on Software Engineering, IEEE, v. 41, n. 5, p. 462–489, 2015. ISSN 00985589.

Palomba, F. et al. Do they really smell bad? a study on developers’ perception of bad code
smells. In: 2014 IEEE International Conference on Software Maintenance and Evolution.
[S.l.: s.n.], 2014. p. 101–110. ISSN 1063-6773.

PALOMBA, F. et al. On the diffuseness and the impact on maintainability of code smells:
a large scale empirical investigation. Empirical Software Engineering, Empirical Software
Engineering, v. 23, n. 3, p. 1188–1221, 2018. ISSN 15737616.

PEDREGOSA, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, v. 12, p. 2825–2830, 2011.

7 Conclusions and Future Works 37

PMD Site. 2020. Disponível em: <https://pmd.github.io/latest/pmd_rules_java_design.
html>.

SAE-LIM, N.; HAYASHI, S.; SAEKI, M. How do developers select and prioritize code
smells? A preliminary study. Proceedings - 2017 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2017, p. 484–488, 2017.

SANTOS, F. F. ao B. D. et al. On relating technical, social factors, and the introduction of
bugs. In: Proceedings of the International Conference on Software Analysis, Evolution and
Reengineering. [S.l.: s.n.], 2020. p. To appear.

SCHAPIRE, R. E. A brief introduction to boosting. In: Proceedings of the 16th
International Joint Conference on Artificial Intelligence - Volume 2. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1999. (IJCAI’99), p. 1401–1406. Disponível em:
<http://dl.acm.org/citation.cfm?id=1624312.1624417>.

SHARMA, T.; MISHRA, P.; TIWARI, R. Designite: A software design quality
assessment tool. In: Proceedings of the 1st International Workshop on Bringing
Architectural Design Thinking into Developers’ Daily Activities. New York, NY,
USA: ACM, 2016. (BRIDGE ’16), p. 1–4. ISBN 978-1-4503-4153-0. Disponível em:
<http://doi.acm.org/10.1145/2896935.2896938>.

Shyam R. Chidamber; Chris F. Kemerer. A Metrics Suite for Object Oriented Design. IEEE
Transactions on Software Engineering, v. 20, n. 6, p. 476 —- 493, 1994.

SPADINI, D.; ANICHE, M.; BACCHELLI, A. PyDriller: Python framework for mining
software repositories. ESEC/FSE 2018 - Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, p. 908–911, 2018.

SURYANARAYANA, G.; SAMARTHYAM, G.; SHARMA, T. Chapter 4 - encapsulation
smells. In: SURYANARAYANA, G.; SAMARTHYAM, G.; SHARMA, T. (Ed.).
Refactoring for Software Design Smells. Boston: Morgan Kaufmann, 2015. p. 61 – 91.
ISBN 978-0-12-801397-7. Disponível em: <http://www.sciencedirect.com/science/article/
pii/B9780128013977000047>.

SURYANARAYANA, G.; SAMARTHYAM, G.; SHARMA, T. Chapter 5 - modularization
smells. In: SURYANARAYANA, G.; SAMARTHYAM, G.; SHARMA, T. (Ed.).
Refactoring for Software Design Smells. Boston: Morgan Kaufmann, 2015. p. 93 – 122.
ISBN 978-0-12-801397-7. Disponível em: <http://www.sciencedirect.com/science/article/
pii/B9780128013977000059>.

SURYANARAYANA, G.; SAMARTHYAM, G.; SHARMA, T. Chapter 6 - hierarchy smells.
In: SURYANARAYANA, G.; SAMARTHYAM, G.; SHARMA, T. (Ed.). Refactoring
for Software Design Smells. Boston: Morgan Kaufmann, 2015. p. 123 – 192. ISBN
978-0-12-801397-7. Disponível em: <http://www.sciencedirect.com/science/article/pii/
B9780128013977000060>.

SURYANARAYANA, G.; SAMARTHYAM, G.; SHARMA, T. Refactoring for software
design smells. In: SURYANARAYANA, G.; SAMARTHYAM, G.; SHARMA, T. (Ed.).

https://pmd.github.io/latest/pmd_rules_java_design.html
https://pmd.github.io/latest/pmd_rules_java_design.html
http://dl.acm.org/citation.cfm?id=1624312.1624417
http://doi.acm.org/10.1145/2896935.2896938
http://www.sciencedirect.com/science/article/pii/B9780128013977000047
http://www.sciencedirect.com/science/article/pii/B9780128013977000047
http://www.sciencedirect.com/science/article/pii/B9780128013977000059
http://www.sciencedirect.com/science/article/pii/B9780128013977000059
http://www.sciencedirect.com/science/article/pii/B9780128013977000060
http://www.sciencedirect.com/science/article/pii/B9780128013977000060

38

Refactoring for Software Design Smells. Boston: Morgan Kaufmann, 2015. ISBN
978-0-12-801397-7. Disponível em: <http://www.sciencedirect.com/science/article/pii/
B9780128013977000047>.

WILLIAMS, C.; SPACCO, J. Szz revisited: verifying when changes induce fixes. In: ACM.
Proceedings of the 2008 workshop on Defects in large software systems. [S.l.], 2008. p.
32–36.

WOHLIN, C. et al. Experimentation in Software Engineering. [S.l.]: Springer Publishing
Company, Incorporated, 2012. ISBN 3642290434, 9783642290435.

YAMASHITA, A.; MOONEN, L. Exploring the impact of inter-smell relations on software
maintainability: An empirical study. Proceedings - International Conference on Software
Engineering, IEEE, p. 682–691, 2013. ISSN 02705257.

ZAIDMAN, A. et al. The Scent of a Smell: An Extensive Comparison Between Textual
and Structural Smells. IEEE Transactions on Software Engineering, IEEE, v. 44, n. 10, p.
977–1000, 2017. ISSN 0098-5589.

APPENDIX A – Supplementary Material

1 Survey

http://www.sciencedirect.com/science/article/pii/B9780128013977000047
http://www.sciencedirect.com/science/article/pii/B9780128013977000047

1 Survey 39

1 Survey 40

1 Survey 41

6 - Could you please justify your answer to question 5?

Code smells often indicate or lead to bigger problems. Those bigger problems can make a code base fragile difficult to
maintain
It makes it difficult to read and maintain your code base.
It difficulties the readability of the code that can lead to the introductions of bugs.
They tend to indicate over complication or lacking SOLID principals.
Code smells have impacts on code maintainability when the code is not clear what should be done. This makes the
misinterpretation of what the code should do and if there is no automated testing to guide the developer on what the
code should do we often have the rework to rewrite all the functionality because it is simpler to develop from scratch.
that improve a code snippet.
It can impact very badly in the long run of software development causing degration of code quality.
Code smell is a way to detect bad decisions that can impact directly the runtime and the business around the software.
This can hardly be evaluated out of context. Some harmfulness is caused by the broken window effect anyway.
Smells are indications something MIGHT be wrong and it’s LIKELY that you are violating some aspect of good OO
design. But then again maybe not.
It usually impacts on maintainability the presence of code smells when the time of modify the existing code arrives
code smells make that changes easy to break the code. I don’t mark this as very harmful because it is preferable a well
tested code with some code smells that a non tested software without code smells.
Code smell is an item for have a technical debt. Miss unit test is another item being harmful.
It will have direct consequences in quality maintenance if the smell is not fixed.
In a common basis we work with scalable and maintainable software, so any code smell probably means, in future, a
huge refactor. There are worse code smells like the blob and stuffs, but any of them I consider a problem.
They always represent a relevant risk to the maintenance and, most of them, to future implementations, demanding a
lot of time with refactor work.
If this problem isn’t dealt with it’ll spread, the cost and effort to fix it’ll increase.
At the first moment this wouldn’t a big problem but in the future it will cause problems to maintain the application.
It usually means you are working with people who don’t care about the quality of the work or is in a unconscious
incompetence level which means that they think they know what they are doing but they are clueless.
They increase the complexity of the codebase and the cognitive load on engineers. This leads to decreased productivity
and increased bugs.
Code smells make software readability and comprehensibility worse. That itself already degrade software quality.
Moreover code smells can make it harder to find bugs in the software since you can only find bugs in code that you can
read and understand.
Code smells tend to make code understanding difficult and software maintenance very difficult.
Your code is going to be confusing to read.
Long methods require more time for maintenance and many times require devs with more experience.
Code smells usually indicates that something is wrong. When you have for example long methods code readability
decreases and therefore system maintenance is adversely affected.
Complex and long methods are difficult to manage. I like to split complexity in smaller chunks.
I do believe that code smells are harmful but not usually harmful. There are specific cases that make them harmful for
example when specific types of smells (or from similar categories) co-occur together. For instance if a class contains
a God Class Intensive Coupling (or Dispersed Coupling) and more than one Feature Envy in this case the smells are
harmful since they indicate that the class has a bigger structural problem. On the other hand there are cases that smells
are not harmful for example when a class has Lazy Class.
I believe that if you have unit test around it it’d be Harmful or even Somewhat Harmful. Usually code smell is easy to
be refactored when you have unit test.
If I need to improve I can introduce a bug.
A piece of bad code tend to degrade fast after a lot of time without proper refactoring/maintenance leading to a costly
code evolution in the future.
I don’t think that there are a mandatory relation between code smells and the harmfulness. But naturally in some cases
code smells could contains characteristics of harmful code.
Some code can be ugly but it works.
Not all smells are so harmful.
It is difficult to introduce changes in the business logic.
The presence of code smell could increase code maintenance work.
No.
Code smell instances eventually hinder some major development tasks especially when it comes to maintaining and
evolving systems. I’ve had a hard time to read and change some large classes complex methods and intricate hierarchies
as well.
Hard maintenance.

1 Survey 42

8 - Could you please describe Code Smells Detection tools that you have used?

Rubocop
Sonarqube
It is not always in the development of the program to give yourself a macro view of it so it is likely that some code
smell will not be identified.
Tools for detecting code smells are important because humans are subject to failure
After long years of experience I directly avoid all possible smells. For what I don’t see at the first time there will be a
code refactory.
PMD
Rubocop
At some time of de development I consider checking all the project in order to find possible code smells. The problem
is still the lacking of good software tools to do so.
Sonarqube and Sonarlint.
Sonar
Sonar.
I am not currently using a tool to detect bad smells. I already used CheckStyle PMD and FindBugs but for academic
purposes only. I believe that when Eclipse or Android Studio says there are unused variables or methods, then there
might be something wrong with the code. So today I just use the traditional IDE warnings. Not a specific tool.
lints, code formatters, code analyzers.
Idea, SonarQube, Js/TsLint are the ones i feel more comfortable.
Sonarqube.
Sonar, pmd, owasp, findbugs, vpav
FindBugs, PMD, SonarQube.
Internal tools to validate methods sizes nested logic that can be potentially breakout in small chunks. Linters, code
sniffers...
Static code analyzers
Sonar and ESLint
JDeodorant, JSpRIT, PMD
I’ve used in my career some tools to help me with code smells, like Checkstyle and more recently, we use Sonar.
Reek
PMD
Analyze Inspect Code - Android Studio
Sonar, Findbugs, jacoco
Most of them were used as part of a CI solution , like sonar, and works pointing out code smells during the development
process and suggesting improvements to solve them.
I’ve published a literature review on these tools at EASE 2016 ("A review-based comparative study of bad smell
detection tools"). Part of my work was using tools like PMD, inFusion, JDeodorant, and etc. I’ve also used some of
these tools to detect smells for study purposes. But, to be honest, mostly I’ve written my own detection scripts to run
them on spreadsheets with code metrics data... LOL
None
For Java I’ve used PMD and since I use IntelliJ IDEA , it has embedded static code analysis in it.
PMD and JDeodorant
In the past I have used some tools such as PMD and JDeodorant. In both cases, the tools were used in non-graphical
ways, just for research purposes.
No.
Linters in general
I use one that has been developed in the research group that I work with. The name is Organic 2.0
I have read research on automatic code smell detection , but I don’t recall any tool names.

1 Survey 43

1 Survey 44

10 - Could you please justify your answer to question 9?

Since a smell only indicates there might be a problem and harmful code definitely does have a problem, you should
look at that first.
Always leave the code better than before
We usually run sonarqube reports and try to fix all the warnings that are found.
Codes that allow bugs are problematic because they are harmful to execution.
You may have code that has code smells, but if they have good automated testing, refactoring becomes a simpler and
less risky task. And there are different code smells, some impact the readability of implementation details more, if the
public interface of the code is well written, but the internal code is poorly made, refactoring becomes even simpler. The
problem is more in code than badly done, do not work. We should prioritize covering them with tests, then adjust them
as guided by the tests discovering current code problems, then refactoring them.
In the real life we have to stay into the budget: so when, for whatever reason, I put my hand on a piece of code I try to
fix/improve it.
I would fix all of it but time is limited so priorities have to be set.
All information is important.
I always consider improving the code quality when fixing a bug.
When touching on working code the risk to ruin something is greater than fixing already buggy code.
because if you are refactoring you are trying to improve the code. Does not matter if it’s horrible or somewhat accept-
able.
Code blocks that already have a bug and have code smell is much more problematic than a code smell.
Code smells should be found by static analysis tools or reviewer.
I usually use RENAME refactoring, so I’m interested in making the code easier to understand. Generally it’s not about
bug, but readability.
Economics. Buggy code have hard effects on end user which tend to abandon your product after working for some time
with a bug.
The question is really tricky because you will refactor always the worst part, otherwise the code will not work. I see
what do you want to achieve with that question but the way you are asking that is really biased.
Following the criteria will be harmful.
Short term business value. Smells are best addressed by coaching and boy scout approaches.
I refactor to improve reusability and reduce fragile or error-prone code. How the code got to that state is irrelevant.
Because at the company I work prioritize quality over delivery.
Any improvements are worth the time.
I normally refactoring a source code to improve them. I do not expect to catch a bug to refactoring the source code.
The priority is to fix bugs.
When my team works with software maintenance, we usually get a problem and start reviewing it. Usually this problem
represents a bug; therefore, we have the opportunity to improve some parts of the code.
Refactoring process could insert new bugs, so I avoid to refactor code that it is working.
When refactor source code, we focus on long and complex codes, to facilitate future maintenance or upgrades.
I usually look for problems that already exist or might become one in the future.
Not all the problems are solved in a refactoring session, bug is your mission to deliver the best in that situation.
Working on code smells means working on the prevention of most of bugs that could appear, so worry only about those
who already have bugs attached too it is never enough.
My academic background made me see refactorings as means to "clean the house" in terms of bad code structures rather
than means to actually fix bugs. Eventually, refactorings can help fix a bug. Nevertheless, as a practitioner, I’ve tried
the most to avoid refactoring buggy code elements. These elements should be changed only if necessary; otherwise, the
damage can get worse (other bugs may emerge).
There is no priority.
I usually give priority to duplication, shotgun surgery, large class, naming, long methods, too many params.
Buggy code is something that already problematic to the software, so should be prioritized.
When refactoring, it is ideal to deal with all modules of the code, but due to some limitations, such as time, it is most
important to look at fragile parts as harmful code.
Well written code avoids Code smells.
In general, I tend to fix the bug (first) as fast as possible, which means I do not think about quality code at first.
I usually refactor my code when it is hard to understand/maintain, however, if I have to prioritize refactorings, I refactor
elements that contain bugs and have smells. Since I’m already refactoring the code to get rid of the bug, I take the
opportunity to remove the smell as well. The goal is to kill two birds with one stone.
I usually don’t refactor buggy code when a bug is identified; I only fix it asap and leave possible refactoring for later. I
apply a refactoring usually when the code is badly structured. If a bug is found in the middle of the refactoring, I will
be fixed also during the refactoring process, asap.

1 Survey 45

11 - Are you aware of some issues in which code smells are harmful to the software quality? If yes could you
please describe it below or put the issue link?

No
Maintainability
Maintenance
Most of the code smells are dangerous in their own ways. They usually they make the codebase hard to maintain and
modify. Or they introduce subtle bugs in certain scenarios.
Efficiency, security and maintainability
God classes are the first example that comes to my mind. It doesn’t have separation of concerns, do more than one job,
if maintaining that code you will affect many points...there are many quality risks. It is even hard to focus the quality
assurance in just one part of the application, forcing you to do a full regression.
Yes. It makes code harder to read and understand and this contributes to more bugs and more time debugging.
Coupled code, fuzzy parameters names
Yes. Security or maintenance issues
As i said before, maintainability, you can code with code smells if it is a single person codebase because you know what
have you done. But when there are more developers involved in a development, code smells make then doubt about
the intentions or purposes of that code smell, is it there otherwise code doesn’t work?, those kind of questions make
developers lose time and commit errors
Misunderstandings waiting to happen.
Code smells often indicate or lead to bigger problems. Those bigger problems can make a code base fragile, difficult to
maintain, and prone to errors.
Some code smells, has a direct relationship with quality attributes such as coupling and cohesion. For instance, feature
envy -> coupling and cohesion; god class -> cohesion; divergence change e shotgun surgery -> coupling.
Yes. Sometimes, when you have a method or function too long, normally this is related to centralize many tasks in only
one place and that method/function is being responsible for activities that actually shouldn’t be its responsibility. So,
this decreases the software quality in terms of future maintenance or possible software evolution.
Sometimes it can lead to early complex architecture
Code smells use to decrease code readability.
Yes
Bad decisions of choosing patterns, the false senior developer (probably a old people in your team that you trust in a
period, and when you see the disaster are made). In terms of code, inheritance, bad encapsulation, repeating yourself
Sure, and they are many. As stated in Q.6, I’ve struggled to read and change smelly code many times before. Too messy
code is irritating, right? Once I had to prepare a project for migration across programming languages. It was a hell of
a work to read some pretty large classes with dozens of lengthy and complex methods. And what can I say about the
uncountable dependencies among classes that made it hard to reorganize the code every now and then?
Fault proneness, software degradation, Error proneness, maintenance difficulty
No
No

12 - Please let us know if you have any additional comments about Harmful Code.

Fix it.
If you have a Sonarqube around, and code reviews in the delivery pipeline they should be there in the first place.
Bad quality code is an effect of programmers with bad knowledge about programming. Not only programming lan-
guages, but also logic, abstractions and modeling.
Its really important detect it, even more when there are multiple teams working in the same project.
Most of the projects that I worked on got new bugs after refactorings. Maybe the concept of refactoring should be
upgrade to something like: code smells + bug = refactoring.
How much harmful, much priced
It’s very expensive to fix a bug that is in production, devs should analyze their solution, many times before submit
their code. Testing is a very important phase of the development and the scenarios need to be real ones and complex
scenarios, covering edge cases and large data input.

2 Tables: How effective are Machine Learning techniques to detect harmful code? 46

2 Tables: How effective are Machine Learning tech-

niques to detect harmful code?

Algorithm Smell Harmful

Switch Statements

KNeighborsClassifier 0.29 0.80
RandomForestClassifier 0.25 1.00
DecisionTreeClassifier 0.50 1.00
AdaBoostClassifier 0.33 1.00
GradientBoostingClassifier 0.25 1.00
SVM 0.50 0.89
GaussianNB 0.50 0.86

MIN 0.25 0.80
MAX 0.50 1.00

Algorithm Smell Harmful

Magic Number

KNeighborsClassifier 0.50 0.73
RandomForestClassifier 0.80 1.00
DecisionTreeClassifier 0.67 0.96
AdaBoostClassifier 0.56 0.85
GradientBoostingClassifier 0.72 0.93
SVM 0.72 0.80
GaussianNB 0.25 0.68

MIN 0.25 0.68
MAX 0.80 1.00

2 Tables: How effective are Machine Learning techniques to detect harmful code? 47

Algorithm Smell Harmful

Long Identifier

KNeighborsClassifier 0.67 0.80
RandomForestClassifier 0.75 1.00
DecisionTreeClassifier 0.75 1.00
GradientBoostingClassifier 0.75 1.00
SVM 0.67 0.80
GaussianNB 0.33 0.86

MIN 0.33 0.80
MAX 0.75 1.00

Algorithm Smell Harmful

Insufficient Modularization

KNeighborsClassifier 0.64 0.90
RandomForestClassifier 0.60 1.00
DecisionTreeClassifier 0.50 0.97
AdaBoostClassifier 0.60 0.97
GradientBoostingClassifier 0.57 1.00
SVM 0.69 0.93
GaussianNB 0.67 0.62

MIN 0.50 0.62
MAX 0.69 1.00

Algorithm Smell Harmful

Long Parameter List

KNeighborsClassifier 0.92 1.00
RandomForestClassifier 0.93 1.00
DecisionTreeClassifier 0.78 1.00
AdaBoostClassifier 0.93 1.00
GradientBoostingClassifier 1.00 1.00
SVM 0.92 1.00
GaussianNB 0.92 1.00

MIN 0.78 1.00
MAX 1.00 1.00

2 Tables: How effective are Machine Learning techniques to detect harmful code? 48

Algorithm Smell Harmful

Unutilized Abstraction

KNeighborsClassifier 0.70 0.80
RandomForestClassifier 0.81 1.00
DecisionTreeClassifier 0.72 0.96
GradientBoostingClassifier 0.86 1.00
SVM 0.63 0.88
GaussianNB 0.55 0.70

MIN 0.55 0.70
MAX 0.86 1.00

Algorithm Smell Harmful

Cyclic-Dependent Modularization

KNeighborsClassifier 0.50 0.74
RandomForestClassifier 0.67 0.97
DecisionTreeClassifier 0.67 0.97
AdaBoostClassifier 0.61 0.88
GradientBoostingClassifier 0.71 0.97
SVM 0.45 0.88
GaussianNB 0.52 0.58

MIN 0.45 0.58
MAX 0.71 0.97

Algorithm Smell Harmful

Deficient Encapsulation

KNeighborsClassifier 0.73 0.90
RandomForestClassifier 0.65 0.98
DecisionTreeClassifier 0.61 1.00
AdaBoostClassifier 0.67 0.83
GradientBoostingClassifier 0.63 0.98
SVM 0.70 0.96
GaussianNB 0.56 0.55

MIN 0.56 0.55
MAX 0.73 1.00

2 Tables: How effective are Machine Learning techniques to detect harmful code? 49

Algorithm Smell Harmful

Long Method

KNeighborsClassifier 0.40 0.75
RandomForestClassifier 0.75 1.00
DecisionTreeClassifier 0.29 0.86
AdaBoostClassifier 0.86 1.00
GradientBoostingClassifier 0.86 1.00
SVM 0.50 0.75
GaussianNB 0.86 1.00

MIN 0.29 0.75
MAX 0.86 1.00

Algorithm Smell Harmful

Long Statement

KNeighborsClassifier 0.79 0.96
RandomForestClassifier 0.86 1.00
DecisionTreeClassifier 0.81 1.00
AdaBoostClassifier 0.64 1.00
GradientBoostingClassifier 0.86 1.00
SVM 0.75 1.00
GaussianNB 0.13 0.75

MIN 0.13 0.75
MAX 0.86 1.00

Algorithm Smell Harmful

Empty Catch Clause

KNeighborsClassifier 0.86 0.86
RandomForestClassifier 0.50 1.00
DecisionTreeClassifier 0.00 0.86
AdaBoostClassifier 0.00 0.86
GradientBoostingClassifier 0.44 1.00
SVM 1.00 1.00
GaussianNB 0.00 1.00

MIN 0.00 0.86
MAX 1.00 1.00

3 Table: Which metrics are most influential on detecting harmful code? 50

3 Table: Which metrics are most influential on detecting

harmful code?

Smell Feature Harmful

Cyclic-Dependent Modularization returns 0.0699
variables 0.0408
unique_words_qty 0.0373
line 0.0321
numbers_qty 0.0213
string_literals_qty 0.0191
rfc 0.0170
cbo 0.0161
annonymous_classes_qty 0.0097
parameters 0.0064

Deficient Encapsulation wmc 0.0776
parameters 0.0709
unique_words_qty 0.0404
returns 0.0171
variables 0.0129
rfc 0.0119
line 0.0113
number_commits 0.0016
cbo 0.0014
total_methods 0.0011

Empty Catch Clause wmc 0.1467
rfc 0.0807
unique_words_qty 0.0371
cbo 0.0368
parameters 0.0281
line 0.0267
variables 0.0108
returns 0.0097
numbers_qty 0.0012
annonymous_classes_qty 0.0008

Insuficient Modularization wmc 0.0446
unique_words_qty 0.0329
rfc 0.0140
string_literals_qty 0.0072
variables 0.0051
total_methods 0.0019
total_fields 0.0012
sub_classes_qty 0.0007
static_methods 0.0002

3 Table: Which metrics are most influential on detecting harmful code? 51

Smell Feature Harmful

Long Identifier math_operations_qty 0.1035
annonymous_classes_qty 0.0516
cbo 0.0494
rfc 0.0251
loc 0.0227
numbers_qty 0.0118
unique_words_qty 0.0074
line 0.0058
string_literals_qty 0.0028
variables 0.0009

Long Method wmc 0.0145
unique_words_qty 0.0261
string_literals_qty 0.0023
rfc 0.0187
returns 0.0257
numbers_qty 0.0119
number_days 0.0001
number_commits 0.0005
median_files 0.0002
loc 0.0938

Long Parameter List numbers_qty 0.1211
parameters 0.1176
loc 0.0671
wmc 0.0241
cbo 0.0146
parenthesized_exps_qty 0.0138
line 0.0121
rfc 0.0073
string_literals_qty 0.0039
max_nested_blocks 0.0002

Long Statement parameters 0.1951
line 0.0321
rfc 0.0180
variables 0.0151
wmc 0.0136
unique_words_qty 0.0104
math_operations_qty 0.0074
returns 0.0014
max_nested_blocks 0.0005
numbers_qty 0.0005

Magic Number cbo 0.0668
returns 0.0430
line 0.0396
annonymous_classes_qty 0.0316
rfc 0.0254
parameters 0.0210
numbers_qty 0.0188
wmc 0.0156
variables 0.0148
unique_words_qty 0.0118

3 Table: Which metrics are most influential on detecting harmful code? 52

Smell Feature Harmful

Switch Statements math_operations_qty 0.2281
rfc 0.0000
wmc 0.0000
numbers_qty 0.0000
line 0.0000
unique_words_qty 0.0000
number_commits 0.0000
median_files 0.0000
cbo 0.0000
parameters 0.0000

Unutilized Abstraction line 0.0723

unique_words_qty 0.0260
rfc 0.0243
cbo 0.0184
string_literals_qty 0.0179
math_operations_qty 0.0155
parameters 0.0088
variables 0.0060
wmc 0.0060
max_nested_blocks 0.0057

4 Software Metrics (CK) 53

4 Software Metrics (CK)

Name Description

CBO (Coupling between objects) Counts the number of dependencies a class has. The tools checks for any type
used in the entire class (field declaration, method return types, variable declara-
tions, etc). It ignores dependencies to Java itself (e.g. java.lang.String).

DIT (Depth Inheritance Tree) It counts the number of "fathers" a class has. All classes have DIT at least 1 (ev-
eryone inherits java.lang.Object). In order to make it happen, classes must exist
in the project (i.e. if a class depends upon X which relies in a jar/dependency
file, and X depends upon other classes, DIT is counted as 2).

Number of fields Counts the number of fields. Specific numbers for total number of fields, static,
public, private, protected, default, final, and synchronized fields.

Number of methods Counts the number of methods. Specific numbers for total number of meth-
ods, static, public, abstract, private, protected, default, final, and synchronized
methods.

NOSI (Number of static invocations) Counts the number of invocations to static methods. It can only count the ones
that can be resolved by the JDT.

RFC (Response for a Class) Counts the number of unique method invocations in a class. As invocations
are resolved via static analysis, this implementation fails when a method has
overloads with same number of parameters, but different types.

WMC (Weight Method Class) or Mc-
Cabe’s complexity

It counts the number of branch instructions in a class.

LOC (Lines of code) It counts the lines of count, ignoring empty lines.
LCOM (Lack of Cohesion of Methods) Calculates LCOM metric. This is the very first version of metric, which is not

reliable. LCOM-HS can be better (hopefully, you will send us a pull request).
Quantity of returns The number of return instructions.
Quantity of loops The number of loops (i.e., for, while, do while, enhanced for).
Quantity of comparisons The number of comparisons (i.e., ==).
Quantity of try/catches The number of try/catches.
Quantity of parenthesized expressions The number of expressions inside parenthesis.
String literals The number of string literals (e.g., "John Doe"). Repeated strings count as many

times as they appear.
Quantity of Number The number of numbers (i.e., int, long, double, float) literals.
Quantity of Math Operations The number of math operations (times, divide, remainder, plus, minus, left shit,

right shift).
Quantity of Variables Number of declared variables.
Max nested blocks The highest number of blocks nested together.
Quantity of Anonymous classes, sub-
classes, and lambda expressions

The Quantity of Anonymous classes, subclasses, and lambda expressions.

Number of unique words Number of unique words in the source code. See WordCounter class for details
on the implementation.

Usage of each variable How much each variable was used inside each method.
Usage of each field How much each field was used inside each method.

5 Developer Metrics 54

5 Developer Metrics

Name Type Tool Used Description

Number of Com-
mits (NC)

Developers’ Expe-
rience

PyDriller this metric represents the number of commits au-
thored by a developer;

Number of Active
Days in Project
(NADP)

Developers’ Expe-
rience

PyDriller this metric indicates how many days a developer has
been active, i.e., committing;

Number of Days in
Project (NDP)

Developers’ Expe-
rience

PyDriller this metric counts the number of days that a devel-
oper has been associated to a project, independently
if he is contributing or not;

Number of issues
Activities (NIA)

Developers’ Expe-
rience

GitHub API this metric measures the number of issues opened
or closed by a developer;

Number of Pull
Requests Activities
(NPRA)

Developers’ Expe-
rience

GitHub API this metric measures the number of pull requests
opened or closed by a developer;

Number of Tests In-
cluded (TI)

Technical Contri-
bution Norms

PyDriller this metric measures the quantity of commits that
contain tests. To extract it, we adopted the pro-
cedure defined by [18]. First, we retrieve all the
files modified in a commit authored by a developer.
Then, we check how many files contain the "test"
word in its pathname;

Median of Modi-
fied Files (MMF)

Technical Contri-
bution Norms

PyDriller this metric measures the median of modified files
among all the commits authored by a developer;

Median of Lines
Changed (MLC)

Technical Contri-
bution Norms

PyDriller this metric represents the median of changed lines
among all the commits authored by a developer. A
changed line can be an addition or a deletion in a
commit;

Number of Follow-
ers (NF)

General Commu-
nity Status

WebCrawler this metric represents the number of followers that
a developer has on GitHub;

Number of Public
Repository (NPR)

General Commu-
nity Status

WebCrawler this metric counts the number of public repositories
owned by a developer on GitHub;

Number of Public
Gists (NPG)

General Commu-
nity Status

WebCrawler this metric represents the number of public Gists 2
owned by a developer. A Gist is a tool designed
to share single files, parts of source code, or full
applications created by a developer. Such tool may
be very important to stimulate the reuse of software
artifacts.

	List of Figures
	List of Tables
	Contents
	Introduction
	Context and Problem
	Objectives and Methodological Aspects
	Contributions
	Thesis Structure

	Study Design
	Research Questions
	Projects Selection
	Code Smells
	Metrics
	Locating Bug Fixes
	Locating the buggy code
	Locating Harmful Code
	Dataset Structure
	Calculating Effectiveness
	Machine Learning Techniques
	Evaluating the Importance of Features
	Data Analysis

	Results and Discussions
	RQ1. To what extent are smells harmful to the software?
	Why is this smell type harmful?

	RQ2. Do developers perceive and handler code smells as harmful?
	RQ3. How effective are Machine Learning techniques to classify harmful code?
	RQ4. Which metrics are most influential on classifying harmful code?

	Implications
	Related Work
	Threats to Validity
	Conclusions and Future Works

	Bibliography
	Supplementary Material
	Survey
	Tables: How effective are Machine Learning techniques to detect harmful code?
	Table: Which metrics are most influential on detecting harmful code?
	Software Metrics (CK)
	Developer Metrics

