

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE

Betijane Soares de Barros

Avaliação da atividade antinociceptiva e antiinflamatória da fração metanólica obtida a partir da biomassa do fungo endofítico da espécie *Rhizoctonia solani*

Betijane Soares de Barros

Avaliação da atividade antinociceptiva e antiinflamatória da fração metanólica obtida a partir da biomassa do fungo endofítico da espécie *Rhizoctonia solani*

Dissertação apresentada ao programa de Pós-graduação em Ciências da Saúde da Universidade Federal de Alagoas como requisito parcial para obtenção do Título de Mestre em Ciências da Saúde.

Orientador: Dr. Emiliano de Oliveira Barreto

Maceió, 2010

Ш

Catalogação na fonte Universidade Federal de Alagoas Biblioteca Central

Divisão de Tratamento Técnico Bibliotecária: Dilma Maria dos Santos Cunha

B277a Barros, Betijane Soares de.

Avaliação da atividade antinociceptiva e antiinflamatória da fração metanólica obtida a partir da biomassa do fungo endofítico da espécie *Rhizoctonia solani* / Betijane Soares de Barros, 2010.

69f: il; tabs.

Orientador: Emiliano de Oliveira Barreto.

Dissertação (mestrado em Ciências da Saúde) – Universidade Federal de Alagoas. Instituto de Ciências Biológicas e da Saúde. Maceió, 2010.

Bibliografia: f. 58-69.

1. Fungos. 2. *Rhizoctonia solani*. 3. Antinocicepção. 4. Antiinflamatório 5. Endofiticos. I. Título.

CDU: 57.084

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE PROGRAMA DE PÓS GRADUAÇÃO EM CIÊNCIAS DA SAÚDE

Defesa da Dissertação de Mestrado da aluna Betijane Soares de Barros intitulado: "Avaliação da atividade antinociceptiva e antiiflamatória da fração metanólica obtida a parti da biomassa do fungo endofítico da espécie *Rhizoctonia solani*", orientada pelo Prof. Dr. Emiliano de Oliveira Barreto, apresentada ao Programa de Pós Graduação em Ciências da Saúde, da Universidade Federal de Alagoas, em 26 de novembro de 2010.

Os membros da Banca Examinadora, consideraram a candidata A PRO VADA

Banca Examinadora:

Prof. Ør. Vinícius Carvalho de Frias - (IOC/Fiocruz, RJ)

Prof. Dr. Eurípedes Alves da Silva Filho (ICBS/UFAL)

Prof^a. Dra. Fabíola de Almeida Brito - (ICBS/UFAL)

Dedico esta vitória a meus pais, Josias e Dora, pelo incentivo, apoio, força, amor e principalmente pelos ensinamentos que formaram os alicerces de minha história. Aos meus irmãos, Cleide e Katy, e ao meu sobrinho Josias Neto, por todo apoio, amor e compreensão, e principalmente a minha irmãzinha pela companhia ao longo da trajetória que me levou à concretização deste sonho.

AGRADECIMENTOS

A Deus, por iluminar os caminhos onde passei e pelas pessoas maravilhosas que colocou na minha vida.

Aos meus pais, Josias e Dora, pelo amor, carinho, confiança, dedicação, amizade e por ensinar valores que vou ter sempre como base em minha vida, vocês são o meu grande amor.

Ao professor e orientador Dr. Emiliano de Oliveira Barreto, pela confiança, pela oportunidade de desenvolver este trabalho, obrigada por tudo.

Aos meus irmãos Cleide e Katy, exemplo de dedicação e esforço, grandes pessoas, amigos, companheiros, irmãos que sempre quis ter. Amo-os muito.

Ao meu sobrinho Josias Neto, que foi minha principal fonte de inspiração.

As minhas primas Izabel e Rosana pela companhia, apoio, carinho, amor e, principalmente, por terem tornado minha vida muito mais agradável e feliz.

A toda minha família que sempre me incentivaram e torceram por mim. Obrigada, amo muito vocês.

A minha amiga Isabela, por ter me ligado todos os dias na hora que mais precisei, por sofrer e sorrir comigo, pelo incentivo, apoio, ajuda em todos os momentos. Bela, amiga como você a gente tem que cuidar e manter sempre por perto, ela não é irmã de sangue, mas é de coração. Sou muita grata.

Ao meu amigo Altair pelas suas incansáveis ligações, pela força, simplicidade, companheirismo. Grande pessoa e grande amigo.

A Mônica, Diego Coutinho, Renato Rodarte e Wlisses, pelo carinho, preocupação e interesse. Obrigada.

Aos meus amigos e companheiros de laboratório, Ozileudiane, Fábia, Laís, Fabíola e Rafael. Em especial agradeço a Juliane, Isabela, Jamylle e Alex, posso dizer que grande parte do que sei, se não tudo, devo a vocês. Amigos vocês foram presença constante e participaram de todas as conquistas e desapontamentos de alguns dos melhores anos da minha vida, como eu gostaria de estar sempre perto de vocês, obrigada por tudo.

Aos meus amigos do Laboratório de Química, Ricardo, Deyse e Sandra pelos ensinamentos, pela paciência e colaboração na realização desse trabalho.

Aos meus colegas e amigos da pós-graduação da turma 2009, em especial, Larissa, Danielma, Cristiane, Maria, Verônica, Livia,... ô povo querido, terei saudades de vocês.

A coordenação, docentes e a todos que fazem parte do programa de Pósgraduação em Ciências da Saúde.

Ao co-orientador Luis Carlos Caetano, obrigada pela substância cedida.

A CAPES, FAPEAL e CNPq pelo auxílio financeiro.

"Todo mundo é capaz de dominar uma dor, exceto quem a sente."
(William Shakespeare)

RESUMO

A Rhizoctonia é um gênero pertencente ao Reino Fungi, cujos seus representantes habitam o solo e atuam como endofíticos de vários organismos vegetais. Dentre as plantas possuidoras deste fungo, merece destaque a aroeira-vermelha (Schinus terebinthifolius Raddi), que é utilizada popularmente para diferentes finalidades, incluindo inflamação. Este trabalho descreve a atividade antiinflamatória e antinociceptiva da fração metanólica obtida a partir da biomassa do fungo endofítico Rhizoctonia solani. A fração metanólica, quando administrado por via intraperitoneal, foi capaz de reduzir a nocicepção induzida pelo ácido acético por um período de 8 h. Além disso, a fração metanólica aumentou o tempo de latência avaliado no modelo de nocicepção térmica, sugerindo assim uma possível ação central. A mesma substância apresentou atividade antinociceptiva no ensaio de formalina, tanto na fase neurogênica quanto na fase inflamatória. Em busca de um possível mecanismo de ação, verificamos que dentre as ferramentas farmacológicas usadas, apenas a naloxona foi capaz de reverter à ação da fração metanólica, sugerindo assim que a substância age via receptor opióide. Estendendo as análises para uma possível ação antiinflamatória da fração metanólica, utilizamos o ensaio de edema de pata e verificamos que esta fração foi capaz de inibir de modo significativo o edema de pata induzido por carragenina e PGE₂. Utilizando-se a histamina como indutor do edema, notamos que a fração metanólica também se mostrou antiedematogênica. Neste modelo, os fármacos de referência indometacina ou prometazina foram capazes de inibir a formação do edema. Juntos, nossos resultados mostram, pela primeira vez, que a fração metanólica obtida a partir da biomassa do fungo endofítico Rhizoctonia solani apresenta uma potente atividade antinociceptiva e antiinflamatória.

Palavra-chave: Fungos, *Rhizoctonia solani*, antinocicepção, antiinflamatório, endofiticos.

ABSTRACT

The Rhizoctonia is a genus belonging to the Fungi Kingdom, whose representatives live in the soil and act as endophytes of various plants. Among the plants possessing this fungus, deserves the red-pepper tree (Schinus terebinthifolius Raddi), which is popularly used for different purposes, including inflammation. This work describes the antinociceptive and antiinflammatory activity of methanolic fraction obtained from the biomass of the endophytic fungus from *Rhizoctonia solani*. The methanolic fraction, when administered by intraperitoneal route, was able to reduce the nociception induced by acetic acid for a period of 8 h. In addition, the methanolic fraction increased the lag time measured in the model of thermal nociception, thus suggesting a possible central action. The same substance exhibited antinociceptive activity in formalin test in both phase, neurogenic and inflammatory. In search of a possible mechanism of action, we found that among the pharmacological tools used, only naloxan was able to restore the action of the methanolic fraction, thus suggesting that the substance acts via opioid receptor. In the search for a possible anti-inflammatory effect from this methanol fraction, we used the rat paw edema test and found that this fraction was able to significantly inhibit the paw edema induced by carrageenan and PGE2. Using histamine as an inducer of edema, we note that the methanolic fraction was also antiedematogenic. In this model, the reference drugs indomethacin and promethazine inhibited the edema formation. Together, our results show for the first time that the methanolic fraction obtained from the biomass of the endophytic fungus Rhizoctonia solani has a potent antinociceptive and antiinflammatory.

Keywords: Fungi, *Rhizoctonia solani*, antinociceptive, anti-inflammatory, endophytes.

LISTA DE ILUSTRAÇÕES

llustração 1	Crescimento do teleomorfo em meio BDA	34
Ilustração 2	Biomassa do teleomorfo <i>Rhizoctonia solani</i> crescendo em meio BD	34
llustração 3	Obtenção da fração metanólica a partir da biomassa das hifas de Rhizoctonia solani	34
llustração 4	Resposta nociceptiva (contorção abdominal) induzida por ácido acético em camundongo	35
llustração 5	Animal exposto a placa quente (Hot Plate)	36
llustração 6	Injeção intraplantar (i.pl.) de formalina (2 %)	37
Ilustração 7	Resposta nociceptiva (lambida da pata) induzida pela injeção i.pl. de formalina (2 %)	37
Ilustração 8	Avaliação do edema de pata utilizando o Pletismômetro	39

LISTA DE TABELAS

Tabela 1	Efeito da FM no modelo de placa quente	43
Tabela 2	Efeito da FM envolvendo receptores na ação antinociceptiva no	
	modelo de formalina	45

LISTA DE FIGURAS

Figura 1	Efeito da FM na nocicepção induzida por ácido acético	41
Figura 2	Duração do Efeito FM na nocicepção induzida por ácido acético	42
Figura 3	Efeito da FM na nocicepção induzida pela formalina	44
Figura 4	Análise da atividade antiinflamatória da fração metanólica do fungo Rhizoctonia solani no modelo de edema de pata induzida por carragenina	46
Figura 5	Efeito da FM sobre o edema de pata induzido por histamina	47
Figura 6	Efeito da FM sobre o edema de pata induzido por PGE ₂	48

SUMÁRIO

RESUMO	VII
ABSTRACT	VIII
LISTA DE ILUSTRAÇÕES	IX
LISTA DE TABELAS	Χ
LISTA DE FIGURAS	ΧI
INTRODUÇÃO	14
REVISÃO DA LITERATURA	17
1 Processo Inflamatório	18
2 Dor	20
2.1 Mecanismos da nocicepção	21
3 Fármacos utilizados no controle da dor e da inflamação	23
4 Produtos Naturais	25
5 Fungos, endofíticos e espécie <i>Rhizoctonia solani</i>	27
OBJETIVOS	30
MATERIAL E MÉTODOS	32
1 Animais	33
2 Obtenção do fungo endofítico	33
3 Avaliação da atividade antinociceptiva	35
3.1 Teste de contorção abdominal induzida por ácido acético	35
3.2 Teste da placa quente	36
3.3 Teste de formalina	37
4 Avaliação da atividade antiinflamatória	38
4.1 Teste de edema de pata	38
5 Análise estatística	39
RESULTADOS	40
1 Análise da atividade antinociceptiva da fração metanólica do fungo endofítico Rhizoctonia solani	41
1.1Efeito da FM na nocicepção induzida por ácido acético	41
1.2 Cinética do Efeito da FM na nocicepção induzida por ácido acético	42
1.3 Efeito da FM na nocicepção induzida pela placa quente	43
1.4 Efeito da FM na nocicepção induzida pela formalina	43
1.5 Investigação do mecanismo de ação da FM utilizando a resposta	

nociceptiva no modelo de formalina		
2 Análise da atividade antiinflamatória da fração metanólica do fungo Rhizoctonia solani no modelo de edema de pata induzida por carragenina	46	
2.1 Efeito da FM sobre o edema de pata induzido por histamina	47	
2.2 Efeito da FM sobre o edema de pata induzido por PGE ₂	48	
DISCUSSÃO	49	
CONCLUSÃO	56	
REFERÊNCIAS BIBLIOGRÁFICAS	58	

INTRODUÇÃO

A resposta inflamatória consiste em um evento fisiológico complexo que envolve o reconhecimento do estímulo para sua posterior destruição e tentativa de reconstruir o tecido danificado. A partir do reconhecimento do agente agressor, desencadeia-se a ativação e a amplificação de respostas celulares resultando na produção e liberação de diversos mediadores químicos que são responsáveis pela resposta inflamatória. No entanto, se a destruição do agente agressor e o processo de reparo não ocorrem de maneira eficiente e sincronizada, a reação inflamatória pode levar a uma lesão tecidual persistente e danosa ao organismo (NATHA, 2002).

Dentre os diversos sistemas de "vigilância" da homeostase do organismo, a dor tem papel de destaque por despertar nossa atenção imediatamente. Além de despertar, direciona nossa atenção até que o ponto sensível tenha sido identificado e o evento que está desencadeando a lesão, ou representando risco, tenha sido afastado (WALL, 1999). À medida que crescemos e nos tornamos mais experientes, as reações clássicas de remover o estímulo lesivo, adotar uma postura que limite novas lesões, e otimize a recuperação e busque segurança, alívio e cura em resposta à dor, tornam-se mais sutis, elaboradas e sofisticadas. Desse modo, a função básica e fundamental da dor é "avisar" que algo está ameaçando nossa sobrevivência e/ou bem estar e, clinicamente, é um sintoma importante para permitir a avaliação do surgimento ou evolução de diversas doenças. Apesar de seu caráter "benéfico", em alguns casos a dor pode causar mais desconforto que a própria desordem sinalizada por ela (CHENG et al., 2002).

O tratamento do processo inflamatório, e a dor, mostram-se diversificado, contando com ajuda de antiinflamatórios esteroidais e não-esteroidais, tais como glicocorticóide e indometacina, respectivamente, bem como outras substâncias com potencial analgésico capazes de aliviar a dor, como os compostos similares a morfina. No entanto, vários desses tratamentos exibem diferentes efeitos adversos os quais limitam seu uso. É sabido que desde o início das civilizações, o homem faz uso dos recursos naturais em seu cotidiano, onde utiliza produtos extraídos de plantas e animais para sanar as enfermidades. Em decorrência dessas ações, e, através da observação, logo se percebeu que havia substâncias com ação medicinal e/ou tóxica (SIMÕES et. al., 2007). Dessa maneira, produtos de origem natural têm dado, nos últimos anos, grande contribuição para o desenvolvimento de terapias

farmacológicas modernas como os digitálicos, antitumorais e antiinflamatórios (RATES, 2001).

Produtos de origem natural mostram-se como fontes promissoras para obtenção de substâncias com propriedades terapêuticas. Diferentes estudos vêm sendo desenvolvidos com o objetivo de buscar elementos de origem natural de interesse terapêutico e que não apresentem os efeitos colaterais dos fármacos atualmente utilizados (WINK, 2003).

Os microrganismos são fontes promissoras na busca de diversos metabólitos bioativos e têm originado importantes produtos para a indústria farmacêutica com aplicações em diversas áreas, merecendo destaque o antibiótico, penicilina. Além disso, na tentativa de atender as novas perspectivas de inovações metodológicas atualmente requisitadas pelo mercado mundial, ensaios de produção de compostos biologicamente ativos em larga escala tornam-se cada vez mais difundidos e necessários. Dessa maneira, vários esforços concentram-se na busca por fontes de fármacos ainda pouco exploradas. Neste contexto, os fungos endófitos mostram-se como ferramentas importantes para ampliar as chances de obtenção de novos agentes farmacologicamente ativos.

Rhizoctonia solani é uma espécie pertencente ao Reino Fungi, da ordem Agonomycetales, seus representantes habitam o solo e atuam como patógenos endofíticos de vários organismos vegetais (ALFENAS e SILVEIRA, 2002). Dentre as plantas possuidoras deste fungo merece destaque a aroeira-vermelha (*Schinus terebinthifolius* Raddi), que é usada popularmente para diferentes finalidades, incluindo inflamações (LUCENA et al., 2006). O fungo endofítico Rhizoctonia solani, em sua fase teleomórfica, produz uma vasta gama de substâncias incluindo, dipeptídeos cíclicos e vários ácidos orgânicos (PEDRAS et al., 2005). Tendo por base este conjunto de informações, este trabalho teve como objetivo avaliar o potencial antinociceptivo e antiinflamatório da fração metanólica obtida a partir da fase teleomórfica do fungo endofítico *Rhizoctonia solani*.

REVISÃO DA LITERATURA

1. Processo inflamatório

A inflamação mostra-se como um processo fisiológico através do qual o tecido vascularizado responde a injúria. A resposta inflamatória é bastante estereotipada, sendo marcada por mudanças no fluxo sanguíneo no foco da lesão (devido à vasoconstricção seguida por vasodilatação arteriolar), aumento de permeabilidade nas vênulas, e recrutamento de leucócitos (HANSSON, 2005).

A palavra inflamação é derivada do "estado de se estar inflamado", onde inflamar significa "colocar fogo" o que implica na cor vermelha, na possibilidade de aquecimento e na geração de calor e dor (TROWBRIGDE e EMLING, 1996). A resposta inflamatória é um mecanismo benéfico e fisiológico pelo qual o organismo se defende contra infecções e tenta reparar danos teciduais ou perda de função (LAWRENCE et al., 2002). O processo inflamatório pode ser denominado agudo ou crônico, de modo que imediatamente após o estímulo, segue-se a inflamação aguda, sendo definida como um conjunto de alterações bioquímicas e celulares que ocorrem em resposta a estímulos inespecíficos, tais como infecções ou danos teciduais (HANSSON, 2005). As reações inflamatórias locais são caracterizadas por eventos vasculares responsáveis pelos sinais típicos da presença de inflamação: rubor (hiperemia), tumor (edema), calor (aumento da temperatura local) e dor, como descrito por Cornelius Celsus, no início da era Cristã (GILROY et al., 2004). O quinto sinal da inflamação, que é a perda da função do tecido ou órgão lesado foi descrito posteriormente por Virchow no século XIX (COTRAN et al., 2000).

As causas que levam à inflamação são múltiplas e de natureza variável. São reconhecidos os seguintes tipos de agentes que causam inflamação: biológicos (como bactérias, vírus, protozoários), químicos (como ácidos, álcalis, terebintina, formaldeído, carragenina), físicos (como calor excessivo, frio exagerado, eletricidade, radiação ultravioleta e ionizante) e imunes (exposição a antígenos provocando ativação da resposta imunológica do hospedeiro).

Os componentes básicos de um processo inflamatório envolvem eventos vasculares e celulares, mediadores derivados de células e da ativação plasmática, que produzem os sinais clássicos da inflamação descritos anteriormente. As alterações vasculares iniciam-se imediatamente após o estímulo inflamatório e

desenvolvem-se durante as primeiras horas após a agressão (WILLIAMS, 1983). Em condições normais a microcirculação apresenta baixíssima permeabilidade a macromoléculas. As proteínas plasmáticas circulam muito lentamente entre sangue e tecidos e retornam ao sangue através dos vasos linfáticos. Esta situação muda dramaticamente durante o processo inflamatório. A microcirculação torna-se permeável a macromoléculas e fluídos vindos do sangue, causando edema tecidual (GILROY et al., 2004).

Os eventos celulares são marcados pela saída das células circulantes da luz do vaso e a migração de leucócitos para o sítio inflamatório. Esse fenômeno segue algumas fases como captura, rolamento dos leucócitos pelo endotélio, adesão firme e transmigração (SCHMID-SCHONBEIN, 2006). Todas estas etapas do processo de migração leucocitária são dependentes da expressão pelos leucócitos e pelas células endoteliais, de moléculas denominadas moléculas de adesão e de mediadores quimiotáticos (WEBER, 2003).

A mobilização adequada dos leucócitos circulantes para o sítio inflamado é fundamental para a defesa do organismo, já que estas células podem desenvolver suas ações de fagocitose e destruição de agentes patogênicos levando à resolução do processo. Os leucócitos circulantes migram seletivamente e em número significativo para o tecido inflamado no decorrer do processo. Em uma resposta inflamatória aguda, há acúmulo predominante de neutrófilos, enquanto que as células mononucleares são observadas mais tardiamente durante a fase aguda, bem como nos processos crônicos. A migração de eosinófilos também pode ocorrer em processos inflamatórios, estando principalmente associada a processos alérgicos e infecções parasitárias. Algumas das células envolvidas já estão presentes no tecido afetado, tais como: células endoteliais, células mesoteliais, mastócitos, macrófagos e alguns linfócitos (SAMPSON 2000; BROCHE e TELLADO, 2001). Todas estas células são capazes de produzir vários mediadores inflamatórios, incluindo histamina, serotonina, prostaglandinas (PGs), leucotrienos (LTs), fator ativador de plaquetas (PAF), citocinas, quimiocinas, fator de necrose tumoral alfa (TNF-alfa) e numerosas proteases, que podem estar relacionados tanto com a inflamação quanto com a dor (BOYTON e OPENSHAW, 2002).

2. Dor

Dor é um processo fisiológico indispensável ao indivíduo, sendo uma sensação desagradável, que varia desde desconforto leve, associada a um processo destrutivo real ou potencial dos tecidos. Esta sensação é uma resposta resultante da integração de impulsos dos nervos periféricos, ativados por estímulos locais, sendo capaz de indicar alterações que ocorrem no organismo (PRADO e DEL BEL, 1998).

A dor é sempre subjetiva, cada indivíduo aprende a sua sensibilidade através de experiências relacionadas a lesões sofridas durante o crescimento (MERSKEY, 1991). Entretanto, sua percepção envolve fatores ambientais, culturais, espirituais, psicológicos, sociais, e principalmente, sua interpretação e significação como sofrimento total serão desenvolvidas por associações positivas, negativas e contextuais de cada experiência individual (ANAND e CRAIG, 1996). Atualmente a dor é considerada o quinto sinal vital humano junto com temperatura corpórea, pressão arterial, ritmo cardíaco e freqüência respiratória. Fisiologicamente a dor é uma resposta de defesa que visa à preservação do organismo à agressão (TREEDE 1995).

A dor pode ser classificada quanto sua duração em dois tipos: dor aguda e dor crônica. A dor aguda está associada com uma lesão tecidual recente, ativação de nociceptores e pode desaparecer até mesmo antes da cura do dano tecidual (CARR e GOUDAS, 1999; PARK e VASKO, 2005). Por outro lado, a dor crônica se caracteriza por ser persistente, podendo durar meses ou anos, e alterações adaptativas o que muitas vezes dificulta o tratamento (IADAROLA e CAUDLE, 1997; BESSON, 1999). A percepção dolorosa a um determinado estímulo nocivo tem como propósito biológico alertar o organismo sobre algum perigo no ambiente, incluindo a resposta comportamental de proteger o organismo contra possível lesão (CHENG *et al.*, 2002). A transmissão da dor envolve uma interação complexa de estruturas centrais e periféricas desde a pele, vísceras ou outros tecidos até o córtex cerebral (FURST, 1999).

A dor pode ser classificada em quatro tipos principais: neurogênica, neuropática, psicogênica e nociceptiva. Dor neurogênica reflete um dano tecidual

neuronal na periferia ou no sistema nervoso central (SNC). Dor neuropática acontece devido a uma disfunção ou dano no tecido nervoso. A dor psicogênica origina-se de uma fonte somática identificável e que pode refletir fatores psicológicos. Dor nociceptiva é provocada por estímulos sobre os nociceptores localizados nos tecidos. (MILLAN, 1999).

2.1. Mecanismos da nocicepção

Os nociceptores são receptores para diversas substâncias algogênicas localizados na membrana plasmática e que traduzem o sinal externo em potenciais de ação. Estes por sua vez, são propagados ao longo dos axônios até o corpo celular no gânglio da raiz dorsal (GRD), bem como ao corno dorsal da medula espinhal (LEMKE, 2004).

Inicialmente, os impulsos nociceptivos são recebidos pela medula espinhal, mais precisamente pelo seu corno dorsal, que é a área primária de recebimento da maioria das informações somatosensoriais (COGGESHALL e CARLTON, 1997). O corno dorsal da medula espinhal é uma estrutura dividida em lâminas, com base na sua citoarquitetura, sendo que cada lâmina se caracteriza por receber tipos diferentes de informações. Alguns estímulos somatosensoriais provenientes da pele, músculos ou vísceras também são capazes de chegar à medula espinhal através do corno ventral (ALMEIDA *et al.*, 2004).

A ativação do nociceptor é decorrente de uma despolarização de membrana da célula nervosa, favorecendo a liberação de substâncias químicas, conhecidas como neuropeptídios. Dentre eles destacam-se a substância P e neuroquinina A que atuam como agentes pró-inflamatórios de forma parácrina ou autócrina, bem como neurotransmissores que possuem papel na transmissão do sinal através das fibras nervosas até o sistema nervoso central (ROCHA et. al., 2007). A resposta nociceptiva ocorre em tecidos que contenham o número e o tipo apropriado de nociceptores e o dano tecidual deve ser intenso o suficiente para estimular e ativar estes nociceptores (LEMKE, 2004).

A sensibilização dos nociceptores acontece em decorrência de estímulos térmicos, mecânicos e químicos, sendo estes responsáveis pela liberação local de diversos mediadores capazes de estimular a transmissão da informação ao Sistema Nervoso Central (SNC). Esses mediadores podem ser liberados pelos neurônios sensoriais e simpáticos e por células não neuronais como plaquetas, leucócitos, mastócitos, células endoteliais, fibroblastos e células de Schwann. Em um quadro crônico, há também participação de mediadores liberados a partir de células inflamatórias interferindo na transmissão nociceptiva (JULIUS e BASBAUM, 2001).

O tecido que recebe a maior parte dos estímulos nociceptivos é a pele, sendo a parte do organismo que fornece a maioria das informações nociceptivas (BESSON, 1999). De fato, na camada epidermal da pele existem fibras aferentes de pequeno diâmetro responsáveis por conduzir as sensações de pressão intensa, calor nociceptivo ou irritantes químicos ao sistema nervoso central e também outras fibras não mielinizadas, de diâmetro maior, responsáveis por conduzir sensações inócuas como toque ou leves variações da temperatura. Seus axônios podem ser mielinizados ou não e são envoltos por células de Schwann, que servem para proteção, suporte, fonte de nutrientes, auxílio no reparo, regulação do pH e do balanço iônico nas proximidades dos neurônios sensoriais (MILLER *et al.*, 2002). As células de Schwann também possuem atividade secretória, podendo liberar citocinas, aminoácidos excitatórios e ATP (Adenosina Tri-fosfato), que modulam a transmissão de estímulos sensoriais (JEFTINIJA e JEFTINIJA,1998; IRNICH *et al.*, 2001).

Estímulos nociceptivos resultam na liberação local de diversos mediadores químicos, que medeiam, facilitam ou ainda atenuam a transmissão da informação ao sistema nervoso central. Após a lesão tecidual, esses mediadores são liberados por neurônios sensoriais e simpáticos e por células não neuronais, como as células inflamatórias. Tais mediadores fazem com que a informação sensorial seja levada, através das fibras aferentes, ao sistema nervoso central para que este a processe e responda adequadamente em cada situação (BESSON, 1997). Dessa maneira, percebe-se que o processo doloroso é bastante complexo, portanto, o tratamento com substâncias analgésicas requer fármacos que atuem em diferentes etapas do processo de transmissão e/ou condução da percepção dolorosa.

3. Fármacos utilizados no controle da dor e da inflamação

Atualmente, vários medicamentos para o tratamento da dor e inflamações encontram-se disponíveis para uso clínico. Dentre os mais usados, os glicocorticóides possuem grande amplitude de ações farmacológicas, merecendo destaque seus efeitos antiinflamatórios e imunossupressores capazes de inibir tanto as manifestações iniciais quanto as tardias do processo inflamatório (ADCOCK *et al.*, 2005). Apesar dos glicocorticóides apresentarem excelentes propriedades antiinflamatórias quando utilizados na terapêutica, seu freqüente uso produz drásticos efeitos colaterais. Tal fato encoraja a busca por substâncias com menos efeitos indesejáveis e com maior seletividade de ação antiinflamatória.

Dentre os múltiplos mecanismos nos quais os fármacos antiinflamatórios esteroidais atuam, merece destaque a inibição da migração celular para a área afetada, através da supressão da expressão de moléculas de adesão, ou da indução da síntese de uma proteína inibidora de fosfolipase A2, a anexina-1 (também conhecida como lipocortina). Outro mecanismo de ação dos corticosteróides ocorre através da ativação de receptores nucleares para glicocorticóides que regulam a transcrição de alguns genes pró-inflamatórios de resposta primária, incluindo os que expressam a COX-2. O complexo esteróide-receptor também é capaz de promover inibição da transcrição de um grande número de citocinas envolvidas na inflamação crônica, destacando-se principalmente a interleucina-1 (IL-1) e o fator de necrose tumoral (TNF-alfa). Além disso, os corticosteróides podem ainda promover uma repressão da síntese dos receptores das citocinas, como dos receptores da IL-2 (RODRIGUES et al., 2003; DALLOB et al., 2003).

Os antiinflamatórios não-esteroidais (AINEs), possuem como molécula-alvo a enzima cicloxigenase (COX). A inibição da atividade das COXs (COX-1 constitutiva, COX-2 induzida, ou ambas) é um dos principais mecanismos de ação de diversos fármacos, analgésicos e antiinflamatórios, especialmente os AINEs como o ácido acetilsalicílico (aspirina®) e a indometacina. Desta forma, seu efeito antiinflamatório deve-se principalmente à inibição da produção de prostaglandinas como a

prostaglandina E2 (PGE2), PGD2 e PGI2, bem como dos tromboxanos (TXs) (SAFAYHI, 1997; FITZGERALD, 2003).

Como a COX-2 é uma enzima expressa por células envolvidas na inflamação, foi correlacionada como sendo a maior responsável pela produção de prostanóides como prostaglandinas, prostaciclinas e os tromboxanos, nos processos inflamatórios e dolorosos. A partir daí a busca por inibidores seletivos de COX-2 se tornou intensa. Assim, foram desenvolvidos inibidores seletivos da COX-2 da primeira geração, incluindo o celecoxib (Celebrex®; Pharmacia), e o rofecoxib (Vioxx®; Merck) que foram aprovados pelo Food and Drug Administration (FDA) para o tratamento da artrite (FITZGERALD, 2003). Foram desenvolvidos também os inibidores seletivos para COX-2 de segunda geração como o valdecoxib® (Bextra; Pfizer), etoricoxib® (Arcoxia; Merck) e o lumiracoxib® (Prexige; Novartis) (FITZGERALD, 2003).

Entretanto, estudos demonstram que o Vioxx pode causar sérios efeitos colaterais cardiovasculares como ataque cardíaco e infarto (BOMBARDIER et al., 2002). Apesar disto, a comercialização do Vioxx continuou e após 18 meses de uso contínuo, vários indivíduos exibiram os distúrbios cardiovasculares descritos acima. FITZGERALD (2003) demonstrou que rofecoxib e o celecoxib são capazes de reduzir além dos níveis de PGE2, os níveis de prostaciclina (PGI2). A produção de PGI2 pode causar inibição da agregação plaquetária, indução da vasodilatação e prevenção de proliferação em células musculares lisas in vitro. Os inibidores não seletivos de COX inibem tanto síntese de PGI2 como também de tromboxano A2, enquanto que os inibidores seletivos da COX-2 inibem somente a produção da PGI2. A produção de tromboxano A2 fica intacta podendo induzir a agregação plaquetária, vasoconstrição e proliferação vascular. Em longo prazo a redução da PGI2 e o aumento da tromboxano devem predispor os pacientes ao risco de infarto do miocárdio e outros problemas cardiovasculares. Motivados por estes relatos, a Merck anunciou a retirada voluntária do mercado, em todo o mundo, do medicamento Vioxx, indicado para o tratamento da artrite e dor aguda (RODRIGUES et al., 2003; DALLOB et al., 2003)...

4. Produtos Naturais

O uso de produtos naturais é tão antigo quanto à história humana. Existem relatos de povos egípcios datados cerca de 1500 anos a.C., que descrevem várias doenças e seus tratamentos utilizando produtos de origem natural. Textos de civilizações antigas como as do Oriente Médio, sumérios, assírios, bem como gregos e povos nativos americanos deixaram seu legado a cerca de seus conhecimentos sobre a utilização de produtos naturais para o tratamento de algumas enfermidades (LOMBARDINO *et al.*, 2004).

Ao passar dos anos essas informações se tornaram grandes tesouros para a indústria farmacêutica, o que impulsionou a busca pela identificação de princípios ativos e, conseqüentemente, na síntese de uma gama de medicamentos que atualmente são utilizados para o tratamento de várias doenças. Antenados a essa realidade, a ciência mundial passou a perceber que os estudos de produtos naturais orientados pelo uso popular apresentam um interessante alvo a ser explorado à descoberta de novos fármacos (YUNES e CALIXTO, 2001). Assim, para validação científica de uma fonte de recurso natural, algumas etapas devem ser seguidas, como: estudos taxonômicos, identificação química, testes farmacológicos préclínicos e clínicos e trabalhos nas comunidades para indicar a forma de uso correta (CAMURÇA-VASCONCELOS et. al., 2005).

Em 1828, o professor Friedrich Wohler, demonstrou a possibilidade de produzir compostos sintéticos através de manipulação química, utilizando produtos de origem animal e vegetal como matéria prima (SZEKESSY- HERMANN, 1978). A indústria aperfeiçoou o método de Wohler e alguns anos após sua descoberta já era possível conjugar moléculas inorgânicas com compostos orgânicos. Como exemplo tem-se a síntese do ácido acetil-salicílico (AAS). O ácido salicílico é o precursor do ácido acetil-salicílico que é extraído da casca do salgueiro (*Salix Alba*), sendo em seguida conjugado com um acetato, formando o AAS, um dos medicamentos mais utilizados na história humana (LEVESQUE *et al.*, 2000; LOMBARDINO *et al.*, 2004).

Cem anos após a descoberta de Wohler, o médico Alexander Fleming foi responsável por outro importante divisor de águas para a indústria farmacêutica,

descobrindo um produto bioativo derivado de fungos. Ele observou que placas de culturas de *Staphylococcus* sp., quando contaminadas com um bolor, provocavam a morte bacteriana. Posteriormente, Fleming descobriu que esses fungos, do gênero *Penicillium* sp. produziam uma substância bactericida que ele denominou de penicilina. Alguns anos mais tarde, Howard Florey e Ernst Chain conseguiram purificar a substância, comprovando os resultados de Fleming. A penicilina ajudou a salvar muitas vidas sendo um dos antibióticos mais utilizados atualmente na clínica (BENTLEY, 2005).

Atualmente, cerca de 25-30% de todos os medicamentos utilizados na terapêutica são de origem natural ou derivado de algum composto natural. Além disso, o Brasil tem uma das maiores biodiversidade do mundo, possuindo cerca de 20-22% de todas as plantas e microrganismos existentes no planeta (CALIXTO, 2005). Vários trabalhos demonstram importantes resultados acerca da utilização de produtos naturais em diferentes patologias (BUTLER, 2004; GULLO *et al.*, 2006). Embora, as plantas medicinais sejam muitas vezes o único recurso terapêutico de comunidades e grupos étnicos, o conhecimento agregado perante toda essa biodiversidade ainda é pequeno (MACIEL *et al.*, 2002; CALIXTO, 2005).

Mesmo a medicina convencional tendo superado muitas das terapias populares, ressurgiu nos últimos anos um grande interesse, especialmente pela indústria farmacêutica, em examinar o potencial biológico de substâncias extraídas de plantas medicinais (ZHANG et al., 2001). Dessa forma, a indústria tem se voltado ao conhecimento popular a fim de adquirir informações terapêuticas que foram sendo acumuladas durante séculos. Ressurgindo das pequenas comunidades, a cultura medicinal tem despertado também o interesse de pesquisadores, em estudos envolvendo áreas multidisciplinares, como por exemplo, taxonomia, botânica, farmacologia e fitoquímica, que juntas enriquecem os conhecimentos sobre a inesgotável fonte medicinal natural, sendo um caminho promissor e eficaz para descobertas de novos medicamentos (MACIEL et al., 2002).

No entanto, as plantas medicinais não são as únicas fontes de substâncias bioativas que vêm sendo extensivamente estudadas. Nos últimos anos, alguns metabólitos animais e compostos produzidos por fungos vêm ganhando destaque perante a indústria farmacêutica (BENTLEY, 2005). Dentre os compostos bioativos isolados de diferentes espécies de fungos podemos mencionar terpenóides,

esteróis, ácidos graxos, proteínas, lectinas, proteoglicanas e polissacarídeos (WASSER, 2002; LIU *et al.*, 2007; MORADALI *et al.*, 2007). Tais compostos apresentam uma vasta gama de ações incluindo a capacidade em reduzir os níveis plasmáticos de colesterol e modulador de sistema imune e de crescimento de tumores (SMITH, ROWAN, SULLIVAN, 2002; WASSER, 2002).

5. Fungos, fungos endofíticos e espécie Rhizoctonia solani

As associações entre os seres vivos é uma condição vital para espécies incapazes de conseguirem, sozinhas, meios de sobrevivências, como obtenção de nutrientes e defesas contra espécies predadoras. Entre os microrganismos, os fungos são os que se encontram mais frequentemente associados às plantas (ZOBERI, 1972). Os fungos não produzem clorofilas (são heterotróficos) e sua parede celular é constituída principalmente de quitina. Assim, para que ocorra o sucesso na sobrevivência é inevitável a sua associação com outros seres vivos, especialmente as plantas, ou de sua capacidade de assimilar nutrientes do meio ambiente. Estas associações podem ser parasitárias, mutualistas ou comensais (RICHARDSON, 1999).

Os fungos podem apresentar frutificações de duas naturezas, ou seja, a da forma teleomórfica, antigamente denominada "forma perfeita" ou sexuada e frutificações assexuadas ou clonais, antigamente denominadas "forma imperfeita" e hoje, anamórfica. Na maioria das vezes, para cada espécie existe urna forma anamórfica e uma forma teleomórfica. Assim, conclui-se que os fungos, em geral, podem possuir, ao contrário do que ocorre em outras espécies de organismo, dois nomes científicos para uma mesma entidade biológica, um da forma teleomórfica e outro da forma anamórfica. Nos países tropicais e subtropicais onde existem extremos de temperaturas menores, a grande maioria dos fungos fitopatogênicos se manifesta sob a forma assexuada ou anamórfica e apenas raramente algum desses fungos manifesta a forma sexuada ou teleomórfica (PUTZKE e PUTZKE, 1998).

Os microrganismos, principalmente os fungos, são responsáveis por importantes transformações metabólicas no organismo que parasitam, pelo controle

biológico de pragas e doenças, pela fixação biológica do nitrogênio atmosférico, e degradação de compostos tóxicos. Além disso, eles também apresentam potencial na produção de compostos de atividade biológica.

Endofíticos são todos os microrganismos capazes de colonizar, em alguma fase do seu ciclo de vida, tecidos vegetais, principalmente suas partes aéreas, sem causar dano à planta (PETRINI, 1991) ou de forma mais prática, microrganismos isolados de tecidos vegetais desinfectados superficialmente ou de partes internas das plantas (HALLMANN *et al.*, 1997).

Fungos endofíticos são encontrados na maioria das espécies vegetais, permanecendo em estado de latência ou colonizando ativamente os tecidos de forma local ou sistêmica. Por ocuparem um nicho ecológico semelhante àqueles ocupados por patógenos os endófitos apresentam grande potencial para o controle biológico (HALLMANN et al., 1997). Este controle pode ser resultante de diversos mecanismos: competição por espaço e nutrientes na planta hospedeira, produção de compostos antimicrobianos (PLEBAN et al., 1997; LI et al., 2000) e indução de resistência sistêmica (M'PIGA et al., 1997; BENHAMOU et al., 1998; DUIJFF et al., 1997).

Processos de interação entre microrganismos e plantas já vem sendo relatados há muitas décadas. Com exceção da associação entre plantas e fungos micorrízicos e de bactérias diazotróficas da rizosfera acreditava-se que esta interação levasse à formação de lesões nos tecidos vegetais, as quais poderiam causar a morte no interior de tecidos vegetais sem que os hospedeiros sofram qualquer dano aparente, abrindo desta forma novas perspectivas para o estudo das interações plantas/microrganismos (AZEVEDO *et al.*, 2000).

Plantas contendo fungos endofíticos, na maioria das vezes, são rejeitadas por herbívoros, isto está associado à produção de compostos tóxicos aos herbívoros produzidos em parte pelos endofíticos. Inicialmente, o conhecimento da comunidade endofítica associada ao hospedeiro de interesse, é importante, pois qualquer desequilíbrio na população de endofíticos poderá proporcionar o estabelecimento de patógenos (ARAÚJO *et al.*, 1995).

O gênero Rhizoctonia foi descrito pela primeira vez pelo micologista francês De Candolle, em 1815, como sendo um fungo não esporulante que ataca, preferencialmente, raízes e que produz filamentos de hifas a partir de escleródios (SNEH et al., 1991). O micélio é caracterizado pela ramificação em ângulo reto com septação imediatamente e após o ramo, constrição na base da ramificação e septo doliporo. A fase sexuada deste fungo é *Thanatephorus cucumeris*, classificado no Reino Fungi, Filo Basidiomycota, Classe Basidiomycetes, Subclasse Agaricomycetidae, Ordem Ceratobasidiales, Família Ceratobasidiaceae, Genero *Thanatephorus*, Espécie *T. cucumeris* (BUTLER; BOLKAN, 1973, ANDERSON, 1982; ADAMS, 1988).

Desde o século passado, os endofíticos têm sido usados como agentes de controle biológico de pragas e doenças como bioherbicidas e como vetores para introduzir genes em plantas hospedeiras (AZEVEDO et al., 2000). Especial atenção vem sendo dada à possibilidade da utilização destes microrganismos como vetores para a introdução de novas características em plantas de interesse ou mesmo para a produção de compostos biologicamente ativos como antibióticos e metabólitos secundários de interesse farmacológico (MANDALA et al., 1997; STROBEL e HESS, 1999; RODRIGUES et al., 2000). Dessa maneira, fica evidente a importância sobre as substâncias que os endofíticos são capazes de produzir, tendo então, razões para aprofundar os estudos sobre os produtos derivados desses organismos.

OBJETIVO

Objetivo Geral

Investigar a atividade antinociceptiva e antiinflamatória da fração metanólica obtida a partir da biomassa do fungo endofítico *Rhizoctonia solani* na fase teleomórfica utilizando diferentes modelos experimentais.

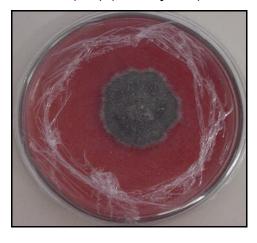
Objetivos Específicos

- Investigar o potencial antinociceptivo da fração metanólica do fungo endofítico Rhizoctonia solani em diferentes modelos experimentais de estudo da dor.
- Caracterizar o provável mecanismo de ação para o efeito antinociceptivo observado pelo tratamento com a fração metanólica do fungo Rhizoctonia solani.
- Avaliar o potencial antiedematogênico da fração metanólica do fungo endofítico Rhizoctonia solani utilizando o modelo de edema de pata em camundongos.

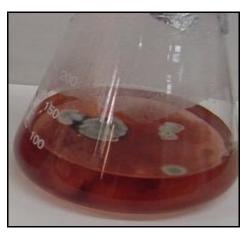
MATERIAL E MÉTODOS

1. Animais

Foram utilizados camundongos Swiss adultos de ambos os sexos (25 a 35 g), provenientes do Biotério Central da Universidade Federal de Alagoas (BioCen-UFAL). Os animais foram mantidos em condições controladas de temperatura (22 ± 1°C) e luminosidade (ciclo claro/escuro de 12 horas) com livre acesso a ração e água antes dos experimentos. Os animais permaneceram no laboratório para sua adaptação por um período de pelo menos 1 hora (h) antes da realização dos experimentos. Todos os experimentos foram aprovados e estão de acordo com as normas do Comitê de Ética Institucional da UFAL (Protocolo nº 23065.12614/2006-89).


2. Obtenção do fungo endofítico

As sementes de aroeira-vermelha, coletadas de planta sadia com cerca de seis anos de idade e três metros de altura, no Campus A.C. Simões da UFAL, Maceió (AL), foram desinfectadas em etanol (70 %) durante 30 segundos, seguido por banho em solução de hipoclorito de sódio (10 %) durante 20 minutos. Em seguida, o material foi filtrado e as sementes lavadas com água destilada estéril por quatro vezes. Posteriormente, as sementes foram maceradas mecanicamente e semeadas em nove placas de Petri (quatro sementes/placa) contendo papel de filtro umedecido e meio BDA (batata-dextrose-ágar).


As sementes foram mantidas em meio BDA (Ilustração 1) por 40 dias sob iluminação constante à temperatura ambiente (25 ± 3 °C). Após este período, o fungo *Rhizoctonia solani* em sua fase teleomórfica foi identificado pelas suas características macroscópicas e micromorfológicas (LONGA, 2002).

Após a identificação, a biomassa foi fragmentada, e em seguida transferida para 50 Erlenmeyers, onde ficou por mais 30 dias em meio BD (batata-dextrose)

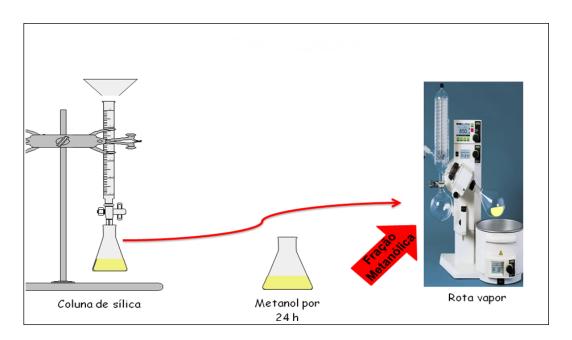

(Ilustração 2). Após esse período, a biomassa do fungo obtida foi seca em estufa (60°C) sendo em seguida macerada mecanicamente e mantida em metanol por 24 horas para posterior fracionamento. Em seguida, o material foi aplicado à coluna de sílica, e o eluato obtido submetido ao rotaevaporador para evaporar o solvente. Em temperatura ambiente o material cristalizado obtido foi denominado fração metanólica (FM) (Ilustração 3).

Ilustração 1. Crescimento do teleomorfo em meio BDA.

Ilustração 2. Biomassa do teleomorfo *Rhizoctonia solani* crescendo em meio BD.

Ilustração 3. Obtenção da fração metanólica a partir da biomassa das hifas de *Rhizoctonia solani*.

3. Avaliação da atividade antinociceptiva

3.1. Teste de contorção abdominal induzida por ácido acético

A resposta nociceptiva foi induzida pela injeção intraperitoneal (i.p.) de ácido acético (0,8 %) diluído em água destilada. O total de contorções abdominais foi registrado durante 10 minutos, tendo-se iniciado o registro da contagem 5 minutos após a injeção do ácido acético (Ilustração 4). O tratamento com a FM (0,1, 1, 10 e 100 mg/kg), soluções salina (NaCl, 0,9 %) ou indometacina (20 mg/kg), foi feito por via intraperitoneal (i.p.) por 1h ou até 8 h antes do estímulo álgico, no volume final de 200 μL/ animal.

Ilustração 4. Resposta nociceptiva (contorção abdominal) induzida por ácido acético em camundongo.

3.2. Teste da placa quente

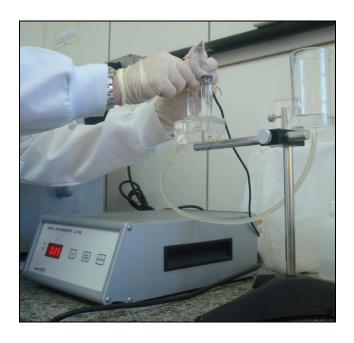
Os camundongos foram colocados sobre uma placa de metal aquecida (54 ± 1 °C) e a resposta ao estímulo térmico, ato de saltar ou lamber uma das patas posteriores, foi registrado como tempo de latência (Ilustração 5). Foi adotado um *cutoff* (o tempo máximo de permanência do animal sobre a placa) de 30 segundos para preservar o animal de possíveis lesões causadas pela exposição a tempos superiores. Os animais foram pré-tratados com a FM (1, 10 e 100 mg/kg, i.p.; 200 µL/animal), salina ou morfina (5 mg/kg, i.p.), à medida do tempo de latência foi registrada no seguinte intervalo de tempo (60 min).

Ilustração 5. Animal exposto a placa quente (Hot Plate).

3.3. Teste de formalina

Neste modelo os animais receberam uma injeção intraplantar (i.pl) contendo 100 μl de solução de formalina a 2 % na pata posterior (Ilustração 6). Logo após a injeção da formalina, os animais foram colocados individualmente, sob funil de vidro invertido para facilitar a observação. O tempo que o animal permaneceu lambendo ou mordendo a pata injetada com formalina foi avaliado durante 30 min, sendo este período considerado indicativo de nocicepção (Ilustração 7). Este modelo permite avaliar duas fases de sensibilidade dolorosa: a primeira fase, que ocorre durante os primeiros 5 minutos após a injeção de formalina (dor de origem neurogênica), e a segunda fase, que ocorre entre 15 a 30 minutos após a injeção de formalina, representando a dor inflamatória. Uma hora antes do estímulo nociceptivo os animais foram tratados (i.p.; 200 μL/animal) com a FM (10 mg/kg), salina ou indometacina (20 mg/kg) (HUNSKAAR e HOLE, 1987).

Ilustração 6. Injeção intraplantar (i.pl.) de formalina (2 %).


Ilustração 7. Resposta nociceptiva (lambida da pata) induzida pela injeção i.pl. de formalina (2 %).

4. Avaliação da atividade antiinflamatória

4.1. Teste de edema de pata

A análise do edema de pata foi realizada com auxílio do aparelho de pletismômetro (Ilustração 8). O equipamento é composto por duas cubetas de acrílico ligadas através de sistema de vasos comunicantes e preenchidas com, água destilada, solução salina (0,45 %) e detergente (1 %). A pata do camundongo é imersa até a junção tíbio-tárcica em uma das cubetas, e o volume deslocado para a segunda cubeta – proporcional ao volume da pata imersa – é medido com auxílio de um sensor eletrônico de pressão e registrado. Os animais receberam uma injeção intraplantar com carragenina (300 μg/pata), histamina (100 μg/pata) ou PGE₂ (100 ng/pata) na pata esquerda, sendo o volume final de 50 μl/pata. A pata direita recebeu apenas solução salina (NaCl, 0,9%). Os animais receberam 1 hora antes do estímulo por via i.p. (200 μL/animal) a FM (10 mg/kg), salina (0,9%) ou indometacina (20 mg/kg). Após os diferentes estímulos o volume de cada pata foi avaliado em diferentes tempos (0,5, 1, 2 ou 4h) sendo os valores expressos em microlitros (μL) de acordo com a seguinte fórmula:

 \triangle Volume (μ L) = (volume da pata esquerda) – (volume da pata direita).

Ilustração 8. Avaliação do edema de pata utilizando o pletismômetro.

5. Análise estatística

Os resultados obtidos foram analisados através do teste de análise de variância do teste t e ANOVA, seguido do teste estatístico one-way de Newman-Keuls-Student. Os dados foram expressos como a média \pm erro padrão da média (EPM) de no mínimo 4 animais, onde os valores de P<0,05 foram considerados estatisticamente significantes.

RESULTADOS

1. Análise da atividade antinociceptiva da fração metanólica do fungo endofítico *Rhizoctonia solani*

1.1. Efeito da FM na nocicepção induzida por ácido acético

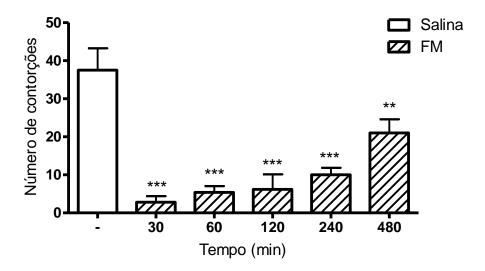

Conforme apresentado na Figura 1, o pré-tratamento dos animais 1 hora com FM (0,1,1, 10 e 100 mg/kg, i.p.) foi capaz de produzir uma inibição significativa das contorções abdominais induzidas pelo ácido acético em todas as doses testadas. Resultado semelhante também obteve o grupo tratado com um fármaco padrão, indometacina (20 mg/kg, i.p.).

Figura 1. Efeito da FM na nocicepção induzida por ácido acético em camundongos. Animais usados como controle foram tratados com solução salina ou com indometacina (20 mg/kg, i.p.). A FM, nas diferentes doses, foi administrada por via (i.p) 1 h antes do ácido acético. Cada valor representa a média ± EPM (n = 6). As diferenças estatísticas foram determinadas pela análise de variância (ANOVA) seguida pelo teste de Student-Newman-Keuls. (*) denota nível de significância comparado ao grupo tratado com salina. **P<0,01 e ***P<0,001.

1.2. Cinética do Efeito da FM na nocicepção induzida por ácido acético

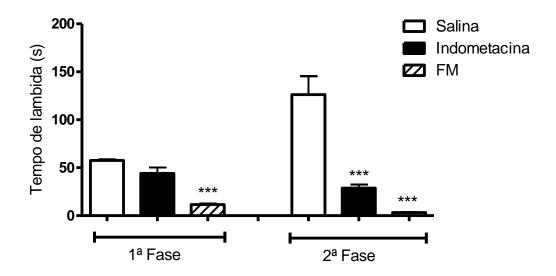
Buscando avaliar a duração do efeito antinociceptivo induzido pela FM, animais tratados com a FM foram em diferentes tempos (30, 60, 120, 240 e 480 min), submetidos ao estímulo com ácido acético. Como mostrado na Figura 2, o tratamento com a FM (10 mg/kg, i.p.) apresentou em 30 min um efeito antinociceptivo bastante significativo que perdurou por no mínimo 8 h.

Figura 2. Duração do efeito antinociceptivo da FM. O número de contorções abdominais foi registrado em diferentes intervalos de tempo após tratamento da FM na dose de (10 mg/kg, i.p.). Animais controles receberam tratamento com salina. Cada ponto representa a média ± EPM de 6 animais. As diferenças estatísticas foram detectadas com ANOVA seguidos com o teste de Newmann-Keuls-Studant. ***P<0,001, **P<0.01 denota nível de significância comparado ao grupo tratado com salina.

1.3. Efeito da FM na nocicepção induzida pela placa quente

Neste modelo, o estímulo térmico atua diretamente nos nociceptores periféricos com imediata condução do sinal ao SNC, sendo recebida pelo córtex cerebral e entendida como nociva ao organismo, emitindo o sinal de resposta como retirada imediata da parte do organismo em contato com a fonte agressora (KURAISCH et. al., 1983).

De acordo com a Tabela 1, o tratamento 60 minutos com a FM, apenas nas doses de 10 e 100 mg/kg, foi capaz de aumentar o tempo de latência na percepção do estímulo nociceptivo induzido de placa quente (54 °C), indicando assim, que os efeitos antinociceptivos da FM parecem decorrer de uma ação central. Em outro grupo experimental, o tratamento com morfina revelou um aumento significativo no tempo de latência.


Tabela 1. Efeito da FM no modelo de placa quente.

Tratamento	Concentração (mg/kg)	Tempo de latência (s)
Salina	-	7,0 ± 1,5
	1	10.9 ± 3.7
FM	10	13,8 ± 2,9 *
	100	16,0 ± 4,0 *
Morfina	5	14,2 ± 2,7 *

A resposta foi analisada no tempo de 60 min após administração de salina, FM (1, 10 e 100 mg/kg, i.p.) ou morfina (5 mg/kg, i.p.). Os resultados foram representados pela média ± EPM de 6 animais. As diferenças estatísticas foram detectadas com ANOVA seguidos com o teste de Newmann-Keuls-Studant. (*) p < 0,05 denota nível de significância comparado ao grupo salina.

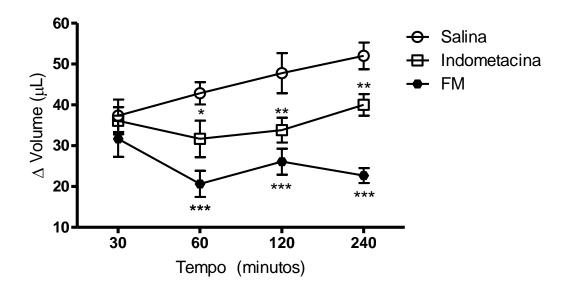
1.4. Efeito da FM na nocicepção induzida pela formalina

Como mostra a Figura 3, o tratamento por via intraperitoneal com a FM (10 mg/kg) foi capaz de inibir a resposta nociceptiva induzida por formalina de maneira significativa tanto na fase neurogênica (0 a 5 min) quanto na fase inflamatória (15 a 30 min), quando comparado ao controle tratado com salina. Vale destacar que os animais que receberem indometacina (20 mg/kg, i.p.) apresentaram inibição da resposta nociceptiva apenas na fase inflamatória.

Figura 3. Efeito do tratamento com a FM sobre a nocicepção induzida por formalina. Os animais foram tratados por via intraperitoneal com a FM (10 mg/kg), salina ou indometacina (20 mg/kg) e a nocicepção medida de 0-5 min (na primeira fase) e de 15-30 min (na segunda fase) após a injeção (i.pl.) de formalina. Os resultados foram representados pela média ± EPM de 4 animais. As diferenças estatísticas foram detectadas com ANOVA seguidos com o teste de Newmann-Keuls-Studant. ***P<0,001 denota nível de significância comparado ao grupo salina da respectiva fase.

1.5. Investigação do mecanismo de ação da FM utilizando a resposta nociceptiva no modelo de formalina

Com propósito de avaliar o mecanismo de ação responsável pelas ações antinociceptivas da FM obtida a partir da biomassa do fungo *Rhizoctonia solani*, foi utilizado diferentes estratégias, incluindo antagonista opióide, dopaminérgico, adrenérgico, muscarínico e inibidor da enzima óxido nítrico sintase (L-NAME). Para todas as estratégias, os animais foram tratados previamente 15 min antes da administração da FM (10 mg/kg, i.p.). Como revelado na Tabela 2, o tratamento com a FM induziu um efeito antinociceptivo em ambas as fases do teste de formalina, fenômeno que foi revertido apenas pelo pré-tratamento com naloxana, sugerindo que o sistema opióide esteja envolvido nas ações antinociceptivas observadas na FM. Vale a pena ser observado também que outros antagonistas como metoclopramida e ioimbina intensificaram o efeito antinociceptivo da FM.


Tabela 2. Efeito da FM envolvendo receptores na ação antinociceptiva no modelo de formalina.

Pré-tratamento	Grupo	Tempo de	Tempo de lambida (s)	
(i.p.)		1ª Fase	2ª Fase	
-	Salina	57,5 ± 1,2	180,8 ± 14,9	
-	FM	11,5 ± 1,0 ***	60,6 ± 4,2 ***	
Metoclopramidra (1 mg/kg)	FM	4.3 ± 1.9	14,5 ± 6,5	
loimbina (1 mg/kg)	FM	3.5 ± 0.9	$5,6 \pm 0,3$	
Atropina (1 mg/kg)	FM	$17,5 \pm 5,5$	53.8 ± 8.4	
L-NAME (20 mg/kg)	FM	$11,8 \pm 3,2$	$86 \pm 29,9$	
Naloxona (1 mg/kg)	FM	$35,8 \pm 8,5$ ⁺	181,8 ± 31,3 ⁺	

Os animais foram tratados por via intraperitoneal com a FM (10 mg/kg) e salina, a nocicepção medida de 0-5 min. (na primeira fase) e de 15-30 min. (na segunda fase) após a injeção (i.pl.) de formalina. Os resultados foram representados pela média ± EPM de 4 animais. As diferenças estatísticas foram detectadas com ANOVA seguidos com o teste de Newmann-Keuls-Studant. ***P<0,001 denota nível de significância comparado ao grupo salina da respectiva fase. *P<0,05 denota nível de significância comparado ao grupo FM da respectiva fase.

2. Análise da atividade antiinflamatória da fração metanólica do fungo *Rhizoctonia solani* no modelo de edema de pata induzida por carragenina

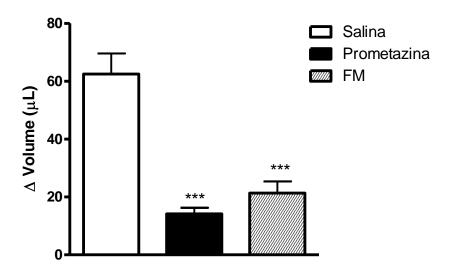

Com a finalidade de analisar o efeito da FM sobre o processo inflamatório, utilizamos o modelo de edema de pata induzido por carragenina (300µg/50µl/pata). 1h antes os animais foram tratados com a FM (10 mg/kg, i.p.), após 30, 60 120 e 240 minutos o edema formado foi avaliado. Os resultados demonstram que a FM induz uma redução significativa na formação do edema a partir de 60 minutos da injeção do estímulo até 4 horas. Vale destacar que este fenômeno se mostrou mais eficaz do que o grupo tratado com indometacina (Figura 4).

Figura 4. Efeito da FM sobre o edema de pata induzida por carragenina. Os animais foram pré-tratados com salina ou indometacina (20 mg/kg, i.p.) 1 h antes do estímulo. A avaliação foi realizada em diferentes tempos após injeção com carragenina (300μg/50μl/, i.pl). Os resultados foram representados pela média ± EPM de 6 animais. As diferenças estatísticas foram detectadas com ANOVA seguidos com o teste de Newmann-Keuls-Studant. (*) denota nível de significância comparado ao grupo tratado com salina. *P<0,05, **P<0,01 e ***P<0.001.

2.1. Efeito da FM sobre o edema de pata induzido por histamina

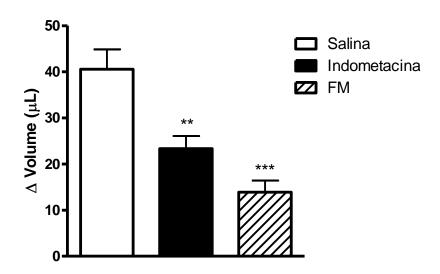

Dando continuidade à análise da influência da FM sobre os parâmetros da resposta inflamatória, utilizamos outros estímulos edematogênicos como histamina e PGE₂. Assim, primeiramente os animais foram pré-tratados com FM (10 mg/kg, i.p.) e 1 h após foram estimulados na pata com histamina (100 µg/pata). Após 30 min da injeção com histamina o edema formado foi avaliado. Como demonstrado na Figura 5, o pré-tratamento com FM reduziu de maneira significativa a formação do edema quando comparado ao grupo tratado com salina. Neste mesmo experimento, o tratamento por 1 h com prometazina (5 mg/kg, i.p.), um antagonista de receptor histamínico, se mostrou efetivo na inibição da formação do edema induzido por histamina (Figura 5).

Figura 5. Efeito da FM sobre o edema de pata induzida por histamina. Os animais foram estimulados com histamina (100 μg/pata) e avaliados após 30 mim. Os animais foram prétratados com salina, prometazina (5 mg/kg, i.p.) ou FM (10 mg/kg, i.p.) 1 h antes do estímulo. Os resultados foram representados pela média ± EPM de 6 animais. As diferenças estatísticas foram detectadas com ANOVA seguidos com o teste de Newmann-Keuls-Studant. ***P<0,001 denota nível de significância comparado ao grupo tratado com salina.

2.2. Efeito da FM sobre o edema de pata induzido por PGE₂

Em outro grupo experimental, os animais foram tratados com a FM (10 mg/kg, i.p.), e após 1 h, os animais foram estimulados com injeção intraplantar com PGE₂ para indução do edema. Neste experimento, verificamos que o estímulo com PGE₂ (100 ng/pata) foi capaz de induzir edema de maneira significativa, sendo que o prétratamento com FM foi capaz de inibir de modo significativo o edema formado (Figura 6). Indometacina (20 mg/kg, i.p.), administrada 1 h antes do estímulo, utilizado como controle, mostrou-se efetiva na inibição da formação do edema induzido por PGE₂ (Figura 6).

Figura 6. Efeito da FM sobre o edema de pata induzida por PGE2. Os animais foram estimulados com PGE2 (100 ng/pata) e avaliados após 1 h. Os animais foram pré-tratados com salina, indometacina (20 mg/kg, i.p.) ou FM (10 mg/kg, i.p.) 1 h antes do estímulo. Os resultados foram representados pela média ± EPM de 6 animais. As diferenças estatísticas foram detectadas com ANOVA seguidos com o teste de Newmann-Keuls-Studant. (*) denota nível de significância comparado ao grupo tratado com salina. **P<0,01 e ***P<0,001.

DISCUSSÃO

Os resultados do presente estudo demonstram, pela primeira vez, que a fração metanólica obtida a partir da biomassa do fungo endofítico *Rhizoctonia solani* isolada das sementes da planta aroeira-vermelha apresentou uma atividade significativa antinociceptiva e antiinflamatória. Estes se mostram relevantes uma vez que não há registros científicos similares envolvendo outras espécies deste gênero.

A descoberta de novas substâncias com atividade analgésica e/ou antiinflamatória é ainda um aspecto altamente desejável e de enorme importância para a indústria farmacêutica e consequentemente, para utilização clínica. Várias evidências demonstram que um grande número de medicamentos utilizados terapeuticamente é derivado direta ou indiretamente de produtos naturais, especialmente de plantas superiores, sendo uma fonte inesgotável de possibilidades para a descoberta de novos medicamentos (KOEHN e CARTER, 2005). Entretanto, várias dificuldades são encontradas por aqueles que desejam estudar as ações de produtos de origem natural em sistema biológico, como por exemplo, a escolha de modelos experimentais, a obtenção de extratos padronizados, a dificuldade de obtenção, isolamento e identificação das substâncias ativas. Somando-se a isso, muitas doenças estão associadas a múltiplos fatores, dificultando a escolha de um alvo específico para o estudo (COOKSON, 2004).

Atualmente, o uso clínico de novas substâncias com atividades analgésicas utilizadas principalmente para o tratamento de vários tipos de dor (tanto de origem neurogênica quanto inflamatória), vem aumentando significativamente. Vários modelos de analgesia em animais de laboratório podem ser utilizados para verificar atividade antinociceptiva de frações e compostos isolados. No entanto, esses modelos possuem características próprias, que devem ser consideradas, tais como simplicidade, reprodutibilidade e validade dos resultados obtidos e principalmente, a possibilidade de serem correlacionados com estudos clínicos (DICKENSON, 1997).

Inicialmente, este trabalho foi conduzido utilizando o modelo de contorções abdominais induzidas pelo ácido acético, com a intenção de avaliar a atividade antinociceptiva da fração metanólica, bem como o tempo inicial de sua ação e a duração de seu efeito. O modelo do ácido acético vem sendo utilizado há muitos anos e se tornou uma valiosa ferramenta para a triagem de novos agentes com atividade analgésica e/ou antiinflamatória, tendo em vista que este modelo é sensível a fármacos com estas propriedades (TJOLSEN e HOLE, 1997; LAFLAMME

et al., 1999; LE BARS et al., 2001). A administração intraperitoneal de ácido acético provoca a liberação de muitos mediadores presentes no processo inflamatório, como as citocinas IL-1β, IL-6, TNF-α, prostaglandinas, bradicinina entre outros, sendo considerado, portanto, um típico modelo de nocicepção inflamatória visceral (RIBEIRO et al., 2000, IKEDA et al., 2001). A nocicepção causada pelo ácido acético, além de ser influenciada pelas muitas substâncias pró-inflamatórias liberadas, pode ser mediada em parte pela dissociação dos prótons presentes no ácido acético, que estimulam diretamente canais de cátions não seletivos, promovendo assim o início da dor visceral (IKEDA et al., 2001; JULIUS e BASBAUM, 2001; COUTAUX et al., 2005). De fato, a acidificação do tecido pode ocorrer em uma variedade de patologias, pois é bem conhecido que os prótons mostram-se envolvidos na geração da dor inflamatória (REEH e KRESS, 2001; VOILLEY et al., 2001). A fração metanólica do endofítico R. solani reduziu de forma significativa a nocicepção provocada pelo ácido acético em camundongos. Além disso, o tratamento com a fração metanólica produziu um efeito antinociceptivo máximo após 30 min de sua administração, efeito este, que decresceu de maneira gradual, permanecendo significativo por no mínimo 8 horas após sua administração.

Motivados pela ação antinociceptiva apresentada pela fração metanólica no modelo de contorção abdominal por ácido acético, buscamos avaliar se este efeito antinociceptivo seria decorrente de uma possível ação central. Para isso, os animais foram submetidos ao teste da placa quente. Este modelo mostra-se útil por permitir avaliar substâncias com ação central, tal como a morfina (ANKIER, 1974). Os fármacos que atuam por mecanismos centrais para impedir a nocicepção, podem inibir a transmissão do sinal na via aferente ou eferente. A morfina, fármaco de referência, age inibindo diretamente a transmissão ascendente das informações nociceptivas na medula espinhal e ativando circuitos eferentes que partem do mesencéfalo e chegam ao corno dorsal da medula (GUSTEIN e AKIIL, 2003). A fração metanólica, foi capaz de aumentar significativamente o tempo de latência na percepção do estímulo nociceptivo no modelo de placa quente quando este foi administrado 60 minutos antes da aplicação do estímulo térmico, assim como o grupo tratado com morfina. Deste modo, constatamos que os antinociceptivos da fração metanólica mostraram-se semelhantes ao da morfina, sugerindo uma ação central.

Tendo por base os dados anteriores, decidimos ampliar o conhecimento a respeito do efeito antinociceptivo da fração metanólica. Para isso, utilizamos o modelo de indução de nocicepção pela injeção intraplantar de formalina. Após 1 h do tratamento com a fração metanólica, administrada pela via intraperitoneal, observouse uma redução tanto na primeira quanto na segunda fase da nocicepção induzida pela formalina. Este modelo permite avaliar dois tipos diferentes de dor, a dor neurogênica e a inflamatória. Na primeira fase deste modelo, caracterizada pela dor neurogênica, observa-se ativação direta dos nociceptores presentes em axônios não-mielinizados, como fibras C, e pouco mielinizadas, como as fibras Αδ, acarretando na liberação de neuropeptídeos como SP e CGRP em terminais periféricos e centrais (MCCALL *et al.*, 1996; PUIG e SORKIN, 1996). Já na segunda fase, caracterizada pela dor inflamatória, a dor é mediada pela combinação de mecanismos de sensibilização, tanto na periferia quanto a nível central (HUNSKAAR e HOLE, 1987; TJOLSEN *et al.*, 1992).

Tem sido demonstrado que a injeção intraplantar de formalina em roedores provoca a liberação de várias substâncias álgicas e pró-inflamatórias, as quais podem estar diretamente relacionadas às fases características deste modelo. Dentre as substâncias liberadas, podemos destacar o glutamato, prostaglandinas, óxido nítrico, taquicininas, prótons, bradicinina, dentre outros (TJOLSEN *et al.*, 1992; MALMBERG, 1995; SANTOS e CALIXTO, 1997).

Com propósito de avaliar o mecanismo de ação usamos diferentes estratégias que incluem o uso dos antagonistas do sistema opióide, dopaminérgico, adrenérgico, muscarínicos e um inibidor da síntese de óxido nítrico (L-NAME) sobre a antinocicepção induzida pela FM no modelo de formalina.

O primeiro sistema investigado foi o dopaminérgico, utilizando a metoclopramida, um antagonista de receptores D2 e bloqueador de receptores 5-HT₃. A dopamina é um neurotransmissor cujo papel está diretamente relacionado a várias neuropatologias, incluindo dor e neurodegeneração. Estudos sugerem que o sistema dopaminérgico encontra-se ativado em situações que envolvem estresse através da liberação de opióides endógenos (WOOD, 2004). Como nossos resultados revelaram uma possível ação central da FM, e sabendo que na prática clínica, a metoclopramida é freqüentemente usada concomitantemente com opiáceos como a morfina, pré-tratamos os animais com este antagonista e notamos

que não houve reversão dos efeitos antinociceptivos da FM. Em sintonia com estes achados, Kamerman e colaboradores (2006) demonstraram que ondansetron, um bloqueador de receptores 5-HT3, não interfere na sensibilidade nociceptiva e não afeta os efeitos antinociceptivos da morfina.

Em seguida, usamos um antagonista do receptor α2 adrenérgico, a ioimbina. Os receptores α2 estão envolvidos na inibição da transmissão sensorial por interferirem na condutância do cálcio, em neurônios sensoriais presentes no corpo dorsal da medula espinhal, inibindo assim, a liberação de neurotransmissores (FURST, 1999). Nossos resultados revelam que o tratamento com ioimbina não foi capaz de reverter a antinocicepção da FM descartando assim a participação da via α2-adrenérgica nos efeitos induzidos por esta fração.

Recentes achados demonstram que a ativação periférica de receptores colinérgicos muscarínicos produz antinocicepção em diferentes modelos experimentais. Além disso, é conhecido o envolvimento da acetilcolina como modulador das respostas nociceptivas. Em adição, sabe-se que a atropina mostrase capaz de reverter a antinocicepção determinada por antiinflamatórios não-esteroidais (PINARDI et al., 2003). Desta forma, com propósito de avaliar o envolvimento do sistema muscarínico na antinocicepção da FM, tratamos os animais com atropina antes da administração da FM. Nossos resultados revelaram que a atividade antinociceptiva da FM não foi alterada pela atropina, sugerindo que a FM atinge seu efeito independente do sistema colinérgico.

Nos últimos anos diferentes trabalhos apontam para a participação do óxido nítrico (NO) em processos nociceptivos (VALLANCE e CHAN, 2001). Em nosso modelo, o L-NAME, um inibidor da biossíntese do óxido nítrico, administrado antes da FM não se mostrou capaz em reverter a antinocicepção, descartando o envolvimento do NO neste processo antinociceptivo da FM.

Motivados ainda pelo importante efeito antinociceptivo da FM no modelo da placa quente e no modelo de formalina, verificamos o envolvimento do sistema opióide nesta antinocicepção. Opióides são analgésicos amplamente usados na prática clínica, sendo a morfina o principal fármaco deste grupo com habilidade de aumentar o limiar de dor. Assim usamos a naloxona, um antagonista não seletivo dos receptores opióides, para investigar o envolvimento deste sistema no efeito detectado. Nossos resultados mostram que a antinocicepção causada pela FM foi

antagonizada pelo pré-tratamento com naloxona sugerindo que o mecanismo opióide esteja envolvido na antinocicepção da FM.

Diferentes trabalhos confirmam que a segunda fase do teste de formalina mostra-se capaz de revelar substâncias envolvidas com a dor de origem inflamatória. Esta informação aliada ao fato da FM ter se mostrado eficiente em inibir este parâmetro, decidimos investigar se esta fração também seria capaz de modular outro parâmetro da inflamação, como o aumento na permeabilidade vascular.

Para este fim, o modelo de edema de pata vem sendo amplamente utilizado para avaliar a atividade antiinflamatória de novos compostos, onde se utiliza vários estímulos como indutores do edema, incluindo carragenina, histamina, PGE2, entre outros (NANTEL *et al.*, 1999; PASSOS *et al.*, 2007; MARIOTTO *et al.*, 2008).

Carragenina que é um poderoso agente inflamatório por estimular a produção e liberação de inúmeros mediadores no local da administração que incluem histamina, serotonina e bradicinina, bem como por citocinas pró-inflamatórias como IL-1β e TNF-α, além da liberação de prostaglandinas e óxido nítrico, produzidos principalmente pelas isoformas de ciclooxigenase-2 (COX- 2) e óxido nítrico sintase induzida (iNOS), respectivamente (NANTEL et al., 1999; POSADAS et al., 2004). Este modelo é conhecido por induzir a formação de edema (HENRIQUES et al., 1987), que se desenvolve nas 4 horas iniciais e é conhecido por produzir um edema intenso (POSADAS et al., 2004). Sabendo-se disso, utilizando estímulos específicos, como a histamina ou PGE2, buscamos investigar um possível envolvimento direto da FM sobre a formação de edema desencadeada por estes mediadores. A histamina atinge seus efeitos ao se ligar a receptores específicos denominados receptores histaminérgicos (classificados ainda em H1, H2 e H3), enquanto a PGE2, um metabólito do ácido araquidônico produzidos pela ciclooxigenase, mostra-se capaz de causar vasodilatação e aumentar a permeabilidade capilar gerando edema (SALEH et al., 1997).

Em nossos experimentos, verificamos que o edema induzido pela carragenina foi drasticamente inibido pela FM, fenômeno semelhante de inibição do edema pela FM também foi observado quando o estímulo foi a PGE₂, o que indica uma forte ação antiedematogênica desta fração. Além disso, a FM foi efetiva em prevenir o edema formado pela histamina.

De maneira conjunta, os resultados obtidos neste estudo revelam que a FM mostra-se possuidora de efeitos analgésicos e antiinflamatórios por mecanismos que parecem depender de receptores opióides, visto que no modelo de formalina a naloxona reverteu ambas as fases neurogênica e inflamatória da dor. Assim, em sintonia com estes achados, foi demonstrado anteriormente que o tratamento com morfina preveniu a formação do edema de pata, fenômeno revertido por naloxona (GYIRES et al., 1985; AMANN et al., 2002).

Portanto, nossos resultados revelam que a fração metanólica do fungo *Rhizoctonia solani*, obtido das sementes de aroeira-vermelha, apresentam uma importante ação analgésica e antiinflamatória/antiedematogênica.

CONCLUSÃO

- A fração metanólica obtida da biomassa do fungo endofítico Rhizoctonia solani apresentou atividade antinociceptiva no modelo de contorção abdominal induzido por ácido acético, sendo um efeito persistente por no mínimo 8 h.
- A antinocicepção revelada pelo teste da placa quente sugere possíveis efeitos centrais da fração metanólica.
- A fração metanólica foi capaz de inibir a nocicepção tanto na fase neurogênica quanto na fase inflamatória do teste de formalina, fenômeno que foi revertido apenas pelo pré-tratamento com naloxona, o que indica o envolvimento dos receptores opiáceos nas ações da fração metanólica.
- A fração metanólica exibiu importante atividade antiinflamatória no modelo de edema de pata induzido por carragenina, histamina bem como por PGE2.
- Estes resultados demonstram, pela primeira vez, o efeito antinociceptivo e antiinflamatório da fração metanólica obtida do fungo endofítico do gênero Rhizoctonia solani.

REFERÊNCIAS

ADAMS, G.C. *Thanatephorus cucumeris* (*Rhizoctonia solani*), a species complex of wide host range. **Advances in Plant Pathology**, v.6, p.535-552, 1988.

ADCOCK, I.M; COSIO B; TSAPROUNI L; BARNES P.J; ITO K. Redox regulation of histone deacetylases and glucocorticoid-mediated inhibition of the inflammatory response. **Antioxid Redox Signal**, v.7 p.144-52, 2005.

ALFENAS, A.C.; SILVEIRA, SF. Análise de proteínas e isoenzimas de isolados de Rhizoctonia solanip patogênicos a Eucalyptus. **Fitopatologia brasileira**, v.27, p.33-41, 2002.

ALMEIDA, T.F.; ROIZOINBLATT, S.; TUFIK, S. Afferent pain pathways:a neuroanatomicla review. **Barim Res**, v.100, p.40-56, 2004.

AMANN, R.; LANZ, I.; SCHULIGOI, R. Effects of morphine on oedema and tissue concentration of nerve growth factor in experimental inflammation of the rat paw. **Pharmacology**, V.66, p.169-72, 2002.

ANAND, K.J.S.; CRAIG, K.D. New perspectives on the definition of pain. **Pain**, v. 67 p. 3-6, 1996.

ANDERSON, N.A. The genetics and pathology of *Rhizoctonia solani*. **Phytopathology, St. Paul**, v.20, p.329-344, 1982.

ANKIER, S.I. New hot plate tests to quantify antinociceptive and narcotic antagonist activities. **Eur J Pharmacol**, v.27, p.1-4, 1974.

ARAÚJO, W. L.; AZEVEDO, J. L. Isolamento e identificação de microrganismos de 11 porta-enxertos de *Citrus* sp. **Anais da 20^a Reunião Anual de Genética de Microrganismos**, Piracicaba; ESALQ/USP, v.20, p.111, 1995.

AZEVEDO, J. L.; MACCHERONI, W. Jr.; PEREIRA, J. O. and ARAÚJO, W. L. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. **EJB: Electronic Journal of Biotechnology**, v.3, 2000.

BENHAMOU, N.; KLOEPPER, J. W. AND TUZUN, S. Induction of resistence against *Fusarium* wilt of tomato by combination of chitosan with na endophytic bacterial strain: ultrastructure and cytochemistry of the host response. **Planta**, v.204, p.153-168, 1998.

BESSON, J.M. The complexity of physiopharmacologic aspects of pain. **Drugs**, v.53, 1997.

BESSON, J.M. The neurobiology of pain. Lancet, v.353, p.1610-1615, 1999.

BENTLEY, R. The development of penicillin: genesis of a famous antibiotic. **Perspect Biol Med**, v.48, p.44-52, 2005.

BOMBARDIER, C. An evidence-based evaluation of the gastrointestinal safety of coxibs. **Am J Cardiol**, v.89, p.3-9, 2002.

BOYTON, R.J; OPENSHAW PJ. Pulmonary defences to acute respiratory infection. **Br Med Bull**, v.61, p.1-12, 2002.

BROCHE, F.; TELLADO, J.M. Defense mechanisms of the peritoneal cavity. **Curr Opin Crit Care**, v.7, p.105-16, 2001.

BUTLER, M. S. The role of natural product chemistry in drug discovery. **J Nat Prod**, v.67, p.2141-53, 2004.

BUTLER, E.E.; BOLKAN, H. A medium for heterokaryon formation in *Rhizoctonia* solani. **Phytopathology**, v.63, p.542-543, 1973.

CALIXTO, J. B. Twenty-five years of research on medicinal plants in Latin America: a personal view. **J Ethnopharmacol**, v.100, p.131-134, 2005.

CAMURÇA-VASCONCELOS, A.L.F.; MORAIS, S.M.; SANTOS, L.F.L.; ROCHA, M.F.G.; BEVILAQUA, C.M.L. Validação de plantas medicinais com atividade anti-helmíntica. Artigo de revisão. **Rev. Bras. Pl. Med.**, v.7, p.97-106, 2005.

CARR, D.B.; GOUDAS, L.C. Acute pain. Lancet, v.353, p. 2051-2058, 1999.

COGGESHALL, R.E., CARLTON, S.M. Receptor localization in the mammalian dorsal horn and primary afferent neurons. **Brain Res. Rev.**, v. 24, p. 28-66, 1997.

COOKSON, W. The immunogenetics of asthma and eczema: a new focus on the epithelium. **Nature Rev Immunol**, v.4, p. 978-988, 2004.

COUTAUX, A., F.; ADAM, J. C.; WILLER, E. D.; LE, BARS. Hyperalgesia and allodynia: peripheral mechanisms. **Joint Bone Spine**, v.72, p.359-371, 2005.

COTRAN, R.S.; KUMAR, V.; COLLINS, T. Patologia estrutural e funcional. 6ª edição. Editora Guanabara Koogan, 2000.

CHENG, H.Y.; PITCHER, G.M.; LAVIOLETTE, S.R.; WHISHAW, I.Q.; TONG, K.I.; KOCKERITZ, L.K.; WADA, T.; JOZA, N.A.; CRACKOWER, M.; GONCALVES, J.; SAROSI, I.; WOODGET, J.R.; OLIVEIRA-DOS-SANTOS, A.J.; IKURA, M.; VAN, DER. KOOY. D.; SALTER, M.W.; PENNINGER, J.M.; DREAM. is a critical transcriptional repressor for pain modulation. **Cell**, v.108, p.31-43, 2002.

DALLOB, A. Characterization of etoricoxib, a Novel, Selective Cox-2 Inibitor. **J Clin Pharmacol**, v. 43 p. 573-585, 2003.

DICKENSON, A. Mechanisms of central hypersensitivity: excitatory amino acid mechanisms and their control. In: DICKENSON, A.; BESSON, J.-M. **The pharmacology of pain**, p. 167-209, 1997.

DUIJFF, B.J.; GIANINAZZI-PEARSON, V.; LEMANCEAU, P. Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol *Pseudomonas fluorescens* strain WCS417r. **New Phytologist**, v.135, p.325-334, 1997.

FITZGERALD, G.A. COX-2 and beyond: Approaches to prostaglandin inhibition in human disease. **Nat Rev Drug Discov**, v.2, p. 879-90, 2003.

FÜRST, S. Transmitter involved in antinociception in the spinal cord. **Brain Res Bulletin**, v.48, p. 129-141, 1999.

GILROY, D.W; LAWRENCE, T.; PERETTI, M.; ROSSI, A.G. Inflammatory resolution: new opportunities for drug discovery. **Nat Rev Drug Discov**, v.3, p. 01-16, 2004.

GULLO, V. P. J.; MCALPINE, K. S.; LAM, D.; BAKER, E. F.; PETERSEN. Drug discovery from natural products. **J Ind Microbiol Biotechnol**, v.33, p.523-531, 2006.

GUSTEIN, H.B.; AKIIL, H. Analgesicos opioides. In: GOODMAN & GILMAN. As Bases farmacológicas da Terapêutica / editores responsáveis, Joel G. Hardman, Lee E. Limbird; editor-consultor, Alfred Doodman Gilman; [tradução da 10. ed. Original, Carla de Mello Vorsatz... et al.; revisão técnica, Almir Lourenço da Fonseca]. – Rio de Janeiro; MacGraw. v.1, p. 333-340, 2003.

GYIRES, K.; BUDAVÁRI, I.; FÜRST, S.; MOLNÁR, I. Morphine inhibits the carrageenan-induced oedema and the chemoluminescence of leucocytes stimulated by zymosan. **J Pharm Pharmacol**. v.37, p.100-4, 1985.

HALLMANN, J.; QUADT-HALLMANN, A.; MAHAFFEE,W. F. AND KLOEPPER, J. W. Bacterial endophytes in agricultural crops. **Canadian Journal of Microbiology**, v.43, p. 895-914, 1997.

HANSSON, P. M. Dampening inflammation. Nature Immunol, v.6, p.1179-1181, 2005.

HENRIQUES, M. G., P. M.; SILVA, M. A.; MARTINS, C. A.; FLORES; F. Q. CUNHA; J. ASSREUY- FILHO E R. S. Cordeiro. Mouse paw edema. A new model for inflammation? **Braz J Med Biol Res**, v.20, p.243-249, 1987.

HUNSKAAR, S. and HOLE, K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. **Pain**, v.30, p.103-114, 1987.

IADAROLA, J.M.; CAUDLE, R.M. Good pain, bad pain. Science, v.278, p. 239-40, 1997.

IKEDA, Y.; A. UENO; H. NARABA E S. OH-ISHI. Involvement of vanilloid receptor VR1 and prostanoids in the acid-induced writhing responses of mice. **Life Sci**, v.69, p.2911-9, 2001.

IRNICH, D.; BURGSTAHLER, R.; BOSTOCK, H.; GRAFE, P. ATP affects both axons and Schwann cells of unmyelinated C fibres. **Pain**, v. 92, p. 343-350, 2001.

JEFTINIJA, S.D.; JEFTINIJA, K.D. ATP stimulates release of excitatory amino acids from cultured Schwann cells. **Neuroscience**, v. 82, p. 927-934, 1998.

JULIUS, D. E A. I.; BASBAUM. Molecular mechanisms of nociception **Nature**, v.413, p.203-10, 2001.

KOEHN, F.E.; CARTER, G.T. The evolving role of natural products in drug discovery. **Nat Rev Drug Disco**, v. 4, p. 206-220, 2005.

KURAISHI, Y.; HARADA, Y.; SATON, M.; TAKAGI, H. Separate involvement of the spinal noradrenergic and serotonergic systems in morphine analgesia: the differences in mechanical and thermal algesic tests. **Brain Research**, v. 273, p. 245-252, 1983.

LAFLAMME, N.; S. LACROIX E S. RIVEST. An essential role of interleukin-1beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. **J Neurosci**, v.19, n.24, Dec 15, p.10923-10930, 1999.

LAWRENCE, T.; WILLOUGHBY, D.A.; GILROY, D.W.; Anti-inflammatory lipid mediators and insights into the resolution of inflammation. **Nat Rev Immunol,** v.2, p. 787-95, 2002.

LE BARS, D.; M. GOZARIU E S. W. CADDEN. Animal models of nociception. **Pharmacol Rev**, v.53, p.597-652, 2001.

LEMKE, K.A. Understanding the pathophysiology of perioperative pain. **Can Vet J. V.** v.45, p. 405-413, 2004.

LEVESQUE, H. E O.; LAFONT. [Aspirin throughout the ages: a historical review]. **Rev Med Interne**, v.21, p. 8-17, 2000.

LI; J.K.; STROBEL, G.; HARPER, J.; LOBKOVSKY, E.; CLARDY, J. Cryptocin, a potent tetramic antimycotic from the endophytic fungus *Cryptosporiopsis* cf. quercina. **Organ Letter**, v.23, p. 767-770, 2000.

LIU, D. Z.; LIANG, H. J.; CHEN, C. H.; SU, C. H.; LEE, T. H.; HUANG, C. T.; HOU,C.; LIN, S. Y.; ZHONG, W. B.; LIN, P. J.; HUNG, L. F.; LIANG, Y. C. Comparative anti-inflammatory characterization of wild fruiting body, liquid-state fermentation, and solid-state culture of *Taiwanofungus camphoratus* in microglia and the mechanism of its action. **J Ethnopharmacol**, v. 113, p. 45-53, 2007.

LOMBARDINO, J. G. E J. A. Lowe, 3rd. The role of the medicinal chemist in drug discovery--then and now. **Nat Rev Drug Discov**, v.3, p.853-862, 2004.

LONGA, C. M. O. Ocorrência, patogenicidade e controle alternativo de *Rhizoctonia* solani Kühn em boa-noite (*Catharanthus roseus* G. Don.) pelo uso de *Trichoderma* spp. e composto orgânico. **Dissertação de mestrado em Ciências Biológicas**. Salvador: UFBA. p.85, 2002.

LUCENA, P.L.; RIBAS FILHO J.M.; MAZZA, M.; CZECZKO, N.G.; DIETZ, U.A.; CORREA NETO M.A.; HENRIQUES, G.S.; SANTOS, O.J.; CESCHIN, A.P.; THIELE, E.S. Evaluation of the aroreira (Schinus terebinthifolius Raddi) in the healing process of surgical incision in the bladder of rats. **Acta Cir Bras**. v.21, p. 46-51, 2006.

MACIEL, M. A. M.; PINTO, A.C.; VEIGA, V.F.; GRYNBERG, N.F.; ECHEVARRIA, A. Plantas medicinais: a necessidade de estudos multidisciplinares. **Quim Nova**, v.25, p. 429-438, 2002.

MANDALA, S.M.; THORNTON, R.A.; ROSENBACH, M.; MILLIGAN, J.; GARCIA-CALVO, M.; BULL, H.G.; D KURTZ, M.B. Khafrefungin, a novel inhibitor of sphingolipid synthesis. **Journal Biology Chemistry**, v.272, p. 709-714, 1997.

MALMBERG, A. B. E T. L. Yaksh. Cyclooxygenase inhibition and the spinal release of prostaglandin E2 and amino acids evoked by paw formalin injection: a microdialysis study in unanesthetized rats. **J Neurosci**, v.15, p. 2768-2776, 1995.

MCCALL, W. D., K. D.; TANNER, E J. D.; LEVINE. Formalin induces biphasic activity in Cfibers in the rat. **Neurosci Lett**, v.208, p.45-48, 1996.

MARIOTTO, S.; E. ESPOSITO, R.; DI PAOLA, A.; CIAMPA, E.; MAZZON, A. C. DE; PRATI, E.; DARRA, S.; VINCENZI, G.; CUCINOTTA, R.; CAMINITI, H.; SUZUKI, E. S. CUZZOCREA. Protective effect of Arbutus unedo aqueous extract in carrageenan-induced lung inflammation in mice. **Pharmacol Res**, v.57, p.110-124, 2008.

MERSKEY, H. The definition of pain. Eur. J. Psychiatry, v. 6, p. 153-159, 1991.

MILLAN, M.J. The induction of pain: an integrative review. **Prog Neurobiol**. v.57, p. 1-164, 1999.

MILLER, K.E.; RICHARDS, B.A.; KRIEBEL, R.M. Glutamine-, glutaminesynthetase-, glutamate dehydrogenase- and pyruvate carboxylaseimmunoreactivities in the rat dorsal root ganglion and peripheral nerve. **Brain Res.**, v. 945, p. 202-211, 2002.

- MORADALI, M. F.; MOSTAFAVI, H.; GHODS, S.; HEDJAROUDE, G. A. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). **Int Immunopharmacol**, v. 7, p. 701-24, 2007.
- M'PIGA, P.; BÉLANGER, R. R.; PAULITZ, T. C.; BENHAMOU, N. Increased resistance to *Fusarium oxysporum* f. sp. *radicis-lycopersici* in tomato plants treated with the endophytic bacterium *Pseudomonas fluorescens* strain 63-28. *Physiological and Molecular Plant Pathology*, v.50, p. 301-320, 1997.
- NANTEL, F. D.; DENIS, R.; GORDON, A.; NORTHEY, M.; CIRINO, K. M.; METTERS e C. C. Chan. Distribution and regulation of cyclooxygenase-2 in carrageenan-induced inflammation. **Br J Pharmacol**, v.128, p.853-859, 1999.
- NATHA, C. Points of control in inflammation. Nature, v. 420, p. 846-852, 2002.
- PARK, K.A.; VASKO, M.R.; Lipid mediators of sensitivity in sensory neurons. **Trends Pharmacol Sci**, v.26, p. 571-577, 2005.
- PASSOS, G. F. E. S.; FERNANDES, F. M. D.A.; CUNHA, J.; FERREIRA, L. F.; PIANOWSKI, M. M.; CAMPOS e J. B. CALIXTO. Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea. **J Ethnopharmacol**, v.110, p.323-33, 2007.
- PEDRAS, M.S.; YU Y.; LIU J.; TANDRON-MOYA Y.A.; Metabolites produced by the phytopathogenic fungus *Rhizoctonia solani*: isolation, chemical structure determination, syntheses and bioactivity. **Z Naturforsch**, v.60, p. 717-722, 2005.
- PLEBAN. S.; CHERNIN, L.; CHET, I. Chitinolytic activity of an endophytic strain of *Bacillus cereus*. **Letters in Applied Microbiology**, v.25, p. 284-288, 1997.
- PRADO, P.T.C.; DEL BEL, E. A. C-fos, na immediate early gene as a neuromaker for nociceptin. **Medicina Ribeirão Preto**, v.31, p.424-433,1998.
- PETRINI, O. Fungal endophyte of tree leaves. In: Andrews, J. and Hirano, S. S. eds. Microbial ecology of leaves. New York: **Spring-Verlag**, p.179-197, 1991.
- POSADAS, I.; M. BUCCI, F.; ROVIEZZO, A.; ROSSI, L.; PARENTE, L.; SAUTEBIN, G. CIRINO. Carrageenan-induced mouse paw oedema is biphasic, age-weight

dependent and displays differential nitric oxide cyclooxygenase-2 expression. **Br J Pharmacol**, v.142, p.331-338, 2004.

PUIG, S.; L. S. SORKIN. Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine suppresses phase-2 activity. **Pain**, v.64, p.345-355, 1996. PUTZKE, J.; PUTZKE, M. T. L. Os Reinos dos fungos. Santa Cruz do Sul – RS: **Edunisc**. v.1. p.365-67, 1998.

RATES, S.M.K. Plants as source of drugs. **Toxicon**, v. 39, p. 603-13, 2001.

REEH, P. W.; M. KRESS. Molecular physiology of proton transduction in nociceptors. **Curr Opin Pharmacol**, v.1, p.45-51, 2001.

RIBEIRO, R. A., M. L.; VALE, S. M. THOMAZZI, A. B. PASCHOALATO, S. POOLE, S. H. FERREIRA E F. Q. CUNHA. Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. **Eur J Pharmacol**, v.387, p.111-118, 2000.

RICHARDSON, D. H. S. War. In the world of lichens: parasitism an simbiosis as exemplified by lichens and lichenicolous fungi. **Mycological Research**,v.103, p.641-650, 1999.

ROCHA, A. P. C.; KRAYCHETE, D.C.; LEMONICA, L.; CARVALHO, L.R.; BARROS, G.A.M. De; GARCIA, J.B.S.; SAKATA, R.K. Pain: Current Aspects on Peripheral and Central Sensitization. **Rev. Bras. de Anest**. v. 57, 2007.

RODRIGUES, A. D. Absorption, metabolism, and excretion of etoricoxib, a potent and selective cyclooxyegnase-2 inhibitor, in healthy male volunteers. The American Society for Pharmacology and Experimental therapeutics. **DMD**, v.31, p. 224-232, 2003.

RODRIGUES, K.F.; HESSE, M.; WERNER, C. Antimicrobial activities of secondary metabolites produces by fungi from *Spodias mombin*. **Journal of Basic Microbiology**, v.40, p. 261-267, 2000.

SAFAYHI, H.; SAILER E.R. Anti-inflammatory actions of pentacyclic triterpenes. **Planta Med,** v.63, p. 487-493, 1997.

SAMPSON, A.P. The role of eosinophils and neutrophils in inflammation. **Clin Exp Allergy**, v.30, p. 22-27, 2000.

SANTOS, A. R.; J. B. CALIXTO. Further evidence for the involvement of tachykinin receptor subtypes in formalin and capsaicin models of pain in mice. **Neuropeptides**, v.31, p.381-389, 1997.

SALEH, T. S.; J. B. CALIXTO; Y. S. MEDEIROS. Pro-inflammatory effects induced by bradykinin in a murine model of pleurisy. **Eur J Pharmacol**, v.331, p.43-52, 1997.

SCHMID-SCHONBEIN, G. W. Analysis of inflammation. Annu Rev Biomed Eng, v.8, p. 93-131, 2006.

SIMOES, C.M.O.; SCHENKEL, E.P.; GOSMANN, G.; De MELLO, J.C.P.; MENTZ, L.A.; PETROVICK, P.R. Farmacognosia: da planta ao medicamento. 6 ed. Editora da UFRGS Porto Alegre. p. 75, 2007.

SMITH, J. E.; ROWAN, N. J.; SULLIVAN, R. Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. **Biotechnol Lett**, v. 24, p. 1845-1938, 2002.

SNEH, B.; BURPEE, L.; OGOSHI, A. Identification of Rhizoctonia solaniecies. Minnesota: USA. APS **Press**, 1991.

STROBEL, G.A.; HESS, W.M. Glucosylation of the peptide leucinostatin A, produced by an endophytic fungus of European yew, may protect the host from leucinostatin toxicity. **Chemistry Biology**, v.4, p. 529-536, 1999.

SZEKESSY-HERMANN, V. [Friedrich Wohler synthetized urea 150 years ago]. **Orv Heti**l, v.119, p.3073-3075, 1978.

TJOLSEN, A., O. G. BERGE, S.; HUNSKAAR, J. H. ROSLAND; K. HOLE. The formalin test: an evaluation of the method. **Pain**, v.51, p.5-17, 1992.

TJØLSEN, A., K.; HOLE. Animal models of analgesia. In: DICKENSON, A., BESSON, J. (Eds.), The Pharmacology of Pain. Springer Verlag. **Berlin**, v.130, p.1-20, 1997.

TREEDE, R.D. Peripheral acute pain mechanisms. Ann Med. v.27, p.213-216, 1995.

TROWBRIGDE, H.O.; EMLING RC. Mediadores químicos da resposta vascular. In: Inflamação uma revisão do processo. **Quitessence Publishing Co. Inc.**, v.172, p.27-42, 1996.

VALLANCE, P.; N. CHAN. Endothelial function and nitric oxide: clinical relevance. Heart, v.85, p.342-350, 2001.

VOILLEY, N.; J. DE WEILLE, J. MAMET; M. LAZDUNSKI. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of cidsensing ion channels in nociceptors. **J Neurosci**, v.21, p.8026-8033, 2001.

WALL, P.D. Introduction to the fouth edition. In: WALL, P.D.; MELZACK, R. Textbook of pain. **Churchill Livingstone**, p. 1-8, 1999.

WASSER, S. P. Medicinal mushroom as a source of antitumor and immunomodulation polysaccharides. **Appl Microbiol Biotechnol**, v. 60, p. 258-274, 2002.

WEBER, C. Novel mechanistic concepts for the control of leukocyte transmigration: specialization of integrins, chemokines, and junctional molecules. **J Mol Med,** v.81, p. 4-19, 2003.

WILLIAMS, T.J. Interactions between prostaglandins, leukotrienes and other mediators of inflammation. **Br Med Bull** 39(3):239-42, 1983.

WINK, M. Evolution of secondary metabolites from an ecological and molecular hylogenetic perspective. **Phytochemistry**, v. 64, p. 3-19, 2003.

WOOD, P.B. Stress and dopamine: implication for the pathophysiology of chronic widespread pain. **Med Hypoth**. 62: 420-424, 2004.

YUNES, R.A., CALIXTO, J.B. Plantas medicinais sob a ótica da Química Medicinal Moderna. **Editora Argos, Chapecó**. 528 p. c.1, p. 20-4, 2001.

ZHANG, G.; S. GHOSH. Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. **J Clin Invest**, v.107, n.1, Jan, p.13-9. 2001.

ZOBERI, M. H. Tropical Microfungi. *Lodon: The Macmillan Press*, 1^a ed., p. 1, 1972.