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ABSTRACT

Let (M,{,), f) be a weighted Riemannian manifold. In this thesis we obtain some geometric
and analytical results in (M, (), f) assuming that Bakry-Emery Ricci tensor is non-negative
in some results in other results we assuming that the weighted mean curvature is bounded
from below. Moreover, assuming that the radial generalized sectional curvature is bounded
from below we obtain a comparison theorem for the Hessian of the distance function and
some consequences of it. Let ¥ be a closed surface in M, assuming that the Perelman scalar
curvature is bounded from below, we obtain an upper bound for the first non-zero eigenvalue
of the weighted Jacobi operator for surfaces ¥ € M and we generalize a result of Shoen and
Yau about stable minimal surfaces, see [45]. We also obtained, for surfaces with boundary,
a sharp estimate from below for the first non-zero Stekloft’s eigenvalue. For surfaces we also
obtain an upper bound for the first non-zero eigenvalue of the weighted Jacobi operator and
some consequences of it, for instance, we show that in R3 there exist no closed stable self-
shrinker. In higher dimension we obtain upper bound and lower bound for the first non-zero
Stekloft’s eigenvalue on suitable hypotheses. We conclude our work with a weighted splitting
theorem.

Keywords: Weighted Riemannian manifolds. Bakry—Emery Ricci tensor. Weighted Jacobi
operator. Stability. Stekloff’s eigenvalue. Eigenvalue estimates. weighted splitting theorem.



RESUMO

Seja (M,{,), f) uma variedade Riemanniana ponderada. Nesta tese obtemos resultados
geométricos e analiticos em (M, (), f) assumindo que o tensor de Bakry-Emery Ricci é nao
negativo em alguns resultados e assumindo que a curvatura média ponderada ¢é limitada
inferiormente em outros. Além disso, assumindo que a curvatura seccional generalizada
radial é limitada inferiormente obtemos um teorema de comparacao para a Hessiana da
funcao distancia e algumas consequéncias. Seja > uma superficie fechada em M, assumindo
que a curvatura escalar de Perelman é limitada inferiormente, obtemos um limite superior
para o primeiro autovalor nao nulo do operador de Jacobi ponderado da superficie ¥ < M
e generalizamos um resultado de Schoen e Yau sobre superficies minimas estdveis, veja [45].
Também obtemos, para superficies com fronteira, uma estimativa sharp inferiormente para o
primeiro autovalor nao nulo de Stekloff. Para superficies também obtemos um limite superior
para o primeiro autovalor nao nulo do operador de Jacobi ponderado e algumas consequeéncias,
por exemplo, mostramos que em R? nao existe self-shrinker fechado e estdvel. Em dimensao
alta obtemos limites superiores e inferiores para o primeiro autovalor nao nulo de Stekloff
sobre hipdteses apropriadas. Concluimos nosso trabalho com um teorema splitting.

Palavras chave: Variedades Riemannianas ponderadas. Tensor de Bakry—Emery Ricci.
Operador de Jacobi ponderado. Estabilidade. Autovalores de Stekloff. Estimativas de auto-
valores. Teorema splitting ponderado.
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CHAPTER 1

INTRODUCTION

The study of Riemannian manifolds endowed with a smooth density function has flour-
ished in last few years, and a much better understanding of their geometrical and ana-
lytical structure has evolved. We point out, for instance, the solution of Poincaré conjec-
ture, the relaxation of the conditions for solve the Monge’s problem for mass transporta-
tion, the behavior of singularities of the Ricci flow, the mean curvature flow and others, see
[10, 17, 33, 36, 37, B9, 511, 55] and references therein. Moreover, the theory of these spaces
and the generalized curvatures go back to Lichnerowich [31], 32] and more recently by Bakry
and Emery [7], in context of diffusion process, and it has been a very active area in recent
years.

In this thesis we give contributions to the study of weighted Riemannian manifolds. We
obtain some geometric and analytic results on weighted Riemanniann manifolds, and these
generalize some results in [2], 14, [57, 58] for the weighted context. More specifically, inspired in
the work of Impera and Rimold in [28], and using the concept of weighted sectional curvature
defined by Wylie in [53], we obtain a comparison theorem for the weighted Hessian of the
distance function and some consequences to the weighted Laplace-Beltrame operator. In
particular we recover the following estimates to f-Laplacian of the distance function

W (r(z))
Agr(z) < (m—1)——— + 0(r(x)),
g h(r(2))
obtained in [43], see theorem [3.2] The comparison theorem for the weighted Hessian of the
distance function is the main result of the Chapter 3.

In the Chapter 4, encouraged by ideas in [2] [3] [4] 41}, we study some analytical aspects of
surfaces with constant weighted mean curvature. More specifically, we study upper estimates
of the first eigenvalue of the weighted Jacobi operator on closed surfaces. Moreover, we
characterize the equality cases. This study allow us to generalize a result obtained by Schoen
and Yau on stable minimal surfaces in 3-Riemannian manifolds with nonnegative scalar
curvature for the setting of weighted Riemannian manifolds. Some consequences of that
results are obtained, in which we show that all closed A-surfaces in the Gaussian space are
unstable, in particular, there exist no closed stable self-shrinker surfaces in R3.

11



In the Chapter 5, motivated by works [14] [57, 58], we study the Stekloff eigenvalue
problems on weighted Riemannian manifolds.

The Classical Stekloft’s eigenvalue problem
{Au =0 in €2,

g—“ = ou on 0f),
14

was introduced by self in [49] for bounded domains €2 of the plane and later it was studied by
Payne in [42] for bounded domains in the plane with non-negative curvature. This problem
has a physical interest because the eigenfunctions represent the steady state temperature on
a domain and the flux on the boundary is proportional to the temperature, see [49] for more
details. After that many authors studied this subject and many results were obtained, see
for instance [0, 14 [15], 106, 24, B30, B4, 42, 46, 49, 52, 56, 57] and references therein. More
specifically, many authors studied ways to estimate or determine exactly the eigenvalues
associated with the Stekloff problem and modifications of the latter, see [14] (56 57]. By
following this way, we prove some upper and lower bounds for the Stekloff eigenvalues, see
Theorem [5.1],[5.2], [5.3}, [5.4], [5.5] We point out that in the inequalities obtained in the Theorem
5.1 (.2 , we characterize the equality cases. Moreover, in the 2-dimensional case, we
obtain a sharp result for weighted Stekloff eigenvalue problem, see Theorem [5.5]

In the setting of weighted Riemannian manifolds we study the following weighted Stekloff
eigenvalue problems:

gilfzplu on 0M;

Afu =0 in M,
u=Afu—q1%=O on 0M;
Afu =0 in M,
u=%—q1%=0 on oM,

where v denotes the outward unit normal on dM. The first non-zero eigenvalue of the above
problems will be denoted by p; and ¢, respectively. We will use the same letter for the first
non-zero eigenvalues for last two problems because whenever the weighted mean curvature
of 0M is constant then the problems are equivalents.

Finally, in the Chapter 6, we obtain a weighted splitting theorem. Our inspiration to study
splitting theorems are the articles [111 [I§], this latter using techniques from overdetermined
problems to obtain geometric restrictions over the space.

Our result says that, if M is a complete non-compact weighted Riemannian manifold with
Ricy = 0 under suitable conditions, then M = N x R, where N is complete, totally geodesic,
and f-parabolic. Moreover, if u,g € C*(M) satisfy

Afu + g(u) = 0,

12



where the function |Vu| satisfies
J |Vul?dVol; = o(R*log R) as R — +o,
Br
then
Vol;(BY) = o(R?log R) as R — +o0,

and

R R%log R
'OPdt =0 | o~ —
JRM ) ¢ (vol(Bg)> as ft — +oo,

see Theorem [6.11

13



CHAPTER 2

PRELIMINARIES

In this first chapter we establish the concepts and definitions that we will use along this
thesis, as well as we also fix some notations.

Given any smooth positive function ¢ on a Riemanniann manifold (M, {,)) we can con-
sider a new measure p on M by formula du = pdv, where v is the Riemanniann measure.
The function ¢ is called the density function with respect to u. For instance, the density
function of the Riemanniann measure v is 1.

The triple (M,{,), ) is called a weighted Riemanniann manifold, if (M, {,)) is a Rie-
manniann manifold and v is a measure on M with density function ¢. More generally, given
any f € C*(M) we can consider the density function ¢ := e~/ and thus dvy = e~/dv, and
we will write (M, (), f); some authors called (M,{,),¢) by Bakry-Emery manifold. That
concept is directly related to Ricci flow, mean curvature flow, theory of optimal transporta-
tion, see [I7, B3] for a good overview of this subject. An important example of weighted
Riemannian manifold is the Euclidean space endowed with the Gaussian density e_”m?, with
applications in probability and statistics.

In a weighted Riemannian manifolds there are natural generalizations for sectional, Ricci,
and scalar curvatures. With respect to the sectional curvature, William W. purpose in [53]
two new concepts of weighted sectional curvature as follow: given X,Y, unit orthogonal
vectors in T, M him defined

sec?(Y)
ek (1)

secr(X,Y) =sec(X,Y) + Hessf (X, X)
sec(X,Y) = sec(X,Y) + Hessf(X, X) + (df (X))? (2.1)

where sec(X,Y") is the usual sectional curvature of the plane spanned by X,Y, and Hessf is
the Hessian of f. We point out that sec; and Sec; are asymmetrical, that is, sec;(X,Y) #
secs(Y, X) and secp(X,Y) # secy(Y, X). In [53], we can see that these notions of sectional
curvature come naturally from at least three places: the radial curvature equation, the second
variation of energy formula, and formula for Killing fields. Among the several interesting
results obtained by William W. we highlight, if (M™,{,), f) is a simply connected weighted

14



Riemannian manifold of dimension n > 2, and sec; = h or secy = h for some function h,
then (M", g) has constant sectional curvature.

The concept of weighted Ricci tensor on a weighted Riemannian manifold (M, {, ), f) was
defined by Bakry and Emery in [7] as follow

Ricy = Ric + Hessf,

where Ric denotes the Ricci tensor on the Riemannian manifold (M, {,)). The tensor Ricy
is also known as Bakry—Emery Ricci tensor, and more generally the N -Bakry—Emery Ricci

tensor is & d
Ric} = Ricy — f]% f, for N > 0. (2.2)

Finally, the natural generalization para the scalar curvature S, was introduced by Perel-
man in [39] as follows
S =S+ 2Auf —|Vf]?

known as Perelman’s scalar curvature.

Now we explain a concept related with the extrinsic geometry of a submanifold. Consider
an oriented hypersurface 3. Let v be a unit normal vector field and let A be the second
fundamental form of ¥ w.r.t N. In [23] M. Gromov introduced the weighted mean curvature
as

Hf =H+<V,Vf>,

where V f denote the gradient of f in M, and H is the trace of the second fundamental form
A.

On a weighted Riemannian manifold (M, (), f) we can to define the f-Laplacian opera-
tor Aju = Au—(V f, Vu), that is a natural generalization of the Laplace-Beltrami operator
A. In a complete weighted Riemannian manifold, we know that A is essentially a self-
adjoint operator with respect to the measure dv; = e fdv. The operator A ¢ is also known
as diffusion operator and Drift Laplacian, and by simplicity, we will call it f-Laplacian. The
operator Ay arises in probability theory, potential theory and harmonic analysis on complete
and non-compact weighted Riemannian manifolds. Moreover, the f-Laplacian appear in the
Ornstein-Uhlenbeck equation.

15



CHAPTER 3

THE HESSTAN OF THE DISTANCE FUNCTION

3.1 Introduction

Let (M,{,)) be a Riemannian manifold and py € M. The distance function in M with
reference point pg is the function r : M — R defined by 7(x) = d(py,x). The classical
comparison result to the Hessian of the distance function state that if the radial sectional
curvature has a lower (resp. upper) bound of the form

S€Crad = —G(T(l’)) (I‘eSp. S€Crad < —G(T(.’L’)))

then the Hessian of the distance function satisfies

W(r)
h(r)

W (r)
h(r)

Hessr <

(-, ) —dr®dr) (resp. Hessr > ((y > —dr® dr),) (3.1)
for some appropriate function h, see Theorem 2.3 in [40]. Of course, by taking the tracing in
(3.1) we obtain comparison results to the laplacian of the distance function.

In the setting of weighted Riemannian manifolds, Impera and Rimoldi obtained in [2§] a
result that generalizes the classical comparison theorem of the distance function, (Theorem
2.3 in [40]).

We remember below the notation of little o and big O

Definition 1 We say that f(x) = O(g(z)) as © — a if there exists a constant C' such that
|f(x)] < Clg(x)] in some punctured neighborhood of a, that is for x € (a — §,a + §)\{a} for
some value of 6.

We say f(z) = o(g(x)) as © — a if limM = 0. This implies that there exists a

T—a g(x)
punctured neighborhood of a on which g does not vanish.

16



For more details and properties for notation of o and O see [20, page 391].
The following result play a important role in the proof of the Theorem
Proposition 3.1 Let G be a continuous function on [0, +00) and let g; € AC(0,T;) (Abso-

lutely Continuous) be solutions of the Riccati differential inequalities
% _
a

93

g+ —aG <0 gh+ aG =0 a.e.in (0,T;)
a

satisfying the asymptotic condition
gi(t) = % +0(1) ast— 0",
for some a > 0. Then Ty < Ty and g1(t) < go(t) in (0,17).

For a proof of the result above see [40], page 29].

3.2 Comparison Theorem to the Hessian of the Dis-
tance Function
Using the same technique that [28] with suitable adaptations, and the concept of sectional
curvature given by William W.
secjf(Y) =secs(X,Y) =sec(X,Y) + Hessf(X, X)
we show that:

Theorem 3.2 Let (M™,(,), f) be a complete m-dimensional weighted Riemannian mani-
fold. Having fized a reference point pg € M, let r(x) = disty (2, po) and let D,,, = M\Cut(po)
be the domain of the normal geodesic coordinates centered at py. Given a smooth even function
G on R, let h be the solution of the Cauchy problem

{h”—(chG)h:O ceR

h(0) = 0, K(0) =1, (3:2)

and let I = [0,79) < [0,400) be the maximal interval where h is positive. Suppose that the
radial curvature
secy = —G(r(z)) (resp. <) on By, (po). (3.3)

Furthermore, assume that
n(r) :=<Vr,Vf)=—-0(r) (resp. <) (3.4)
for some 0 € CO(R}) and n(s) = o(1) as s > 0T. Let

Hesssr(-,-) := Hessr(-,-) — %<VT, VI,
if Hessf < (-, (resp. =), then

Hessr(-,-) < %/K ,o—dr®dr(-, )} + %9(T>< o (resp. =).

17



Proof. Firstly, we observed that Hessr(Vr, X) = 0 for all X € T, M and x € D,,\{po}. In
fact, let v be the geodesic parametrized by arch length issuing from py with v(sg) = x, then
7 is an integral curve of Vr so that '(s) = Vr(y(s)), this imply Vg, Vr(z) = Vy(sy =0
consequently

Hessr(Vr, X) = (X, Vy,.Vr) = 0.

Since Hessyr is symmetric, T, M has an orthonormal base consisting of eigenvectors of the
Hessyr. Denoting Amax(), and Apin (), respectively, the greatest and smallest eigenvalues of
the Hessr in the orthonormal complement of Vr(z) (the Vr(z) is an eigenvector of the Hess r
associated to the eigenvalue 0), the theorem is equivalent to show that on (D, \{po}) " By, (po)

(i) if (3.3) and (3.4) hold with >, then Apax < & (r(z)) + 20(r),
(ii) if (3.3) and (3.4) hold with <, then Ay > Z(r(z)) + L0(r).

We proof the item (i), and the item (ii) is analogous. Let x € D, \{po}, and v be the
minimizing geodesic joining py to x. We claim that, if (3.3) holds, then the function ¢ =
(Amax + L) o satisfies

P+ <c+ G forae s> 0,

Y(s) =1+0(1), ass—0".

Let ¢ := h'/h, we have

hh// o h/2 h/2 h//
e TR i Ak
and by L’Hospital rule

i (o(s) - 1 ) = Jim

s—0t S

s(c+ G)h(s))
h(s) + sh'(s)
s(c+ Q)

s—0+ 2

~0., (3.5)

that is,

Therefore, ¢ satisfies the following system

{¢/+¢2=0+G on (0,79) and

P(s) = é +o(1) as s — 0F (3.6)

follow by proposition [3.1] that



We will to show that (3.6 holds. Indeed,

and observe that, Therefore,
1
8(s) — ~ = ol1)

Now, we will show that \,.x have the required properties. To this end, given a smooth
real function w, denote by hessfu the (1,1) symmetric tensor field defined by

(VL VWX

Y

hessfu(X) = hessu(X)
m

where

hessu(X) = VxVu

consequently, we have

(hesspu(X),Y) = <hessu(X) - w%ﬂ, Y>
— hessu(x),¥) - YV x v

= Hessu(X,Y) — WO(, Y)
= Hessju(X,Y).

By definition of covariant derivative of tensors
Vx(hessfu)(Y) = Vx[hesspu(Y)] — hesspu(VxY)
and
Vy (hessfu)(X) = Vy[hesspu(X)] — hessfu(Vy X).
Hence
V x(hessfu)(Y) — Vy(hesspu)(X) = Vx|hesspu(Y)] — hesspu(VxY)—
—Vylhessfu(X)] + hessju(Vy X)
— hessu(VxY)+

(Y, Vu)X] N

N AL

n <Vf, VU,>V)(Y _

m m

Vy {hessu(X )
<Vf, VU>VyX

m

VXY—X<

+ hessu(Vy X) —
VS, Vu)

m

V[, Vu)

=VxVyVu— M) Y —

m
— vaqu +
A

m

[X, Y] — VyVxVu+
NV Vw

m

VyX—i—Y( >X+VVY)(VU

19



(V. Vu)
<Vﬁvw>y+

m

Vx(hessfu) (Y) — Vy(hessfu) (X) = VXVqu — VyVXVU — V[Xy]vu —

+<vf’—mvu>[X,Y]—X(

+Y (—<Vf’ VU>) X,

m

[X, Y]+

from where
Vx(hessfu)(Y) — Vy (hesspu)(X) = R(X,Y)Vu—
_X(M)YH/(M) X,

m m

Now, choose v = r(z), X = Vr and let v be the minimizing geodesic joining py to
x € Dy \{po}. For every unit vector Y € T, M such that Y L ~'(sq), where v(s¢) = x, define
a vector field Y L +/, by parallel translation along ~. Since, as noted above, hessr(Vr) = 0,
SO

Voyi(so)[hessyr(Y)] = V(s (hessyr) (V) + hessyr(Voys)Y)
= Vy,(hessfr)(Y) = Vy (hessgr)(Vr) + R(Vr,Y)Vr—
v (M)YH/(M) vr

m m

— Vy[hess;r(Vr)] — hessr(Vy Vr) — R(Y, Vi) Vr—
o (L) y (T,

m m

— hessr(Vy Vr)+

- % (o) - TEIT

¢ VEVOWNE by Gpyve

o (T (T,

m m

BEACR G /A R

m m

<Vf, VT>VY Vr _
m

— hessr(Vy Vr) + R(Y,Vr)Vr—
o (T y oy (T,

= —hessr(VyVr) — R(Y, Vr)Vr — Vr (Ni;?—vw) '
M) %

)
m

= —hessr(hessr(Y)) — R(Y,Vr)Vr — Vr (
Since Y is parallel, we have

d%<hessfr(Y) ,Y) =(Vylhess;r(Y)],Y),

20



and consequently

%(HGSSW(W)(Y, Y)) + Chessyr(y)(Y), hessyr(y)(Y)) =

_ < — hessr(hessr(Y)) — R(Y, Vr)Vr—
RNGAZ NN

+ <hess7°(Y) — <VJ;;1—V7">Y7 hessr(Y') — W{;l—vqn>Y>

= —(hessr(hessr(Y)),Y) — (R(Y,Vr)Vr, Y )—

B 2<V£;V7“> (hessr (Vf,Vr)?

m2

(Y), Y)+

— —(R(Y,Vr)Vr,Y)— Vr <M> .

m

2V f,Vr) (Vf,Vr)?

(hessr(Y),Y) +

m m?
= —sec(Y,') = Hessf(Y,Y) — sec;(Y,7')
< Hessf(Y,Y) + G(r)
<c+ G(r)

By other hand,

@ [Hessr()(¥, )] = ¢ [Hessr(0)(V, V)] — - 50T 1, V) 0

ds ds
d 1d
= E[HGSST(V)(Y, Y)] - et/
Observe that |
hess;r(7)(Y) = hessr(y)(Y) (nom)Y

m
from where, we have

Chessyr(y)(Y), hessyr(v)(Y)) = ¢hessr(v)(Y), hess r(7)(Y))—
2(no~)

1
— = Hessr(1)(V,Y) + —5(n°7)”,

m
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and consequently,

" [Hessyr() (¥, )]+ [lessyr(V)]? = - [Hessr(2)(¥, V)] = o+

+ ¢hess(7)(Y), hess () (Y)) — WHGSS r(y)(Y,Y) + #(77 o)?

< Hessf(Y,Y) + G(r) — lin oy — 2(777; ) Hess7(7)(Y,Y)+

mds
1
+ ﬁ(TiOVV
1d 2
= Hessf(Y,Y) + G(r) — e - WHessfr(y)(Y, Y)—
2
newy
! m2> : (3.9)

Note that, for all unit vector field X 1 Vr,
Hess (X, X) < Amax-

In fact, choosing a base {vy,...,v,_1} of {7/}* formed by eigenvalues of hess;r, and writing

n—1

X = 2 a;v;
i=1

we obtain

Hess¢r(X, X) = ¢hessyr(X), X)

n—1 n—1
= ( hesssr Z a;v; |, 2 a;V;
i=1

i=1
n—1 n—1
= Z a;\iv;, Z a;V;
i=1 i=1
n—1 n—1
< /\max Z a;V;, Z a;V; = )\ma.x (310)
i=1 i=1

Then, if Y is chosen such that, in s
Hess;r(7)(Y,Y) = Amax(7(50))
that is, Y is eigenvector of hessr in y(sg), then the function
Hessr(7)(Y,Y) — Amax © 7Y

attains its maximum at s = sg and, if at this point A, is differentiable, then its derivative

vanishes: J p
o Hesssr(v)(Y,Y) — T SOAmaX oy =0.

S0
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consequently, using (3.9)), we obtain in sg

d , 1 d
%(/\max o ’7) + ()\max o 7) < HeSSf(K Y) + G<T) - E%(n o ’7)_

_ 2(777; ") Hess (1) (Y, ) — (n;zf

= Hessf(Y,Y) + G(r) — %Tjj — 2(Amax © 7)(

Now, let ¥ = (Amax + %) o, from where

, d d o o
P+ 1/}2 = %()‘max © 7) + % (an) + (Amax © 7)2 + 2(/\max © '7) (nm'Y) +
2
N (77027)
m
< Hessf(Y,Y) + G(r)
<c+G(r)

this is the desired inequality. The asymptotic behavior of 1) near s = 0% follows from the
fact that

1
Hessr = —((-, ) —dr®dr) + o(1), r— 0%, (3.11)
r
and from the assumptions about 7. In fact, since Y is unit and Y | 4’ = Vr, we have

¥ = M ©7(8) + = 05(s) = Hessr(y(s))(V.Y) + L 03(s)

= §(<Y, Y)Y —(Vr, Y XVr, Y)) +o(1) + %O(D
1
=3 + o(1).
Therefore,
’ /
/\max<%—%<%+%9,

consequently, using (i3.10)),
n' 1
Hess (X, X) < Apax(X, X) < E<X’ X))+ —0(rKX, X).
m
By other hand, if X = X; + X, where X;//Vr, and X, 1 Vr, we have
Hess¢r(X, X) = Hesspr(X; + Xo, Xi + Xo)
= Hessyr(Xy, X1) + Hessr(X1, Xo) + Hesspr(Xo, Xq) +Hesspr( Xy, Xs)

v~ v~

=0 =0
n 1 1
S E<X2, Xa) + EQ("’)<X27 Xa) — E<V7”a VXX, X1

< %/KX’ X) = (X, Xt + %9(T)<X2,X2> + %Q(TKXI’ X))

- XX — ar @dr(x. X0} + 00X, X
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and this conclude the proof. ]

Remark 3.3 Note that, if we assume 5ecy = —G (resp. <) in the place of secy, we conclude
from that the theorem holds.

Corollary 3.1 In the same assumptions of the theorem, we have
!/

Apr < (m— 1)E(T) + 0(r) (resp. =).

Remark 3.4 The corollary recover comparison results for weighted Riemannian man-
ifolds with Ricy(Vr,Vr) = —(m — 1)G(r) and f satisfying for some non-decreasing
function 6 € C°|0,+x), see [43, Theorem 3.1].

Corollary 3.2 Let R™ be the euclidean space m-dimensional with weighted f = ||x[|?/2.
Given a smooth even function G on R, let h be the solution of the Cauchy problem

" —(1+G)h=0
h(0) =0, A'(0) = 1,

and let I = [0,7¢) < [0,400) be mazimal interval where h is positive. Suppose that the radial
curvature satisfies
secy = —G(r(z)) (resp. <) on By, (0). (3.12)

Let .
Hess¢r(-,-) := Hessr(-,-) — E<V7‘, VI,
then " .
Hessyr(2)(-,) < 5AC, ) —dr@dr( )} + 5 |2ll<, ) (resp. >).

Proof. We have that n(r(z)) = (Vr,Vf) = ||z||/2, we choose §(r(z)) = |z|/2, and is clear
that
Slilgg n(s) =0=o(1).
Since sec(V,U) = 0, we have
secy(V,U) = Hessf(V,V) = (V. V) = |V,

choosing G(s) = s?, the result follow by the Theorem [3.2] u

Theorem 3.5 Let (M™,{,), f) be a complete weighted Riemannian manifold, and f super
harmonic. Assume that the radial Bakry-Emery-Ricci tensor of M satisfies

Ricy(Vr,Vr) = —(m — 1)G(r) (3.13)
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for some function G € C°(|0,+0)), and that n(r) = (Vr,V ) let such that n(s) = o(1) as

s — 07, Let h e C*([0,+00)) a solution to the problem

W — Gh =0,
h(0) =0, B(0) = 1.

then the inequality
W(r(z))
h(r(x))

Agr(z) < (m—1)

hold pointwise on M\(Cut(pg) U {po}).

(3.14)

(3.15)

Proof. Let [0,r9) < [0,400) be the maximal interval where h is positive. Let D,, =
M\Cut(po) and fix z € Dy, N [B,,(po)\{po}]. Let v :[0,¢] — M be the minimizing geodesic

joining py to x parametrized by arch length. Define

We claim that ¢ satisfies

{ (i) @(s) =22 +0(1), as s — 0%,
¢ < (m—1)G, on (0, ¢].

Indeed, as n(s) = o(1) when s — 0% we have, using (3.11]), that

m—1

Agr = +o(1), asr—0".

that proof the item (i) of (3.16).
To the item (ii), of (3.16]), we obtain in (3.7)) that

d%(HeSSfT(W)(Y? Y))+<hesspr(y)(Y), hesspr(7)(Y)) =
= Hessf(Y,Y) — Sect;(Y, 7).

Taking the trace of (3.17]), we obtain

ds
Taking an orthonormal basis {Vr,...,e,}, and using Cauchy-Schwarz we obtain
A 2
|Hessr||* > (&) ,
m—1

therefore, using that Af < 0, we obtain

(Aroy)?

d
—(Ar o) + —

75 < —Ricy (Vr, Vr)(y).

25

L (Agron) + [Hessyr2(7) = Af(y) — Ries(Vr, Vr)(7).

(3.16)

(3.17)

(3.18)



Since Ricy(Vr, Vr) = —(m — 1)G(r) we have

1
-1

/

¢ +
m

©* < (m—1G(r).

Now, let ¢ = (m — 1)%’, S0

o, hh" — k2% (m—1)*1h?
e W =(m-1 o
m—lw (m—1) h? * m—1 h?

hh' — h/2 h/2
=(m=1) <h— * h_)

Y+

h//
> (m —1)G.
Since ¢ = (m — 1)¢, follow of that
m—1
vls) = "L o)

Therefore, by the Proposition |3.1] we have

w<v  em Dyn (By,(po)\{po}),

that is,
b (r(z))
h(r(z))

Agr(z) < (m—1) in Do 0 (By, (po)\{Po})-

Remark 3.6 Since Ric} < Ricy. Then, if Ric} > —(m — 1)G(r) the result remains valid
for any N > 0.
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CHAPTER 4

LON THE FIRST STABILITY EIGENVALUE OF SURFACES

4.1 Introduction

In this chapter we presented upper bounds for the first eigenvalue of the weighted Jacobi
operator on surface with constant weighted mean curvature. In particular we generalize a
result obtained by Schoen and Yau (see [45, Theorem 5.1]) on stable minimal surfaces in
3-Riemannian manifolds with non-negative scalar curvature for the setting of weighted man-
ifolds. We also show that, all closed A-surface in Gaussian space are stable, and consequently
in R? there is no closed stable self-shrinker.

Now, we introduce some objects related with the theory of surfaces in a weighted Rie-
mannian manifold. Let ¥ < M? be a two-sided surface of M? and consider N an unit normal
vector field globally defined on . We will denote by A its second fundamental form and by
H the mean curvature of ¥, that is, the trace of A.

Following [53], we will use (2.1 slightly modified, as follow

seci"(X,Y) = sec(X,Y) + % (Hessf(X,X) — (df(—X))) : (4.1)

2m

where X and Y are unit and orthogonal vectors fields tangents to M, and sec(X,Y) is the
usual sectional curvature of the plane spanned by X and Y.

Taking N = 2m in (2.2)) we have
df ® df

2m

Ricfcm = Ricy — (4.2)

Y

where m > 0.

We remember that, the natural generalization for the scalar curvature S of a weighted
Riemannian manifold M, is

S =S+ 2Arf — |V f]? (4.3)
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known as Perelman’s scalar curvature, see [39] for a good overview. We point out that S, is
not the trace of Ric?m for any m > 0, and is not the trace of Ricy.

Throughout this chapter, dv; = e~/dv will denote the weighted measure of the surface
¥, where dv is the Riemannian measure of ¥, |3| and |X|; denote the area of ¥ with respect
to the Riemannian measure and weighted measure of 3, respectively. Furthermore, we will
denote by K the Gaussian curvature of ¥ and by secy, the sectional curvature of M restricted
to 2.

It is a remarkable fact that, in the variational setting, surfaces with constant weighted
mean curvature are stationary points of the weighted area functional under variations that
preserves the weighted volume (see [§]). Moreover, the second variation of the weighted area
gives rise the weighted Jacobi operator on ¥, see [17], which is defined by

Jyu = Aju+ (|A]* + Ricg (N, N))u, (4.4)
for any u € C*(3) and |A|? is the square Hilbert-Schmidt norm of A.

Now we will introduced the notion of stability with the goal of present some consequences.

Definition 2 Under the above notation. We say that a surface 3 is stable if the first eigen-
value A1 of the weighted Jacobi operator is nonnegative. Otherwise, we say that 3. is unstable.

4.2 Estimates for the First Eigenvalue of the Weighted
Jacobi Operator

In this section we present the main results of this chapter. Our first result reads as follows

Theorem 4.1 Let (M?,{,), f) be a weighted Riemannian manifold with Sy, = 6¢, for some
ceR. Let ¥* < M? be a closed surface with constant weighted mean curvature Hy. Denote
by A1 the first eigenvalue of the weighted Jacobi operator. Then,

dm(g — 1)

1
M < —=(H} +6c) — 5

2

Moreover, equality holds if and only if X3 is totally geodesic, f is constant, S|y, = 6¢ and K
15 constant.

Remark 4.2 In Riemannian case, f = 0, the estimate can be improved. See Corollary[4.5

in the subsection [4.4.1].

The next result is a generalization of a result of Schoen and Yau on stable minimal surfaces
(see [45]) and this technique allow us to give an improvement of Theorem 2.1 in [19].

The result is the following:
Corollary 4.1 Let (M3,{,), f) be a weighted Riemannian manifold with nonnegative Perel-
man’s scalar curvature. Let 3 be a closed stable surface with constant weighted mean curvature

H;. Then X is conformally equivalent to the sphere S* or X is a totally geodesic flat torus
T2. Moreover, if Sy, > 0, then X is conformally equivalent to the sphere S?.
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The second result is the following:

Theorem 4.3 Let (M3,{,), f) be a weighted Riemannian manifold with ﬁ?m > ¢, for some
ceR, and Hessf < o - g for some real function o on M. Let X2 = M3 be a closed surface
with constant weighted mean curvature Hy. Denote by A1 the first eigenvalue of the weighted
Jacobi operator. Then,

(1) M < —% <£—{n + 4c>, with equality if and only if ¥ is totally umbilical in M3, Ric?f" =

2 anddf(N)zlmef on ¥;
H? S odv 2
i) My <——F (4o Kdv, .
(W) A< =0 o) ( 5], >+|z|f52 g

Moreover, if equality holds, then ﬁfc’" = ¢, R,iC?cm = 2¢, df(N) = ﬁglme, and |A|

is a constant on X. Moreover, M?® has constant sectional curvature k and e~/ is the

restriction of a coordinate function from the appropriate canonical embedding of a space
form Q2 in E*, where E* is R* or L.

Our third result reads as follows:

Theorem 4.4 Let (M3 {,), f) be a weighted Riemannian manifold with sec > c, for some
c € R, and Hessf > df2® af

m
surface with constant weighted mean curvature Hy. Denote by A1 the first eigenvalue of the
weighted Jacobi operator. Then,

(in the sense of quadratic forms). Let ¥* < M3 be a closed

1
i M<— (H—? + 4c>, with equality if and only if 3 is totally umbilical in M3, Ric(N, N) =

92 \1+m
_.m _df(N)?
2¢, df (N) = 1+me on ¥ and Hessf(N,N) = o
ii) A < Hj 4 2 K dvgy. Furth lity holds if and only if K i
(ii) LS T am) c—i—mgz vy. Furthermore, equality holds if and only if K is
N2
constant, secy, = ¢, df (N) = 1 Tme on ¥ and Hessf(N,N) = de(m) .

Remark 4.5 We believe that the hypotheses on the function [ in theorems[4.3 and[{.4) are
natural, because we recovered the Riemannian case if the function is constant and also, for
m large enough, we captured the Gaussian space, which is very important in literature.

Now, we will give an application on the context of the mean curvature flow. For that, we
recall that a self-shrinker of the mean curvature flow is an oriented surface ¥ < R3 such that

1
H = —§<$‘,N>,
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where N is an unit normal vector field on ¥. The simplest examples of self-shrinkers in R?
are the plane R2, the sphere of radius 2, and the cylinder S' x R!, where the S! has radius
V2. So, if we consider R® endowed with the function f(z) = %, then a self-shrinker is a
f-minimal surface in the Euclidean space. More generally, the triple (R?, 4,5, |z|?/4) is known

as Gaussian space and the surfaces with weighted mean curvature A are know as \-surfaces.

The next result is a consequence of the proof of the Theorem and it reads as follows:

Corollary 4.2 All closed A-surfaces in the Gaussian space are unstable. In particular, there
exist no closed stable self-shrinker surfaces in R3.

This chapter is organized in this way: In section 4.3 we give a classification of weighted
Riemannian manifolds with constant weighted sectional curvature, we present also a way to
describe the first eigenvalue of the weighted Jacobi operator and, to conclude the section, we
rewrite the terms of the weighted Jacobi operator in an appropriate manner. In section 4.4
we present the proof of the results and the other consequences of them.

4.3 Preliminaries

An important result for us is the classification of weighted Riemannian manifolds with
constant weighted sectional curvature. The result below follows closely the one in [53], and
we include the proof here for the sake of completeness.

Lemma 1 Let (M3 (,), f) be a weighted Riemannian manifold. Assume that seci™ = c,
then M has constant sectional curvature k, for some k € R. Moreover, ¢ = —(m — 1)k and if
f is a non constant function, then u = e~f/™ is the restriction of a coordinate function from

the appropriate canonical embedding of a space form of curvature k, Q}, in E*, where E* is
R* or L4

Proof. Let X and Y be an unit and orthogonal vectors on M. Then, by equation (4.1)), we
get

1 (df (X))?
c=sec(X,Y) + 3 (Hessf(X,X) - T)

and

1 (df (Y))?
c=sec(Y,X) + 3 (Hessf(Y, Y)— T) :

So, there exists a smooth function w : M — R such that

i @df _

2m

Hessf — w - g.

Then, letting {Fy, F5, X} be an orthonormal frame we have

2
2c = Y sec;"(X, E;) = Rie(X, X) + 2uw.
=1
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Thus, by Schur’s Lemma, w is a constant function and so M has constant sectional
curvature, say k. Defining the function v = e~//™, we have that

c—k

Hessu = — u-g. (4.5)
m

So, by Lemma 1.2 in [50],
g =dt* + (u')*go, (4.6)

where g is a local metric on a surface orthogonal to Vu (a level set of u) and u' denote the
derived of u in the direction of the gradient of u.
Computing the radial sectional curvature of the metric (4.6]), we have (c+(m—1)k)u’ = 0.

Since f is non constant, we have that ¢ = —(m — 1)k. Moreover, as u satisfies equations
(4.5) and (4.6), u is the restriction of a coordinate function from the appropriate canonical
embedding of Q3 in E*, where E* is R* or L% [ ]

Now we will describe the first stability eigenvalue in an appropriate manner. For this,
consider a first eigenfunction p € C*(X) of the weighted Jacobi operator J;, that is, Jrp =
—A1p; or equivalently,

Afpz —()\1 + ‘A‘Q—FRle(N,N))p (47)
Furthermore, \; is simple and it is characterized by
— Jrud
Ap = inf M cueCP(X), u#0;. (4.8)
SE u? dvy

We observe that the first eigenfunction of an elliptic second-order differential operator
has a sign. Therefore, without loss of generality, we can assume that p > 0.

Thus,

Arlnp = Alnp—<Vf,Vinp) (4.9)
= divs(Vinp) —(V f,p™'Vp)
divs(p™'Vp) = p "V [,V p)
p~tdivs(Vp) +(Vp ', Vp) = p YV [, V)
P (Ap =V [,V p)) = p |V |
= p A —p?Vpl
= —(\ + [A]” + Ricy (N, N) — p |V p[.
Integrating the equality above on X with respect to the weighted measure dvy and using the
divergence theorem we have that

0= ~[Els = | (47 + Ries (N, M) dvy ~ a
b

where o := { p7%|V p|* dvy = 0 defines a simple invariant that is independent of the choice
of p, because \; is simple. So,

1 .
T L(|A| + Ric; (N, N)) duy). (4.10)
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Let {E;} be an orthonormal frame in 7Y and {a;;} the coefficients of A in the frame,
using the Gauss equation

K = secy; —(A(X),Y)? + (A(X), X XA(Y),Y),

we have that

1 2 1
K — SEeCy; = 110922 — (1,%2 = 5 ((all + a22>2 - 2 a?j) = 5 (H2 - |A‘2) ’
ij=1
hence
|A]> = H? + 2(secy —K). (4.11)

To complete this section, we recall the traceless of the second fundamental form of X,
that is, the tensor ¢ defined by ¢ = A — %I , where I denote the identity endomorphism on

TY.. We note that tr(¢) = 0 and |¢|* = |A]> — HTQ > 0, with equality if and only if X is totally
umbilical, where |¢[? is the Hilbert-Schmidt norm.

In the literature, ¢ is know as the total umbilicity tensor of 3. In terms of ¢, the weighted
Jacobi operator is rewritten as

H?
Jru = Agu + (¢|2+7+Ricf(N,N)> u. (4.12)

We use exactly this expression in next section to obtain estimates of the first eigenvalue
of the weighted Jacobi operator.

4.4 Proof of the Theorems [4.1], and

4.4.1 Proof of the Theorem [4.7]

We start doing a straightforward calculus. Let {ey, €2, e3} be a adapted referential of ¥ to
M. Lets rewrite the expression |A[* + Ric; (N, N). We know that

5 = secs +Ric(es),

where S is the scalar curvature of M. By Gauss equation (4.11]), we have

H2 |A|2
—+ —.

seczzK—2 5
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Thus,
S H? |A)?

’A|2 + Rin(N, N) = 5 — K+ 7 + T + Hessf(eg,e3)
1 1 — H? 2
= —SOO—AMf+—|Vf‘2—K+—+u+HeSSf(€3,€3)
2 2 2 2
1 1
= 5%~ (Asf — Hf3 + Hessf(es, e3)) + §(|Vf|2 + f3)
2 2
—-K + - + % + Hessf(es, e3)
1 1 o 1 o 1
= §SOO—K—A2f+§‘Vf’ +§Hf+§’A’ (413)

Integrating with respect to Riemannian measure dv, using the divergence theorem and Gauss-
Bonnet theorem we obtain

. 1
L |A]> + Rics (N, N)dv = 4r(g — 1) + 5 L(SOO + HF + |AP + [V f]?) dv.

By the other hand, integrating (4.9)) with respect to dv we obtain that

_ L<%vp, Y Pydy = —\ S| = (a+ L(AF T Ric; (N, N))dv),

and so,

2 2
- [ By < ol = o+ [ (4P + Riey (v, ),
s 2p 2 2

After a straightforward computation we have that

1l « 1
< —= (= +4n(g—1) + = | (S + H} + |AP)dv).
By our hypothesis,
1 (g — 1)
A < —=(H? -

Moreover, if equality holds then o = 0 and thus p and f are constants, X is totally geodesic,
S|z = 6¢ and K is constant. The reciprocal is immediate.

In Riemannian case, f = 0, we can improve the estimate in theorem .1 The result is
the following:

Corollary 4.3 Let (M3,{,)) be a Riemannian manifold with S > 6¢, for some c € R. Let
Y2 = M3 be a closed surface with constant mean curvature H. Then,
3

/\1 < _Z(H2 +4C) —

Am(g — 1)
2|

Moreover, equality holds if and only if 2 is totally umbilical, S|s = 6¢ and K is constant.
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Proof. The equation (4.13]) can be rewrite, with f = 0, in the following way

1 3 1
|A]> + Ric(N, N) = 39— K+ ZHQ - 5y¢|2.

After a straightforward computation we have that

1 1 3
M < - (a+dn(g— 1) + -f (S + 212 1 o)),
|2 2)g 2
and so 5 i ( D
AN < —S(H? + 4¢) — Y=
s U = g
Moreover, if equality holds then o = 0 and thus p is constant, ¥ is totally umbilical, S|y = 6¢
and K is constant. The reciprocal is immediate. [

4.4.2 Proof of the Theorem (4.3

Before to initiate the proof, we will recall the generalized sectional curvature

%?m(X, Y) =sec(X,Y) + % <Hessf(X7 X) - (dféi)h) |

where X, Y are unit and orthogonal vectors fields on M.

Moreover,

———2m
Secty (X, V).

NlS

Ric}"(X, X) =
i=1
Since
Rici™(N, N) + 2secg = Ric}™(N, N) + 25ec;™|s — Hessf (X, X),

where X is a vector field on X. So, if Hessf < og, using (4.15)) we rewrite the expression
(4.10) by

(4.14)
H]% 1

: o2m SAR2m
M _1—|—2m_ ’E‘f {a_zfdeVf+fE (Rlcf (NaN)+QSeCf —U)dyf}.

Now, we are able to prove our result.

Proof. The item (i) is a consequence of Theorem [4.4] (i). To second item, we using the
expression in and our hypotheses.

Now, if equality holds, then a = 0, R,iC?cm = 2c¢ and %im = c¢. By equality in the
inequality , we obtain

_ 2m
14 2m

df (N)

Hy,
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and so
2m 1

Hy = Hy.
14 2m 14 2m
Moreover, a = 0 imply that p is constant and of the equation (4.7)) we have that |A]? is also
a constant.
To conclude, we using the Lemma [1] to obtain that M3 has constant sectional curvature
and e~/ has the property enunciate in case of the equality. [ ]

H=H; -

In the next subsection we will provide the prove of Theorem and some consequences.

4.4.3 Proof of the Theorem [4.4]
Using (4.11) in (4.10) we obtain that
1
A= ——=— {a — QJ Kdvy + J [H? + 2secs +Ricy (N, N)]dyf} .
|E|f ) )

So, using the definition of weighted mean curvature we have

1
A = P {oz — QJ Kdvs + J (Hf — (N, V £))*dvs + f [2 secy; +Rics(N, N)]dyf} :
f by by )
Moreover, we know that for all a,b € R and &k > —1, it holds that
a® b2
— 4.1

with equality if and only if b = ———a. Applying that inequality with & = 2m, using the

1+k
definition of RiC?'m and a straightforward computation, we obtain that

HJ% 1 o
M S -7 Tom {a - QL K dvy + L (Ric?™ (N, N) + 2secs) duf} :
Using the hypotheses we obtain
H? )
A1§—1+2m—40+mfZKde. (416)

Proof. (i) Choosing the constant function v = 1 to be the test function in (4.8) to
estimate A1, and using the expression in (4.12)), we obtain that

_SE L]flde B 1 ) 1 ) '
A < Szl—dyf = —m lJE \p|“dvy + EJEH dvy + Jz Ricg (N, N)dyf]
N |2\ U (¢ dvy + 2J<Hf—<N,Vf>)2dvf +L Rics(N, N)dyf]
H? N,V f)2 '
=Tl U oy + 5 [ (o = Sy ) + [ R, )|

©2(1+m) Xl Js !

W
< —c 4c | .
2<1+m+ C>
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2
If \, = -1 (i + 4c>, then all the inequalities above becomes equalities and conse-

2 \1+m
quently ¥ is totally umbilical, Ric(N,N) = 2¢, df(N) = 1_? H; and Hessf(N,N) =
m
df (N)?
2m
On the other hand, if ¥ is totally umbilical, Ric(N, N) = 2¢, df(N) = 1T Hy and
m
df (N)?
Hessf(N,N) = i ),We have
2m
H = Hy—df(N)
m
— H, - H
T 1em
1
= H
T+m 7
and
1
Ricy(N,N) = 2c+ —(df(N))*
e (V.N) = 264 2 (df(N))
m
= 2 2
3T rmeE
Hence,
? 2
Jp = Ap+—+2
f Py T A e
1
= A H? +2 :
IS me T
1
= A H? +2
TRy e A
and thus,
1/ H;}
A = —— I 44
! 2 (1+m+ C)’
as desired.

(ii) Using our hypotheses, we have by (4.16)) that
H? 2
M<——Tt— —de— | Kdyy.
'S Trvom f yz\fL vt
If equality holds, then a@ = 0, secy, = ¢, Hessf(N, N) = dN)” Firstly, we obtain of the

2m
equation (4.15) that

2m

df(N) = 14+ 2m

H;.

1
and so H = 152 Hy. Moreover, a = 0 implies Vp = 0 and thus using the equation |D
m

we have that |A|? is constant. Futhermore, by equation (4.11]), we have that K is constant.
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df (N)?
On the other hand, if K is constant, secy = ¢, Hessf(N,N) = f2< ) and df(N) =
m
2
mn Hy, we have that
14+ 2m 5
m
Ric;(N,N) = 2c + ————H?
iy (N, N) = 2¢+ g ya He
and so
J; = Ay +]A]* + Ricy(N, N)
2m
= Ap+H*+2(c—K)+2 2
fHH +2(c-K)+ c+(1 om)2
= Ap+4 H? - 2K
fret 1+2m 7 ’
and this implies that
A = —dc— H; +2K.
A A
Now, using that K is constant,
H? 2
A = —de— — Kd
LT 1+2m+yz\fL vr
as desired. -

Now considering that the ambient is a 3-dimensional simply connected space form with
sectional curvature ¢, Q2. If ¢ is positive, we assume that all surfaces are contained in a
hemisphere. In that conditions we obtain the follows result:

Corollary 4.4 Let X < Q? be a closed and orientable surface with constant weighted mean
curvature Hy, where f is one half of the square of the extrinsic distance function. Assume
that X is contained in the geodesic ball center in the origin O and radius v/2m. Then

H2
(i) M < —= (2 140
! 2\ 1+

m

2

2

y 7

< ——— —dc+ — \. Kdvy.
(ii) A\ A+ 2m) c+ ‘fSE dvy

1=

The equalities holds if and only if ¥ is the sphere center in the origin and radius +/2m,

provided that A/2m < T in case ¢ > 0.
NG
c

Proof. We know that
dr?(N))?
RicZ™r(N, N) = 2¢ + Hessr*(N, N) — %
and

Hessr?(N,N) = (VyVr% N)
= 2(dr(N))? + 2rHessr(N, N).
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Now, using the expression of the Hessian of the distance function in a space form, we have
that
Hessr(N, N) = cot.(r)[1 — (dr(N))?],

where
v—ccoth(y/—ecs) if ¢ <0,
cot.(s) = L if ¢=0,
yeeot(y/es) if ¢>0.
So,

Hessr?(N, N) = 2(dr(N)?) + 2r cot.(r)[1 — (dr(N))?].

Now, using that the surface is contained in the ball center in the origin and radius y/m
and (dr(N))? < 1, we obtain that

4r2(dr(N))?

Ric?m(N, N) = 2c+2(dr(N))? 4 2r cot.(r)(1 — (dr(N))?) — o

> 2c.

Therefore, by Theorem [£.4] we conclude the inequalities enunciates. To conclude, if the
equalities holds, then dr(N) =1 and r* = 2m. |

Corollary 4.5 Let (M?,{,), f) be a weighted Riemannian manifold with Ric?cm > 2c¢ and
sec = c.

(i) There is no closed stable surface with

2
H

+ 4c¢ > 0.
1+m

2

H
(ii) If X2 is a closed and stable surface such that T g +4c < 0, then
m

H?
f -1
4 .
1+2m+ C|)

Sy = 2 LKdmu

Proof. By definition, a surface is stable if and only if A\; = 0. Thus the item (i) follows from
the Theorem (i). For the item (ii), we using the definition of stability and the Theorem
(ii). So,

1 2
0< A\ < — —4C+—JKde,
’2|f p)

1+ 2m
and thus

Hj
5 4
| ’f‘l+2m+ ¢

> —2J K du.
P

]
Another consequence of the Theorem is an improvement of the proposition 3.2 in [2§]
for the case in that X is not necessarily f-minimal.
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Corollary 4.6 Under the same assumptions of the Theorem [{.4)
(i) If ¢ > 0, then ¥ cannot be stable;
(11) If c =0, but Hy # 0, then ¥ cannot be stable;

(iii) If c = 0 and X is stable, then Hy = 0.
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CHAPTER b

LSTEKLOFF’S EIGENVALUES TO WEIGHTED RIEMANNIAN
MANIFOLDS

5.1 Introduction

The Classical Stekloft’s eigenvalue problem

ou

{Au —0 inQ,
ov

= ou on 0f),

was introduced by him in [49] for bounded domains €2 of the plane and afterward this was
studied by Payne in [42] for bounded domains in the plane with non-negative curvature.

In this chapter we study Stekloff’s eigenvalue problems in the weighted context. More
specifically, if (M,{,), f) is a weighted Riemannian manifold with boundary ¢M, we study
the following weighted Stekloft’s eigenvalue problems

A =0 in M
] Fu m s (51>
5 = pu on 0M,
Au=0 in M

fu a in M, (5.2)
u=Aru—q5 =0 on 0M;
A2y =0 in M

T o o (53)
U:m—q%zo OH&M,

where v denote the outward unit normal on dM. The first non-zero eigenvalues of the above
problems will be denoted by p; and ¢y, respectively. We will use the same letter for the first
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non-zero eigenvalues of last two problems because whenever the weighted mean curvature of
0M 1is constant then the problems are equivalents, in the sense that u is solution of (5.2)) if,
and only if, u it is solution of (5.3). Indeed, since in the boundary Ay u = 0, we can write

0u ou
AMU = W +n a—y,

being u = 0 on dM, and in this case Vu = S—Zl/, we have

Aru=Au—(Vu,Vf)=Au— %@, \%))

0u ou
=527 (nH — (v, Vf>)a—y
0u ou
Consequently,
ou  %u ou
Aru—agy = o~ (@ —nly)z)

therefore if H; is constant, u is solution of (5.2)) if, and only if, u it is solution of (5.3). Note
that, in this case, the difference between p; and ¢; is Hy.

In this chapter the N—Bakry—Emery Ricci tensor will be defined as

df @ df

-k .
Rle = Rle — m,

(5.5)
where k >n +1or k =n+ 1 and f a constant function. We will consider M™*! a compact
oriented Riemannian manifold with boundary dM. Let ¢ : M < M be the standard
inclusion and v the outward unit normal on dM. We will denote by 17 its second fundamental
form associate to v, (Vxv,Y) = I11(X,Y), and by H the mean curvature of M, that is, the
trace of I over n.

In this chapter we will denote the weighted mean curvature, introduced by Gromov in
[23], of the inclusion i by

Hy = H— %@, V.

This chapter is organized of the following way: in the section 5.2 we presented results
about upper bound and lower bound for the first non-zero Stekloft’s eigenvalue; in the section
5.3 we obtain the auxiliary results to proof the results of the previous section, in the section
5.4 we prove the four first results of the section 5.2, and finally in the section 5.5 we prove
the last theorem of the section 2.2.

Lastly, for the sake of simplicity, we will omit the weighted volume element in the integrals
in all text.
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5.2 Weighted Stekloff’s Eigenvalue Problems

In this section we presented our results. We point out that the Riemannian cases of follow-
ing theorems was studied by Wang and Xia in [57, 58] and by Escobar in [14], respectively.

We start obtaining an upper bound for the first non-zero Stekloff’s eigenvalue of [5.1]

Theorem 5.1 Let M™*' be a compact weighted Riemannian manifold with Ric];i > 0 and
boundary OM. Assume that the weighted mean curvature of OM satisfies Hy > (k:ll)c, to
some positive constant ¢, and that second fundamental form I1 = cI , in the quadratic form
sense. Denote by Ay the first non-zero eigenvalue of the f-Laplacian acting on functions on
OM. Let py the first non-zero eigenvalue of the weighted Stekloff eigenvalue problem .

Then,

b < VA (- D (56)

with equality occurs if and only if M is isometric to an n-dimensional euclidean ball of radius
%, f is constant and k =n + 1.

The second result is the following:

Theorem 5.2 Let M™™! be a compact connected weighted Riemannian manifold with Riclfc >

0 and boundary OM. Assume that the weighted mean curvature of OM satisfies Hy > k—;lc,
to some positive constant c. Let g1 the first eigenvalue of the weighted Stekloff eigenvalue

problem (5.2). Then

q1 = nc.

Moreover, equality occurs if and only if M is isometric to a euclidean ball of radius % mn
R+ f is constant and k = n + 1.

The next results are

Theorem 5.3 Let M™! be a compact connected weighted Riemannian manifold with bound-
ary OM. Denote by A, V the weighted area of OM and the weighted volume of M, respectively.
Let q1 the first eigenvalue of the weighted Stekloff eigenvalue problem (5.2)). Then,

A
Q1<v-

Moreover, if in addition that the Ricl} of M is non-negative and that there is a point xo € M

such that Hy(xg) = (kk_an).A, and q; = é implies that M is isometric to an (n+ 1)-dimensional

Fuclidean ball, f is constant and k = n + 1.

and
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Theorem 5.4 Let M™*! be a compact connected weighted Riemannian manifold with Ricl} >
(k—1)c

0 and boundary 0M nonempty. Assume that Hy > , for some positive constant c. Let

q1 be the first eigenvalue of the problem ((5.3)). Then
q1 = C.

Moreover, equality occurs if and only if M s isometric to a ball of radius % in R"™ f s
constant and k = n + 1.

Lastly, we announce a sharp estimate of the first non-zero Stekloff eigenvalue of surfaces
on suitable hypotheses.

Theorem 5.5 Let M? be a compact weighted Riemannian manifold with boundary. Assume
that M has non-negative Ricy, and that the geodesic curvature of OM, kg, satisfies k,—f, = ¢ >
0. Let py the first non-zero eigenvalue of the Stekloff problem . Assume that f is constant
on the boundary OM and its derivative in the direction normal exterior is nonnegative, then
p1 = c. Moreover, the equality occur if and only if M is the Euclidean ball of radius ¢=' and
f s constant.

5.3 Preliminaries

In this section we will present some results necessary to prove the theorems enunciated in
the previous section. We will present some proofs for the sake of completeness.

In [5] the authors proved the following useful inequality.

Proposition 5.6 Let u be a smooth function on M™*. then we have
A 2
[Hessu|? + Ricy(Vu, Vu) = % + Ric}§(Vu, Vu),

foreveryk >n+1ork=n+1 and f is a constant. Moreover, equality holds if and only if
Hessu = 24( ) and (Vu,V f) = —k’Z’lAf.

Proof. Let {e1,...,en+1} be a orthonormal basis of T, M, then by Cauchy-Schwarz inequality
we have that

(Au)® < (n + 1)|[Hessu|?. (5.7)

Using that —1-a? 4+ ——b% >

—_ —— (a — b)? with equality if and only if

1
k

—

IThis term only appear in the case of a non constant function.
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we obtain

|Hessu|* 4+ Rics(Vu, Vu) = -y 1(Au) + Ric}(Vu, Vu) + —
1
> E(Au —(Vf,Vuw)* + Ric}(Vu, Vu) (5.9)
1
= E(Afu)Q + Ric’}(Vu, Vu).

If the equality holds, then since we use the Cauchy-Schwarz’s inequality in (5.7]) we obtain
that Hessu = A\, ), and by (/5.8))

(n+ 1)V f,Vu)

Au = —
Y Ek—n—1 "
Consequently
(n+ 1)V f,Vu) k
T - L |
ru LY (V) = (V. V0)
The converse is immediate. ]

In [34] the authors showed that, for a smooth function u defined on an n-dimensional
compact weighted Riemannian manifold M with boundary M, the following identity holds
it h = g—:j, z = u|ay and Ricy denote the generalized Ricci curvature of M:

fM[(A}cu)Q—|Hessu|2 — Ricy(Vu, Vu)] = (5.10)
_ f [nH B + 208z + 11(V=,92)]
oM

that is a generalization of the Reilly’s formula. Here, A and V represent the Laplacian and
the gradient on 0M with respect to the induced metric on dM, respectively.
Using the Proposition [5.6| we have that

y %[(Afu)Q—Ric’}(Vu, Vu)| = (5.11)

> J [nHh? + 2hA sz + 11(V2,V2)].
oM

The next result is an estimate for the first non-zero eigenvalue of the f-Laplacian on
closed submanifolds.

Proposition 5.7 Let M"™" be a compact weighted Riemannian manifold with nonempty
boundary OM and Ricl} > 0. If the second fundamental form of OM satisfies I1 = cl, in the

quadratic form sense, and Hy > %c, then
M(OM) = (k— 1),

where Ay is the first non-zero eigenvalue of the f-Laplacian acting on functions on M. The
equality holds if and only if M is isometric to an Euclidean ball of radius %, f is constant
and k =n + 1.
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Proof. Let z be an eigenfunction corresponding to the first non-zero eigenvalue A; of the
f-Laplacian of M, that is,

Az + Mz =0. (5.12)
Let uw € C*(M) be the solution of the Dirichlet problem

Apu=0 in M,
U=z on oM.

It then follows from ‘} and the non-negativity of Ric’} of M that
0= f [nHih? + 2hA sz + 11(V2z,V2)]. (5.13)
oM

Since Il > cl, we have

I[1(V2,Vz) = c|Vz],

f Vz|* = —f ZZZI/\lf 22,
oM oM oM

and noticing that

we obtain
[ — —
0> | [nHR*+2hA2+ 11(V2,V2)]
JoM
r
> | [(k—1)ch? — 2\ 1zh + cA 22
Jomr
i )\12 2 >\1 2
= k—1)c|(h— A —
Jom [( ) ( (k— 1)6) o (c (k — 1)6) :
A1 9
> A\ — .
1 < (k - 1>c> LMZ
Consequently,

)\1 = (lf — 1)62,
which proof the first part of theorem. The equality case follows by Proposition [5.6] and a
careful analysis in the equalities that occur. The converse is immediate. ]

Recall the following version of Hopf boundary point lemma, which will be important in
our proofs. See the proof in |26, Lemma 3.4].

Proposition 5.8 (Hopf boundary point lemma) Let (M™,{,)) be a complete Rieman-
nian manifold and let @ < M be a closed domain. If u : Q@ — R is a function with
u € C%(int(Q)) satisfying

Au+ (X, Vuy =0,

where X is a bounded vector field, xq € 02 is a point where
u(x) < u(xg) Yo e,

u is continuous at xq, and ) satisfies the interior sphere condition at xy, then

0
a—;‘(ggo) >0

if this outward normal derivative exists.
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5.4 Proof of Eigenvalue Estimates and Rigidity

In this section we will give the proof of the four first results announced in the introduction
and for this we will use all tools presented in the preliminaries.

Proof of Theorem Let u be the solution of the following problem

Apu=0 in M,
u|6M =z,

where z is a first eigenfunction corresponding to A;, that is, z satisfies Zfz + Mz = 0. Set

h =24 o0 then we have from the Rayleigh inequality that (cf.[30])
Sonr I
LIRS W (5.14)
and
[Vul?
D1 < 51\5—22 (5.15)
oM

Notice that (5.15]) it is the variational principle, and ([5.14]) it is obtained as follows,

< §0p | Vul? _ —§ ulpu+§,,, u(Vu,v)

p

N Sonr 22 Sons 2
_ SM |Vul? ) SaM wWVu,v)
Sons 2 Sar [Vul?
1 (Ve )’
Sons 72 $ar [Vul?

< Sonr ' SorrlVu, 1)

N SaM 2’ SM [Vul?

_ Sonr 1
§0 1 Vul?
which gives
Sons 1
P} < SaM o (5.16)
oM
It then follows by substituting u into the equation (5.11f), we obtain
E—1 _
0> y T[(Afu)Q—Rlc';(Vu, Vu)] = (5.17)

> J [nHh? + 2hA sz + 11(V2z,V2)]
oM

\Y

f [(k—1)ch? — 2h\ 2 + c|Vz|?].
oM
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Note that, by Green’s formula,

J |Vz|? = (Vz,Vz) = —J 2Npz = /\1f 22,
oM oM oM oM

Putting this expression in (5.17]) we have that

0> (k—l)cf h2—2)\1f hz+c)\1f
oM oM

>(k—1)cLMh2—2)\( ) (LM > +c)\1LMz2

S R (L (RO RIS
S (] ) B (], v

from where

and

(I h2>2< o (f #)
oM /\—\//\1—147—162 oM

that is,

f+ VAL — (k= 1)) (LM 22)

Using , we obtain
P1 ( (\/7 + \/)\1 — 1 CQ>

Now, assume that

D1 ( (\/>+\/)\1 —102>

So, we also have that

(I, h2>% = e (VR Vi) (,”)
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and all inequalities above become equality. Thus h = az and

(050, 27)° VA 2
‘- (L, =) :(k—l)c<\/)\j+ - (k-1E),

that is,

h= (k\ﬁ)c(\/x + /A = (k= 1))z

Furthermore we infer, by Proposition [5.6, that Hessu = 0. Now, on the boundary dM, we
can write

Vu = (Vu)' + (Vu)*
= (Vu)" + (Vu,v)v,
where (Vu)T is tangent to M and (Vu)* is normal to dM. Then, take a local orthonormal
fields {e;}?_, tangent to dM. We obtain
0= Z Hessu(e;, e;) = Z<VeiVu, €;)
i=1

=1

= 2XVel(Vo)T + (Vuvpw] e

Z<V€i(VU)T + (Vu, )V, v+ e;((Vu,v))v, e;)

i=1

- Az + Z<Vu, vyll(e;, e;)
i=1

= Az+nHh

= Zfz + anh

=—-\Nz+clk—1)h

VA

= Nz +ck—1) = i)c(”l +/A — (k= 12z,
from where
)\1 = (k - 1)02.

Therefore, follow by Proposition , that M is isometric to an (n + 1)-dimensional Eu-
clidean ball of radius %, f is constant and so kK = n+ 1. The converse follows the ideas of the
Riemannian case.

Proof of Theorem Let w be an eigenfunction corresponding to the first eigenvalue
¢ of problem ([5.2)), that is

A = in M
=0 n (5.18)
w=Amw—-q% =0 on 0M.
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Set n = g—jﬂa m; then by divergence theorem we obtain
| @p - | @@wv0+| Ay
M M oM

- | waram - | @@ | A

= Q1f n,
oM

that is,
i S]\/[(Afw)2
@ = e———
Sonr ™
Substituting w in (5.11)), and noting that w|sy = 2z, we have
k—1
— (Ajw)? > J Ric§(Vw, Vw) —i—f nHn’
M M oM

k— 1)nc
LY )
oM

Assume now that ¢; = nc, then the inequalities above become equalities and consequently

Hy = %c. Furthermore, we have equality in the Proposition , thus Hessw = nA—;"l ,» and

from where ¢; > nc, as we desired.

Ayw = niHAw.
Take an orthonormal frame {ej,...,e,, e,11} on M such that when restricted to dM
eni1 = V. Since w|ay = 0 we have

ei(n) = eVw,v)
=(V,Vw,v) +Vw,V.v)
= Hessw(e;, v) + II((Vw) ", e;) =0,
that is, n = p = constant, and so (Asw)|apr = @1 = nep is also a constant. Using the fact

that Ajw is a f-harmonic function on M, we conclude by maximum principle that A jw is
constant on M. Since Ajw = nLHAw, then w satisfies

Hessw = %<,> in M,
w’aM = 0.

Thus, by Lema 3 in [48], we conclude that M is isometric to a ball in R™*! of radius ¢!

Now, using the hessian of w is possible see that w = %7’2 + C', where \ = % and r is the
distance function from its minimal point, see [48] for more details for this technique.
Lastly, we will show that f is constant. In fact, if £ > n + 1, then (V f, Vw) is constant

and so f = —(k—n—1)Inr + C. It is a contradiction, since f is a smooth function.

Proof of Theorem [5.3] Now, let w be the solution of the following Laplace equation

Apw=1 in M
{fw n M, (5.19)

w|aM = 0.
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Follows from Rayleigh characterization of ¢; that

SM<Afw>2 _ V
SaM n? SaM n?’

G < (5.20)

’g—”j oy Integrating Apw =1 on M and using the divergence theorem, it gives

sz 7.
oM

Hence we infer from Schwarz inequality that

where 1 =

v2<14J‘ n°. (5.21)
oM

Consequently,
V Vv A

< < _ 2
NSy P VATV

Assume now that Ricl} >0, Hy(xg) = (12711‘)/A for some xg € OM and ¢; = é. In this case

1} become a equality and so n = % is a constant. Consider the function ¢ on M given by

w

1 2

2

[{fing the Bochner formula 1) Ajw = 1, the Proposition and that Ricl} > 0, we have
that

1
§Af¢ = |Hessw|?* + (Vw, V(Ajw)) + Ricy(Vw, Vw) — 1 (5.22)
1 , 1
> — —==0.
p(Agw)” =2 =0
Thus ¢ is f-subharmonic. Observe that ¢ = % (%)2 on the boundary. In fact, if we write

Vw = (Vw)" + (Vw)*, where (Vw)" is tangent to M and (Vw)' is normal to dM, and
since w|ay = 0, it follows that Vw = (Vw)t = Cv on M. On the other hand,

1=Apw=qVw,v) = éC’ implies C' = % and |[Vw| = %

Therefore ¢ = % (%)2 on the boundary, and so we conclude by Proposition that either

1/V\* .
or
0
a—f(y) >0, VyedM. (5.24)



From w|apr = 0, we have

%
1 = (Ajw)|opr = nHn + Hessw(v,v) — Z<Vf, vy

_nV (Vf,v) V
= <Hf+ - )—I—Hessw(y,y)— A<Vf,l/>
= %Hf + Hessw(v, v).
Hence it holds on dM that
3l0) %
i ZHessw(V, V) — A

Vv nV %
A(l—IHf>—m

V (k-1 V
_”Z<W_Hfz>’

which shows that (5.24)) is not true since Hy(zo) = (]Z;l‘)/A. Therefore qb is constant on M.

Since the f-Laplacian of ¢ vanishes, we infer that equality must hold in 2)) and that give us
equality in the Proposition , and consequently 1 = Ayw = k —=Aw and Hessw = $+“’1< >.
The remainder of the proof follows a similar arguments as in proof of Theorem [5.2]

Proof of Theorem Let w be an eigenfunction corresponding to the first eigenvalue ¢;
of the problem (5.3)):
Afu =0 in M,

_ Pu _ 0u
u=2%53—q%5 =0 on oM.

Observe that w is not a constant. Otherwise, we would conclude from w|sy; = 0 that w = 0.
Set n = g—fbM; then n # 0. In fact, if n = 0 then

(5.25)

0w
’LU‘@M = (Vw)]aM = W =0
this implies, by (5.4), that (Ajw)|sn = 0 and so Ayw = 0 on M by the maximum principal,

which in turn implies that w = 0. This is a contradiction.

Since wlap = 0, we have by the divergence theorem that

J (Vw, V(A ) = — f wA2w = 0, (5.26)
M M
hence

LM Afw f (V(Apw), Vw>+f (Ajw)? = J (Ajw)?. (5.27)

M
Since w|ap = 0, we have Vw = gwl/ and
*w ow
(Ajw)|on = ool nH— —(Vf,Vw) (5.28)
ow 6w ow
_qla_—’_ana +<vfal/>5_<vay>5

ow ow
= qla— + ’fLHf o

o1



using ((5.27)) and ([5.28) we obtain that

§a(Agw)? = nf,, Hen?
Sone 7
On the other hand, substituting w into (5.11)), we obtain

g1 =

kE—1
T M(Afw)2 = JM RICI}(VUJ, VU)) + L anUQ (529)

M
= J annQ,
oM

that is,

f (Af’[U)Q—J an’UQE% HfHQZCJ 772.
M oM oM oM

By expression for ¢; and estimate above, we obtain the desired estimate

\%

Q= C. (5.30)

Assume now that ¢; = ¢. So all inequalities in ([5.29) become equalities. Thus, by Proposition
5.6, we have that

Aw k
H = d Aw=———7— . 5.31
essw = ="-()and Apw = —— (Y], Yw) (5.31)
Choice an orthonormal frame {ej,...,e,} on M so that restricted to dM, e, = v. On the
other side, to i = 1,...,n — 1, using that w|sy; = 0, we obtain

0 = Hessw(e;, e,) = e;en(w) — Ve, e,(w)

=¢;(n) = (Veen, enrn = ei(n),

follow that n = by = const. Since ([5.30)) takes equality and n is constant, we conclude
that H; = ¢, which implies from that (Ajw)|an = kcby, therefore, by maximum
principle A jw is constant on M which implies from that Aw is constant on M. The
remainder of the proof follows a similar arguments as in proof of Theorem [5.2]

5.5 Sharp Estimate of the Stekloff’s Eigenvalue for Sur-
faces

Recall the Bochner type formula for weighted Riemannian manifold, which says: Any
smooth function v on M holds that

1
5Af|vu|2 = |Hessu|? + (Vu, V(Au)) + Ricy(Vu, Vu). (5.32)

An immediate consequence of the Bochner type formula is the result below, however we
believe that this is not a sharp estimate.
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Theorem 5.9 Let M™ n > 2 be a compact weighted Riemannian manifold with boundary
OM. Assume that Ricy = 0, Hy = 0 and that the second fundamental form satisfies I1 > cl
on OM, ¢ > 0. Then

C

p1>§.

Proof. Seih :%> and z = u|sps where u is solution of problem 1D We have p1z = pju =
h, thus p;Vz = Vh. By (5.10)), we have

0> —J |Hessul|? > f [(Afu)? — [Hessu|* — Ricy(Vu, Vu)]
M M
= f [nHh* + 2hAz + 11(V2z,V2)]
oM

> o TnT e f VP
oM oM

>—2p1J |vz|2+cj V22
oM oM

Note that
f Vz> > 0.
oM
Otherwise z is constant on the Boundary and hence f is constant on M which is a contra-
diction. Thus p; > 5. [

Below we present the proof of the sharp estimate of the non-zero first Stekloff eigenvalue
on surfaces. The technique was introduced by Escobar in [15], and just allows us to attack
this problem in context of surfaces.

Proof of Theorem [5.5] Let ¢ be a non-constant eigenfunction for the Stekloff problem
(5.1). Consider the function v = 3|V¢|?, then by (5.32)

Ayv = [Hesso|* + (Vo, V(A;9)) + Ricy(Vo, Vo).
Since ¢ is a f-harmonic function and Ricy > 0 we find that
Apv = [Hessg|? + Ricy(Ve, V) = 0. (5.33)

Therefore the maximum of v is achieved at some point P € dM. The Proposition [5.8|implies
that (dv/on)(P) > 0 or v is identically constant.

Let’s assume (dv/dn)(P) > 0 and let (¢, z) be Fermi coordinates around the point P, that is,
x represents a point on the curve dM and t represents the distance to the boundary point z.
The metric has the form

ds® = dt* + h*(t, z)da?, (5.34)
where h(P) =1, (0h/dz)(P) = 0. Thus

(a0 2 (00 2
wor - () 0o (&)
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and

w2020, a060% ok (06}
or Ot dxot ox Ox? 6 ox)

Evaluating at the point P we obtain
00 py 20 PO 202
or 0t Oxdt  Ox 0x?

The f-Laplacian with respect to the metric given by ([5.34]) in Fermi coordinates (¢, x) is

2 Ohd @ () ofd , ,0f @
e et 8:1:(h %) L

~ 0. (5.35)

Ay =

ot ot oz or’

The geodesic curvature of dM can be calculated in terms of the function f and its first

derivative as follows:
k, = — .
g <Va/a Erilem > < a/at

B 28t<6x 8x> 2815 (%) hh (5.36)

Hence at P we find that

AP0 06 PG 0fdp 0f ¢

Using the equality (5.36]) we get that

v, 003  0p %9 00\
aP) = aae Y aaes TR \a)

(5.38)

Multiplying the equation ((5.37)) by _E and adding with the equation (}5.38]) we obtain

ov B , 003*¢ 0¢ ¢ Of 6¢ Of 0 0
D) =RVl = B o T e T \a ) Tawawar (5.39)
If %(P) # 0, the equation and the boundary condition yields
¢ 5¢
2P =n P (5.40)
Therefore the equation ([5.39)) can be re-written using the boundary condition as
v, ) o\ 09 ¢ of (09\*  0f 0909
-ﬁﬂ—%—mW@+mgﬂ+gﬁmf& DY LLDLD (s
Notice that by we obtain, using ,
o) *¢ 09 % o9 0% 50
= — = 5.42
3t 9xdt 9w ox? ot \owor D'z (5.42)
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that is,

a¢ 0%
Pror = "ozt
Thus becomes
ov 2, 8f 0o of 0¢ 0
R N (at) R

and we write P o
= (P) = (ky = p)|VoP + V6, V).

Since f|aps is constant, so gf(P) = 0, and using that %{ <0

()= thy—porwer+ L (2)

of
> (b - 1968

0
(kg'i’g_pl

hence

)IVel* <0,

and py > kg + & =k, — f, >c.
Now we assume that g—‘ﬁ(P) = 0. A straighforward calculation yields

0% 26 \° 0o 36 26\°
7zt = <6m6t) t S aea (a_) -

Using the boundary condition we get that
0% (% 26\°
81'2( ) 1¢ <a$2> <0

Since g¢(P) = 0, the equation 1' implies that

v 0¢ a2¢ of (09 of
§<P>‘k<at) PG t(_t) (ks 57 ) it < mo s

Thus p
(k? + f>p1¢ + 1¢ qb

Adding inequality ((5.44)) with (5.45)) we obtain
0*¢ of
(8_ +p1¢) + P (k + = En p1> ¢* < 0.

of
p1>k’g+E:kg_fu>C-

Hence
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Let’s assume that v is the constant function. Observe that v # 0 because ¢ is non-
constant. Since v is f-harmonic, inequality (5.33]) implies that

Hessp =0 and Ricy(Vep,V¢) =0, on M.

Now, using that Ay¢ = 0, we obtain that (V¢, Vf) = 0 and hereby Hessf(V¢, V) = 0.
Thus, the Gaussian curvature K of M vanishes. Moreover, using the structure of surfaces,

Vi =\J(Vé), (5.46)

where J is the anti-clockwise rotation of 7/2 in the tangent plane.

Let {e1,es} be a local orthonormal frame field such that e; is tangent to M and ey = 7.
So,

0 = Hessg(er, €2) = e1€2(¢) — Ve, e2(9)
= e1(p19) — (Ve 2, €1)01
= (p1 — kg)¢1-
Observe that if ¢; = 0 on dM, then ¢ =constant on dM and hence ¢ is a constant function

on M which is a contradiction. Thus p; = &, except maybe when in the points where ¢; = 0.
Since Hessg(eq, e1) = 0 we have

0 = Hesso(eq, e1) = ere1(¢) — Ve, e1(0)
= e1(e19) — (Ve €1, €2)e2(0)
= 61(61¢> + kgp1¢'

Hence ¢ satisfies on the boundary a second order differential equation

e, kgp1o = 0 (5.47)

dx?
¢(0) = ¢(¢)

where ¢ represents the length of 0M. The function ¢ does not vanishes identically, thus
¢1 = 0 except for a finite number of points. Therefore p; = k, except for a finite number of
points and using the continuity of %4, we conclude that p; = k, everywhere. Therefore,

plzkg_fu+fu>c7

and the equality between p; and c occurs if k; = kg and f, = 0. Using K = 0 and kg is a
positive constant, we conclude that M is an Euclidean ball.
Furthermore, by the identity (5.46)), and using that Hessp = 0, we obtain

VxVf = X(NJ(Ve) + M (Vx V)
= X(N)J(Vy),
and note that
75

202

IVF? = M|Ve|]* =2\%° = \°
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By other hand,

J(VxVp), V) = (VxJ(V), V) = =(J(Vy), VxVip).

Let {e1,e2} be a orthonormal basis of the 7,,M, then
2

Af =YV Vf e
i=1

)
= vax, e J(V),er)
— (VA I,
and, using the symmetry of the Hessf, we obtain
VAV I (Vo) ? = (Viwn) VI, V) = (VA V) (J(Ve), V) = 0.
Therefore, VA = £J(V) and VxV [ = £(J(V), X)J (V). Consequently,
Hessf = §J (V) ® J(Vip)

and Af
Af =R =20 = &=,

from where

Hess/ = 57 (J(V0) © J(V0)).

It easy to see, using that M is an Euclidian ball, that ¢ = z;, that is, ¢ is a coordinate
function. Thus, using the expression of ¢, f satisfies Hessf = 0 and as f is constant on the
boundary, we have f constant.
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CHAPTER 6

A WEIGHTED SPLITTING THEOREM

6.1 Introduction
Given g € C*(M) we consider the closed Dirichlet problem
Apu+ g(u) = 0. (6.1)

A solution of that problem is a critical point of an energy functional, which we will denote
by Ey. We say that a solution u is stable if the second variation of E; is non-negative on
W212(M), where

Wh(M) = {ue L*(M); s—“ e L*(M),i=1,2,...,m = dim(M)}
T

with compact support in M, see [13] for a good overview about Sobolev’s spaces.

We say that a weighted Riemannian manifold is f-parabolic if there exists no non-constant
and bounded below function which is f-superharmonic.

In this chapter our aim is to prove the following weighted splitting theorem. It is read as
follow:

Theorem 6.1 Let M be a complete and non-compact weighted Riemannian manifold without
boundary and satisfying Ricy = 0. Assume that w € C*(M) is a non-constant and stable

solution of (6.1)).
If either

(i) M is f—parabolic and Vu e L*(M), or

(ii) the function |Vu| satisfies

JB |Vul’dv; = o(R*log R) as R — +. (6.2)
R
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Then, M = N xR with the product metric gy = gy +dt?, for some complete, totally geodesic,
f-parabolic hypersurface N. In particular, RZ.C]fV >0ifm=3, and M = R? or S* xR, with
their flat metric, if m = 2. Moreover, u depends only on t, has no critical points, and writing
w=y(t) it holds —y" + ky' = g(y) where k is a constant.

Moreover, if (ii) is met,

Vol (By) = o(R*log R) as R — +oo. (6.3)
R 2
R7log R
"O)Pdt = o | 2 — +00. 4
[ rora =o(Ggs) o o0

This chapter is organized as follow; in section 2 we recall all concepts and equivalences
that we use in the chapter; in section 3 we present some technical propositions that will
auxiliary in the proofs of the principal results; in section 4 we dedicated it to proof of the
Theorem [6.1].

6.2 Preliminaries

Throughout the chapter M will denote a connect weighted Riemannian manifold of di-
mension m > 2, without boundary. We briefly fix some notation. Having fixed an origin py,
we set r(z) = dist(z,p,), and we write B for geodesic ball centered at p,. If we need to em-
phasize the set under consideration, we will add a superscript symbol, so that, for instance,
we will also write Ric}’ and Bp'. The Riemannian m-dimensional volume will be indicated
with Vol, and the measure with density by dv; = e=/dVol. While will write ™! for the
induced (m — 1)-dimensional Hausdorff measure and dH7"~" = e~ /dH™ !. We will use the
symbol {€2;} 1 M for indicate a family {€2;} ey of relativity compact, open sets with smooth
boundary and satisfying

+00
QGEeQyueM, M=]J9,

Jj=0

where A @ B means A € B. Such a family will be called an exhaustion of M. Hereafter, we
consider

ge C*(R),

and a solution u on M of
Apu+g(u) =0 on M. (6.5)

We recall that u is characterized, on each open subset U € M, as a critical point of the
energy functional E; : WH?(M) — R given by
1 t
E¢(w) = —f |Vwl|*dvy — J G(w)dvy, where G(t) = f g(s)ds, (6.6)
2 Ju M 0

with respect to compactly variation in U. Let J; the Jacob operator of Ey at u, that is,
Jf¢ = _Af(b_gl(u)(b? V(be CSO<M)7 (67>

where C(M) is the space of the smooth functions compactly supported in M.
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Definition 3 The function u solving (6.5)) is said to be a stable solution if J; is non-negative
on CP (M), that is, if (¢, Jpp)r2 = 0, for all ¢ € CF(M). In other words,

f g (u)p*dvy < f IVé|’dvy,  for all g € CP(M). (6.8)
M M

By density, we can replace C°(M) in with Lip.(M). By a simple adaptation of the
[21, Theorem 1], the stability of u turns out to be equivalent to the existence of a positive
w e C*(M) solving Ajw + ¢'(u)w = 0 on M.

Let €2 be an open set on M and K be a compact set in 2. We call the pair (K,Q) of a
f-capacitor and define the f-capacity cap(K,€2) by

_ : 2
cany (K.0) = it | Vo, (6.9)

where £(K, ) is a set of Lipschitz functions ¢ on M with a compact support in € such that
0<¢<1and | =1.
For an open precompact set K < 2, we define its f-capacity by

cap; (K, Q) := capf(f, Q).

In case that Q = M, we write cap(K) for capy(K, ). It is obvious from the definition
that the set £(K,§2) increases on expansion of € (and on shrinking of K'). Therefore, the
capacity caps(K, ) decreases on expanding of 2 (and on shrinking of /). In particular, one
can prove that, for any exhaustion sequence {&}

cap;(K) := klEIOlO cap; (K, &).
Definition 4 A weighted Riemnnian manifold is f-parabolic if there exists no non-constant

bounded below f-superharmonic function u, that is, if Ayu < 0 and w > k, for some k € R,
then u is constant.

Hence, we have the following characterization of f-parabolicity. For the proof see [25].

Proposition 6.2 Let M be a complete weighted Riemannian manifold. Then, the following
are equivalent:

1. M s f-parabolic.

2. caps(K) = 0 for some (then any) compact set K < M.

The following criterion of f-parabolicity is well known, for more details see for instance
[22], Proposition 3.4].

Proposition 6.3 Let p, be a fixed point in a weighted Riemannian manifold M and let
L(r) = J d?-l?_l and V(r) = f dvy.
0B(po,r) B(po,r)

If

foo dr i or foc rdr i
 L(r) 1 V() ’

then M 1is f-parabolic.
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6.3 Technical Computations

We start this section with a Picone type identity in a weighted Riemannian manifold.
Lemma 2 Let Q € M be a domain with C? boundary (possibly empty) and let u € C3(Q) be
a solution of —Ayu = g(u) on Q. Let w e C*(Q) n C*(Q) be a solution of Ayw + ¢'(u)w <0

such that w > 0 on Q. Then the following inequality holds true: for every ¢ > 0 and for
every ¢ € Lip.(M),

¢? m—1 2 / w
| @y < | (Vo - | gt

QW+ e
[ (55)

Furthermore, if either @ = M or w > 0 on Q, one can also take ¢ = 0 inside the above
inequality. The inequality is indeed an equality if w solves Ayw + ¢'(u)w = 0 on Q.

(6.10)

2
de.

Proof. We integrate A;w + ¢'(u)w < 0 against the test function ¢?/(w + €) to deduce

0< J(Afw—i-g() )& dyf——L T (@w)dH! (6.11)

w+ € Qw—i-&

AN G RO Rt

2 2
<v ( ¢ ) ,Vw> - 2%;8<V¢, V) — ¢—2|Vw|2,

w+e (w+¢)

(@)
w—+ €

Since

using the identity

2 ¢2

(w+5) = |V¢>|2+ m

Vol - 22— (Vu, Vo),

we infer that

V() v o op - ey ()] (6.12)
w+e)’ w+e
Inserting (6.12)) into (6.11]) we get the desired (6.10)). |
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Proposition 6.4 In the above assumptions, for every € > 0 the following integral inequality
holds true:

f [[Hessu|?* + Ricp(Vu, Vu)] ¢
Q w
2 2
<J & [way ('V“| )— |vquayw} dHP
W +e 2

+€f T (V6, V|Vul)dvs ~ —J @ <V\vu\2 <wL+€)>dyf+

2 2 2 gb[Vu]
+Jﬂ|v¢| v dyf—fﬂ(w—i-s) v(w%)

Furthermore, if either Q@ = M or w > 0 on Q, one can also take e = 0. The inequality is
indeed an equality if Ajw + ¢'(u)w = 0 on Q.

2
" vy —f &V |Vl Pdvs < (6.13)
Q

l/f.

Proof. We start with the Bochner formula
%Af|Vu|2 = |Hessu|* + (Vu, V(Asu)) + Rics (Vu, Vu),
valid for each u € C3(Q). Since u solves —Aju = g(u), we get
%Af|Vu|2 = |Hessu|* — ¢/(u)|Vu|® + Rics(Vu, Vu). (6.14)
Integrating on  against the test function ¢ = ¢?w/(w + &) we deduce

f [[Hessu|?* + Ric(Vu, Vu) |y dvy = (6.15)
Q

2w 1 ¢2
=L ()| Vi !2( . )dvf+§j9<w+ AVl
2

/ Qb 1J ’LU¢2 1
= w)|Vul? dv 8Vud7-[m
| g s vy g [ v

1 we?
- 5 fﬂ <V ( ¢ ) ,V]Vu\2>dyf

2 2
2 o*w 1 wo 2 m—1
— d — &Z, d
L ()|vy( 5 f+2LQw+£ VuldH

2
w+ e ’
1 9 9 w
_ = - dvy.
s J o (o w ()
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Next, we consider the inequality (6.10]) with the test function ¢|Vu| € Lip.(M):

|Vuldvy (6.16)

& - o
| IVl @wang < | vervaan - | o)

Lo (2]

- f VP Vuldvs + f |V |V 2dvs

dl/f

+2f SIVul(Vé, V|Vuldy;
Q
_ / w 2 42
Lg (U)erg dvy

Tul\ |2
_J<w+£)2 V<¢| U|>
Q w + €
Recalling that V|Vu|? = 2|Vu|V|Vu| weakly on M, summing up [6.15] and puttlng

together the terms of the same kind and rearranging we deduce ([6.13)) as de81red

Vf.

Corollary 6.1 In the above assumptions, if it holds

hm1nff¢<V|Vu|2 ( — >>dyf (6.17)

Then
L [Hessul* + Ricy(Vu, Vu) — |V|Vul[*] ¢*dv+ (6.18)
2
+ liergégf L(w +¢)? |V (i’iﬁ) dvy < L IVo|* | Vul2dvs+
+ lim nf LQ w¢—+2€ lw&,, <|V2“|2) - ]Vu]Q&,w] dHP .
Proof. It is an immediate consequence of the Proposition [ ]

The next result is known in the literature, we present it here for sake of completeness.

Proposition 6.5 Let u € C?(M), and let p € M be a point such that Vu(p) # 0. Then,
denoting with | A|* the square norm of second fundamental form of the level set ¥ = {u = u(p)}
i a neighborhood of p, it holds

[Hessul” — [V|Vul[* = [Vul’|AP + |VT|Vul?,
where VT is the tangential gradient on the level set Y.

Proof. Fix a local orthonormal frame {e;} on ¥, and let v = Vu/|Vu| be the normal vector.
For every vector field X € X(M),

Hessu(v, X) = ’vu’Hessu(Vu ,X) = 2|V ’<V|Vu|2 , X) =(V|Vul, X).
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Moreover, for a level set
Hessu|rsxrs

A= |Vul ’
we have
|Hessu|? = Z(Hessu(ei, e;))? + QZ(Hessu(V, e;))? + (Hessu(v,v))?
i,j J
= |[Vul’|AP? +2) (V|Vul,;)* + (V|Vul, v)”
= [Vul’|A]* + IVJTIVUII2 + [V Vul?,
proving the proposition. [

6.4 Proof of the Theorem [6.1]

Now we are ready to prove our main theorem.

Proof of Theorem In our assumption, we consider the integral formula (6.13)) with
(= M and € = 0. Since Ric; > 0 we deduce

2
dv;. (6.19)

J [|Hessu|2—]V|VuH2]¢2dl/f<J |V(]§|2|Vu|2duf—J w?
M M M

v (v92)

Next, we rearrange the right hand side as follows: using the inequality

X +YP = [XP+ Y= 21X > (10X + (1 - DY,

valid for each > 0, we obtain

2 2

w w w '
-1 2 2 2,2 [Vl ’
Substituting in (6.19)) yields
2 27 42 2.2 |Vl ?
[[Hessu|> — |V|Vul|*] ¢*dvy + (1= 6) | ¢*w’ |V | — ]| dvy
M M w
1
< —J Vo |*|Vul*dvy.
0 Ju
Choose § < 1. We claim that, for suitable families {¢4}acrcr+, it holds
{¢a} is monotone increasing to 1, lirf J IV oo|?|Vul*dvs = 0. (6.22)
oa—>+00 M
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Choose ¢ as follows, according to the case.

In the case (i), fix @ € M with smooth boundary and let {Q;} 1 M be a smooth
exhaustion with Q < ;. Choose ¢ = ¢; € Lipy(M) to be identity 1 on ©, 0 on M\, and
the f-harmonic capacitor on £2;\(2, that is, the solution of

qubj =0 on Q]\Q
;=1 on 0f),
»; =0 on 0€);.

By comparison and since M is f-parabolic, {¢;} is monotonically increasing and pointwise
convergent to 1, and moreover

J Vo, | Vul*dvy < |Vu|%occapf(Q,Qj) — |Vu|%oocapf(§2) =0,

Q;

the last equality follows of Proposition since M is f-parabolic. This proves (6.22]).
In the case (ii), we apply a logarithmic cut-off argument. For fixed R > 0, choose the
following radial function ¢(z) = ¢r(r(z)):

1 if r < VR,
or(r) =12 -2 ifre [VR,R], (6.23)
0 ifr > R.
Note that A
|V¢($)|2 = WXBR\B\/E(f)a

where y 4 is the characteristic function of a subset A € M. Choose R in such a ways that
log R/2 is an integer. Then

f Vo | Vul|*dv; = f Vo Vul*dv; (6.24)
M Br\B g
4 log R—1 |VU’2
=15 s
log szlogR/Q B \B T(@)
log R
4 1 J
< —— — (Vul*dv;.
log? R Ic:lozg:R/Q e2k Bin

By assumption
f \Vul?dvy < (k + 1)e2*D6(k)
B_k+1

for some 0(k) satisfying d(k) — 0 as k — +oo. Without loss of generality, we can assume
d(k) to be decreasing as a function of k. Whence,
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log® R ek

1 ] log B a(k+1)
Z —f (Vul?dp < (k+1)o(k) (6.25)
€7 JB ki k=log R/2

2 log R

i —d(log 7/2) Y (h+1)

k=0

§(log R/2)log* R

N

< J—
log® R
= Cé(log R/2),

for some constant C' > 0. Combining (/6.24) and [6.25and letting R — +00 we deduce ((6.22]).
Therefore, in both the cases, we can infer from the integral formula (6.19)) that

|Vu| = cw, for some ¢ >0, |Hessu? = |V|Vul]?, Rics(Vu, Vu) = 0. (6.26)

Since u is non-constant by assumption, we have ¢ > 0 and thus |Vu| > 0 on M. From
Bochner formula, it holds

1
IVulAs|Vu| + |V |Vl = iAf|Vu|2 = |Hessu|* — ¢/(u)|Vul* + Ricp(Vu, Vu)

on M. Using (6.26), we obtain that Af|Vu| + ¢'(u)|Vu| = 0 on M, hence [Vu| (and so w)
both solve the linearized equation Jyv = 0.

Now, the flow ® of v = Vu/|Vu| is well defined on M. Since M is complete and |v| = 1,
® is defined on M x R. By and Proposition [6.5, |[Vu/ is constant on each connected
component of a level set NV, and N is totally geodesic. Therefore, in a local Darboux frame
{e;, v} for the level surface N, we have that

{ 0 = |/I|* implies Hessu(e;,e;) = 0,

0 = (V|Vul, e;) = Hessu(v, e), (6.27)

so the unique component of Hessu is that corresponding to the pair (v,v). Now we will prove
that v is a geodesic. Indeed, let X € X(M) be a vector field, we have that

(Vo X = v e (o) ,X>

<VVUVU X>

|V B Vu(|Vu|)Vu, X

1
= ——Hessu(Vu, X) —

!V !3

\V |3<V|Vu] , VuxNVu, X)

= Hessu(v, X) — ——<(V|Vul,v){v, X)

!V\

Hessu(v, X) —

1
= H X)) =
vl vl essu(v, v){v,X) =10

where the last line follows from (6.27). So, V.,7" = 0 and v is a geodesic as desired.

66



Following the arguments in the proof of [40, Theorem 9.3|, we will prove the topological
splitting. Since |Vu| is constant on level sets of u, |Vu| = f(u) for some function . Eval-
uating along curves ®;(x), since u o ®; is a local bijection we deduce that [ is continuous.

Claim 6.6 ®, mowves level sets of u to level sets of u.

Indeed, integrating 4 (uo ®,) = |[Vu| o ®, = S(uo ®,) we get

u(Pe(x)) d¢
= Lx) BE)

thus u(®;(x)) is independent of x varying in a level set. As 5(£) > 0, this also show that
flow lines starting from a level set of u do not touch the same level set and we conclude the
Claim.

Let N be a connected component of a level set of u.
Claim 6.7 ®|y«r is surjective.

In fact, since the flow of v is through geodesics, for each x € N, ®, coincides with the normal
exponential map exp®(tv(x)). Moreover, since N is closed in M and M is complete, the
normal exponential map is surjective because each geodesic from x € M to N minimizing
dist(x, N) is perpendicular to N (by variational arguments).

Claim 6.8 ®|y.r is injective.

Suppose that ®(xq,t1) = P(xq,ts). Then, since & moves level sets to level sets, necessarily
t1 =ty = t. If by contradiction x; # x5, two distinct flow lines of ®; would intersect at the
point ®,(z1) = ®;(x5), contradicting the fact that ®, is a diffecomorphism on M for every ¢,
as desired.

Thus, we conclude that ® : N x R — M is a diffeomorphism. In particular, each level set
®,(N) is connected. This proves the topological part of the splitting.

To conclude the splitting, we will prove that ®, is an isometry for all ¢, that is, we will
prove that v is a Killing vector field. Indeed, we consider the Lie derivative of the metric in
the direction of v:

(Logn)(X,Y) = (Vxr,Y) + (X, Vyv)

_ |v2—u|Hessu(X, Y)+ X (ﬁ) (Vu,Y)+Y <|v_1u|> (Vu, X.

From the expression, using that |Vu| is constant on N and the properties of Hessu we deduce
that

2
(Lugm)(X,Y) = WHessu(X, Y)=0,
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if at least one between X and Y is in the tangent space of N. If, however, X and Y are
normal (w.l.o.g. X =Y = Vu), we have

(L,ga)(X,Y) = ——Hessu(Vu, Vu) + 2Vu (]V ’) |Vul?

\V!

= |Vu|Hessu(Vu, Vu) — 2Vu(|Vul)

= 2Hessu(v, Vu) — 2{V|Vu|, Vu) = 0.

Thus, we conclude that v is a Killing field and so &, is a flow of isometries. Since
Vu L TN, M splits as a Riemannian product, as desired. In particular, Ricjcv > 0if m > 3,
while, if m = 2, M = R? or S! x R with the flat metric.

Lastly, we will verify the properties of the function u. Let v be any integral curve of v.
Then

d
dt(u o7) ={(Vu,v) = |Vu|oy >0,

since |Vu| > 0. Now, as M splits isometrically in the direction of Vu we obtain that
Ric(v, v) = 0 and this implies that Hessf(v, v) = 0. Consequently {V f,v) = k is constant in
the splitting direction.

By the other hand,

—g(uoy) = Ayu(y) = Hessu(v,v)(y) =V f, Vuy(v)
= (VIVul,v)(v) =<V f,v)|Vu|(7)

d
= E(Wu\ oy) — k[Vul o (v)

d? d
= g (woy) —k—(uo9),
and thus y = u o 7 solves the ODE —y” + ky' = g(y) with ¢/ > 0.

We next address the parabolicity. Under assumption (i), M is f-parabolic and so N is
necessarily f-parabolic too. We are going to deduce the same under assumption (ii). Note
that the chain of inequalities

R
(J |y'(t)\2dt> Vol (BY) < J ly/(t)Pdt dv
—R [-R,R]xBN

< J |Vul*dvs = o(R?log R)
gives immediately (6.3) and (6.4)), since |y/| > 0 everywhere. Thus, since Vol (BY) =
o(R*log R), we know that there is a constant A such that Vol;(BY) < AR?log R, that
is,

R 1
= )
Vol;(BY) = ARlogR
hence
m [ B4R “me
i— ), Voly(BN) ~ t»» J; ARlogR

= A~ lim log(log t) = oo.
t—0
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Thus, by proposition N is f-parabolic. So we conclude the proof.
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