

Universidade Federal de Alagoas Instituto de Matemática Programa de Pós-Graduação em Matemática Dissertação de Mestrado

A Desigualdade de Loewner com Defeito Isosistólico

Leon Cavalcante Lima

Maceió, Brasil 29 de Maio de 2017

Leon Cavalcante Lima

A Desigualdade de Loewner com Defeito Isosistólico

Dissertação de Mestrado, na área de concentração de Geometria Diferencial submetida à banca examinadora, designada pelo Programa de Mestrado em Matemática da Universidade Federal de Alagoas, como parte dos requisitos necessários à obtenção do grau de mestre em Matemática.

Orientador: Prof. Dr. Feliciano Marcílio Aguiar Vitório

Maceió

Catalogação na fonte Universidade Federal de Alagoas Biblioteca Central Divisão de Tratamento Técnico

Bibliotecária Responsável: Helena Cristina Pimentel do Vale

L732d Lima, Leon Cavalcante.

A desigualdade de Loewner com defeito isosistólico / Leon Cavalcante Lima. – 2017.

48f.

Orientador: Feliciano Marcílio Aguiar Vitório.

Dissertação (mestrado em Matemática) – Universidade Federal de Alagoas. Instituto de Matemática. Maceió, 2017.

Bibliografia: f. 46-48.

- 1. Desigualdade de Loewner no toro. 2. Variância. 3. Defeito isosistólico.
- 4. Sístole. 5. Projeção biaxial. I. Título.

CDU: 514.157

A Desigualdade de Loewner com Defeito Isosistólico

Leon Cavalcante Lima

Dissertação de Mestrado, na área de concentração de Geometria Diferencial submetida em 29 de maio de 2017 à banca examinadora, designada pelo Programa de Mestrado em Matemática da Universidade Federal de Alagoas, como parte dos requisitos necessários à obtenção do grau de mestre em Matemática.

Banca Examinadora:

Prof. Dr. Feliciano Marcílio Aguiar Vitório (Orientador)-UFAL

Cicero Tiarlos Nogueira Cruz-UFAL

Prof. Dr. Cícero Tiarlos Nogueira Cruz-UFAL

Pro. Dr. Heudson Tosta Mirandola-UFRJ

A grade cimentos

- Primeiramente a Deus, pois sem Ele nada disso se tornaria possível.
- Ao professor Dr. Feliciano Vitório por sua paciência, incentivo, pelos cursos ministrados e principalmente por entender o verdadeiro significado da palavra orientação.
- Ao professor Dr. Márcio Henrique Batista pela confiança, pelo excelente curso de Análise Funcional, ministrado no verão, e por ter me orientado durante o primeiro ano de mestrado.
- Aos meus professores da graduação do IFAL, campus Maceió, pelo conhecimento transmitido. Em especial, aos professores M.ª Regina Maria de Oliveira Brasileiro e Ms. Arlyson Alves do Nascimento, por terem acreditado em mim desde o começo.
- A professora Dr^a Elisa Cañete Molero pela oportunidade de assistir alguns cursos como ouvinte antes de entrar no mestrado e por sua carta de recomendação.
- Aos professores Dr. Isnaldo Isaac , Dr. Gregório Manoel, Dr. Marcos Petrúcio, Dra Maria de Andrade, Dr. Luis Guillermo, Dr. Hong Minh Troung, Dr. Ali Golmakani, Dr. Peter Petrov e ao grande mestre Francisco Vieira Barros (Chico Potiguar).
- Aos secretários da pós graduação, Ewerton Roosevelt e Ana Maria pela competência e por todo o apoio ao londo dessa jornada.
- Aos amigos da graduação, mestrado e doutorado com os quais eu pude conviver todo esse período do mestrado. Em especial, agradeço a Maria Ranilze da Silva e ao Ms. Robson dos Santos por todo o companheirismo e dúvidas retiradas com muita paciência.
- A minha namorada Maria Renata, pelo incentivo, carinho, companheirismo e paciência durante esses dois anos.
- Aos meus irmão, Laís, Levi, Liny, Leyr e Lara por acreditar na minha escolha; amo todos vocês.

- Aos membros da banca, Heudson Mirandola(UFRJ) e Cícero Tiarlos(UFAL), por todas as sugestões bem vindas.
- A CAPES pelo suporte financeiro durante a realização deste trabalho.

Resumo

O grande objetivo deste trabalho é estudar a desigualdade de Loewner no toro com defeito isosistólico. A grande motivação de Loewner para ir em busca dessa desigualdade vem justamente da desigualdade de Bonnesen a qual é um fortalecimento da desigualdade isoperimétrica.

Palavras-chave: Desigualdade de Loewner no Toro, Variância, Sístole, Defeito Isosistólico, Projeção Biaxial.

Abstract

The objective of this paper is study the Loewner's torus inequality with isosystolic defect. Loewner's great motivation to pursue this inequality comes precisely from Bonnesen's inequality to which is a strengthening of isoperimetric inequality.

Keywords: Loewner's torus inequality, variance, systole, isosystolic defect, biaxial projection.

Sum'ario

Introdução			p. 7
		liminares	p. 10
	1.1	Esperança e Variância	p. 10
	1.2	Teorema da Uniformização	p. 11
2	ΑГ	A Desigualdade de Loewner com Defeito Isosistólico	
	2.1	Variância, o Primeiro Mínimo Sucessivo e a Constante de Hermite	p. 13
	2.2	Os Inteiros de Eisenstein e o Domínio Fundamental Padrão	p. 14
	2.3	A Desigualdade de Loewner no Toro	p. 16
	2.4	Primeira Forma Fundamental e Superfícies de Revolução	p. 18
	2.5	Um Segundo Defeito Isosistólico	p. 20
	2.6	A Projeção Biaxial e o Segundo Defeito	p. 22
\mathbf{R}	Referências		

Introdução

O grande objetivo deste trabalho é estudar a desigualdade de Loewner no toro com defeito isosistólico. A grande motivação de Loewner para ir à busca dessa desigualdade vem justamente da desigualdade de Bonnesen

$$L^2 - 4\pi A \ge \pi^2 (R - r)^2, \tag{1}$$

onde A é a área da região limitada por uma curva de Jordan fechada de comprimento L no plano, R é o raio da circunferência circunscrita na região limitada e r é o raio da circunferência inscrita. O termo do lado direito da desigualdade (1) é tradicionalmente referido como o defeito isoperimétrico. A desigualdade de Bonnesen é um fortalecimento da desigualdade isoperimétrica

$$L^2 - 4\pi A > 0.$$

Neste trabalho, iremos apresentar um fortalecimento da desigualdade de Loewner

$$area\left(g\right) - \frac{\sqrt{3}}{2}\left(sys\left(g\right)\right)^{2} \ge 0,$$

onde sys(g) é a sístole do toro (\mathbb{T}^2, g) , isto é, o menor comprimento de uma curva não homotópica a zero no toro (\mathbb{T}^2, g) .

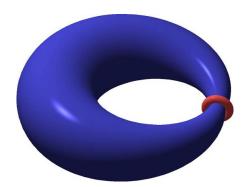


Figura 1: Sístole

No capítulo 1 introduzimos alguns conceitos que serão utilizados ao longo de todo o trabalho, tais como o conceito de esperança de uma função e o conceito de variância de uma função. Também neste capítulo falaremos do teorema da uniformização, que é de importância vital para o nosso estudo.

Na seção 2.1, capítulo 2, iniciamos com dois conceitos fundamentais para a prova da desigualdade de Loewner. O primeiro é a definição do primeiro mínimo sucessivo, λ_1 (L, $\| \ \|$), de um reticulado de posto máximo L contido em um espaço de Banach de dimensão finita (B, $\| \ \|$). O primeiro mínimo sucessivo é o menor comprimento dos elementos não nulos de L, ou seja,

$$\lambda_1(L, || ||) = \inf\{||v||; v \in L - \{0\}\}.$$

Também nesta seção definimos a constante de Hermite, γ_b pela seguinte relação

$$\sqrt{\gamma_b} = \sup \left\{ \frac{\lambda_1 (L)}{\left(vol \left(\mathbb{R}^b / L \right) \right)^{\frac{1}{b}}}; L \subseteq \left(\mathbb{R}^b, \| \| \right) \right\},\,$$

onde o supremo é calculado sobre todos os reticulados L em \mathbb{R}^b com norma euclidiana $\| \ \|$.

Iniciaremos a seção 2.2 definindo o reticulado dos inteiros de Eisenstein como sendo o reticulado, em \mathbb{C} , gerado pelos elementos 1 e a raiz sexta primitiva da unidade. Feito isto, definimos os inteiros de Eisenstein como sendo o conjunto dos vértices da malha obtida através da seguinte construção: Primeiro construímos um triângulo equilátero em \mathbb{C} cujos vértices são 0, 1 e $\frac{1}{2} + i \frac{\sqrt{3}}{2}$, depois refletimos esse triângulo para todos os lados formando uma malha (ver Figura 2.1). Finalizamos essa seção provando o **Lema** 2.2.1, o qual afirma que, se b = 2, então a constante de Hermite é $\gamma_2 = \frac{2}{\sqrt{3}}$.

Na seção 2.3 provaremos, **Teorema** 2.3.1, que cada métrica g no toro satisfaz a seguinte desigualdade

$$area(g) - \sigma^2(sys(g))^2 \ge Var(f)$$
,

onde f é o fator conforme da métrica g com respeito a métrica plana de área unitária g_0 . Com esse teorema, e através da relação $\sigma^2 \ge \frac{\sqrt{3}}{2}$, obtemos um fortalecimento da desigualdade de Loewner para o toro, que é conhecida como a desigualdade com defeito isosistólico:

$$area\left(g\right) - \frac{\sqrt{3}}{2}\left(sys\left(g\right)\right)^{2} \ge Var\left(f\right).$$

Já na seção 2.5 trataremos de um segundo defeito isosistólico. Provaremos aqui a seguinte desigualdade

$$area(g) - (sys(g))^{2} \ge Var(f) + \frac{1}{4} |f_{0}|_{1}^{2},$$

onde $f_0 = f - m$ e m é o valor da esperança de f.

Por fim falaremos na seção 2.6 da projeção biaxial e o segundo defeito. Mais precisamente, consideramos um fator conforme arbitrário f > 0 em $\mathbb{R}^2/\mathbb{Z}^2$ e decompomos f na soma

$$f(x,y) = E(f) + g_f(x) + h_f(y) + k_f(x,y),$$

de modo que as funções g_f e h_f tenham média zero, e k_f tenha média zero ao longo de cada intervalo unitário horizontal ou vertical. A projeção biaxial $\mathbb{P}_{BA}(f)$ é definida pela seguinte relação

$$\mathbb{P}_{BA}(f) = g_f(x) + h_f(y).$$

E a segunda desigualdade é dada pelo

Teorema 2.6.1. Na classe conforme da unidade quadrada do toro, a métrica f^2ds^2 definida pelo fator conforme f(x,y) > 0, satisfaz a seguinte versão da desigualdade de Loewner no toro com o segundo defeito:

$$area(g) - (sys(g))^{2} \ge Var(f) + \frac{1}{16} |\mathbb{P}_{BA}(f)|_{1}^{2}.$$

Se f depende somente de uma das variáveis, então a desigualdade pode ser fortalecida por:

$$area(g) - (sys(g))^{2} \ge Var(f) + \frac{1}{4} |\mathbb{P}_{BA}(f)|_{1}^{2}.$$

1 Preliminares

1.1 Esperança e Variância

Dada uma variável aleatória f definimos a esperança de f pondo

$$E_{\mu}\left(f\right) = \int_{D} f \mu,$$

onde μ é a medida de probabilidade.

A variância de f é definida em termos da esperança pela relação

$$Var(f) = E_{\mu} \left((f - m)^{2} \right),$$

onde $m=E_{\mu}\left(f\right)$ é a esperança de f.

Uma vez que

$$E((f-m)^{2}) = E(f^{2} - 2mf + m^{2})$$

$$= E(f^{2}) - 2mE(f) + m^{2}$$

$$= E(f^{2}) - 2m^{2} + m^{2}$$

$$= E(f^{2}) - (E(f))^{2}$$

podemos escrever

$$Var(f) = E(f^2) - (E(f))^2$$
 (1.1)

1.2 Teorema da Uniformização

Iremos, agora, apresentar um teorema muito importante na demonstração da desigualdade de Loewner.

Diremos que um grupo G opera em um conjunto M se existe uma aplicação

$$G \times M \longrightarrow M$$
$$(g, x) \longmapsto gx$$

tal que

$$ex = x$$
 e $(g_1g_2)x = g_1(g_2x)$

onde e= identidade de $G,x\in M$ e $g_1,g_2\in G.$ A órbita de um ponto $x\in M$ é o conjunto

$$Gx = \{gx; g \in G\}$$
.

O conjunto de todas as órbitas é indicado por M/G; existe uma projeção natural $\pi: M \longrightarrow M/G$ dada por $\pi(x) = Gx$. Quando M tem alguma estrutura adicional, é conveniente considerar G como um grupo de isomorfismos da estrutura considerada.

Se M é um espaço topológico, dizemos que um grupo G opera de modo propriamente descontínuo se todo $x \in M$ possui uma vizinhança U tal que $g(U) \cap U = \emptyset$, para todo $g \in G$, $g \neq e$. Neste caso, a projeção $\pi: M \longrightarrow M/G$ é uma aplicação de recobrimento regular e G é o grupo das transformações de recobrimento.

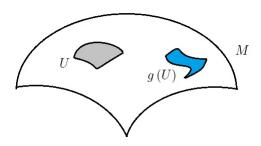


Figura 2: Ação Descontínua

Considere agora uma variedade Riemannian M e seja Γ um subgrupo do grupo das isometrias de M que opera de modo propriamente descontínuo. Sabemos que M/Γ tem uma estrutura de variedade diferenciável na qual $\pi: M \longrightarrow M/\Gamma$ é um difeomorfismo local. Podemos, além disto, dar a M/Γ uma métrica Riemmaniana de modo que π seja uma isometria local (basta definir $\langle u,v\rangle_q=\langle d\pi^{-1}\left(u\right),d\pi^{-1}\left(v\right)\rangle_{\pi^{-1}\left(q\right)}$). Essa métrica será chamada a métrica em M/Γ induzida pelo recobrimento π . Observe que M/Γ é completa se, e somente se, M tem curvatura constante. Tomando $M=\mathbb{R}^n$, concluímos que \mathbb{R}^n/Γ é uma variedade completa de curvatura constante K=0.

Teorema 1.2.1. Seja M uma variedade Riemanniana completa com curvatura seccional constante K=0. Então M é isométrica a \mathbb{R}^n/Γ , onde Γ é o subgrupo do grupo das isometrias de \mathbb{R}^n que opera de modo propriamente descontínuo em \mathbb{R}^n , e a métrica de \mathbb{R}^n/Γ é a induzida pelo recobrimento $\pi: \mathbb{R}^n \to \mathbb{R}^n/\Gamma$.

Demonstração. Considere o recobrimento universal $p:\mathbb{R}^n\to M$, e tome em \mathbb{R}^n a métrica do recobrimento, isto é, a métrica tal que p seja uma isometria local. Seja Γ o grupo das transformações de recobrimento de p. Então Γ é um subgrupo do grupo das isometrias de \mathbb{R}^n e opera de maneira propriamente descontínua em \mathbb{R}^n . Dessa forma, podemos introduzir em \mathbb{R}^n/Γ a métrica Riemanniana induzida por $\pi:\mathbb{R}^n\to\mathbb{R}^n/\Gamma$. Uma vez que o recobrimento p é regular, temos que se $\tilde{x}, \tilde{y} \in \mathbb{R}^n$ então $p(\tilde{x}) = p(\tilde{y})$ se, e somente se, $\Gamma \tilde{x} = \Gamma \tilde{y}$ o que ocorre se, e somente se, $\pi(\tilde{x}) = \pi(\tilde{y})$. As classes de equivalências dadas por p e π em \mathbb{R}^n são, portanto, as mesmas, o que induz uma bijeção $\xi: M \to \mathbb{R}^n/\Gamma$ tal que $\pi = \xi \circ p$.

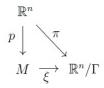


Figura 3: Composição de Isometrias

Como π e p são isometrias locais, ξ também o é, e, sendo uma bijeção, é uma isometria de M sobre \mathbb{R}^n/Γ .

2 A Desigualdade de Loewner com Defeito Isosistólico

2.1 Variância, o Primeiro Mínimo Sucessivo e a Constante de Hermite

A prova da desigualdade com defeito isosistólico é uma fórmula familiar para a variância de uma variável aleatória em termos da esperança. Vimos em (1.1) que

$$Var(f) = E_{\mu}((f-m)^{2}) = E_{\mu}(f^{2}) - (E_{\mu}(f))^{2},$$
 (2.1)

onde f é a variável aleatória, μ é a medida de probabilidade e $m=E_{\mu}\left(f\right)$ é a esperança.

Consideramos agora a métrica plana g_0 de área unitária no 2-toro \mathbb{T}^2 , a métrica conforme $g = f^2 g_0$ para um plano, com fator conforme f(x,y) > 0, e a nova medida $f^2 \mu$. Então nós temos que

$$E_{\mu}\left(f^{2}\right) = \int_{\mathbb{T}^{2}} f^{2}\mu = area\left(g\right).$$

Da equação (2.1) temos que

$$area(g) - (E_{\mu}(f))^{2} = Var(f).$$
 (2.2)

Seja B um espaço vetorial de Banach com dimensão finita, ou seja, um espaço vetorial com norma $\| \ \|$. Seja $L \subset (B, \| \ \|)$ um reticulado de posto máximo, isto é, satisfazendo a igualdade posto(L) = dim(B).

Definição 2.1.1. O primeiro mínimo sucessivo de L, denotado por $\lambda_1(L, \| \ \|)$, é o menor

comprimento dos elementos não nulos de L. Em outras palavras

$$\lambda_1(L, \| \|) = \inf\{\|v\|; v \in L - \{0\}\}.$$
 (2.3)

Definição 2.1.2. Seja $b \in \mathbb{N}$. A constante de Hermite γ_b é definida pela seguinte fórmula

$$\sqrt{\gamma_b} = \sup \left\{ \frac{\lambda_1(L)}{\left(vol\left(\mathbb{R}^b/L\right)\right)^{\frac{1}{b}}}; L \subseteq \left(\mathbb{R}^b, \| \|\right) \right\}, \tag{2.4}$$

onde o supremo é calculado sobre todos os reticulados L em \mathbb{R}^b com a norma Euclidiana $\| \ \|$.

Quando o supremo é realizado em L_0 dizemos que L_0 é um reticulado crítico.

2.2 Os Inteiros de Eisenstein e o Domínio Fundamental Padrão

Definição 2.2.1. O reticulado dos inteiros de Eisenstein \acute{e} o reticulado em \mathbb{C} gerado pelos elementos 1 e a raiz sexta primitiva da unidade.

Para visualizar esse reticulado, iniciamos com um triângulo equilátero em $\mathbb C$ cujos vértices são 0,1 e $\frac{1}{2}+i\frac{\sqrt{3}}{2}$, e construímos uma espécie de malha em todo o plano refletido o triângulo para todos os lados.

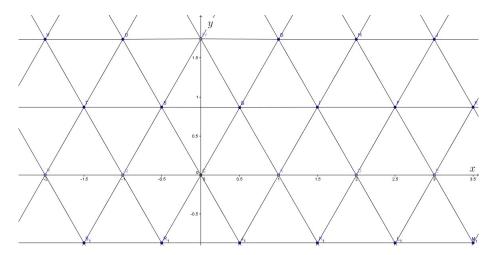


Figura 4: Malha dos Inteiros de Eisenstein

Os inteiros de Eisenstein são, por definição, o conjunto dos vértices da malha acima.

Lema 2.2.1. Quando b=2 a constante de Hermite assume o seguinte valor: $\gamma_2=\frac{2}{\sqrt{3}}$.

Demonstração. Considere a malha $L \subset \mathbb{R}^2$. Sabemos que L é homotético a uma malha gerada pelo par

$$\{\tau,1\}$$
,

onde τ encontra-se no feixo do domínio fundamental padrão

$$D = \left\{ z \in \mathbb{C}; |z| > 1, |Re(z)| < \frac{1}{2}, Im(z) > 0 \right\},$$
 (2.5)

por uma ação do grupo $PSL(2,\mathbb{Z})$ na metade superior do plano de \mathbb{C} .

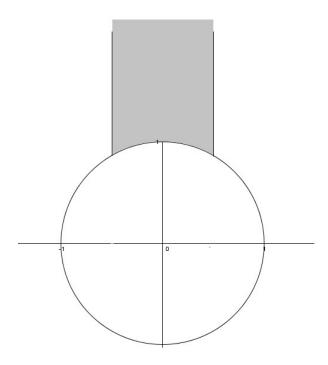


Figura 5: Domínio Fundamental Padrão

Observe que a parte imaginária satisfaz a desigual dade $Im\left(z\right)\geq\frac{\sqrt{3}}{2},$ umas vez que

$$\sqrt{\left(\frac{1}{2}\right)^2 + y^2} \ge \sqrt{x^2 + y^2} \ge 1 \Rightarrow y \ge \frac{\sqrt{3}}{2},$$

e a igualdade é possível em dois casos: quando $\tau_1=e^{i\frac{\pi}{3}}$ ou $\tau_2=e^{i\frac{2\pi}{3}}.$

Finalmente, nós calculamos a área do paralelogramo em $\mathbb C$ gerado por τ e 1.

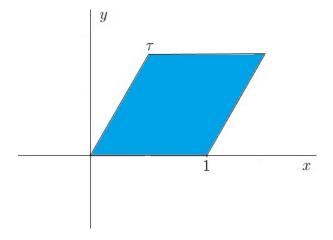


Figura 6: Paralelogramo Gerado por 1 e τ

Uma vez que o paralelogramo tem base b=1 e altura $h=Im\left(z\right)$ temos que $area\left(\mathbb{C}/L\right)=Im\left(z\right),$ daí

$$\frac{area\left(\mathbb{C}/L\right)}{\lambda_{1}\left(L\right)^{2}}=Im\left(z\right)\geq\frac{\sqrt{3}}{2}$$

de onde concluímos a igualdade $\gamma_2 = \frac{2}{\sqrt{3}}$.

2.3 A Desigualdade de Loewner no Toro

Agora, iremos demonstrar a desigualdade de Loewner no toro com a métrica $g = f^2 g_0$, utilizando para isto a fórmula para a variância.

Considere a parte imaginária $Im(\tau)$ e o conjunto

$$\sigma^2 := Im\left(\tau\right) > 0.$$

Do domínio fundamental segue-se que $\sigma^2 \geq \frac{\sqrt{3}}{2}$, onde a igualdade ocorre se, e somente se, τ é a raiz cúbica ou raiz sexta da unidade. Desde que g_0 é assumido com área unitária, a base do grupo das transformações de recobrimento pode ser formada por

$$\left\{\sigma^{-1}\tau,\sigma^{-1}\right\},\,$$

onde $Im(\sigma^{-1}\tau) = \sigma$. Feitas as observações temos o

Teorema 2.3.1. Cada métrica g no toro satisfaz a desigualdade

$$area(g) - \sigma^2 sys(g)^2 \ge Var(f),$$
 (2.6)

onde f é o fator conforme da métrica g com respeito a métrica plana de área unitária g_0 .

Demonstração. Com as observações vistas acima, vemos que o toro plano é formado por um feixe de geodésicas fechadas horizontais, denotadas por $\gamma_y = \gamma_y(x)$, cada uma de comprimento σ^{-1} , onde a largura do feixe é igual a σ , ou seja, o parâmetro y varia no intervalo $[0, \sigma]$, com $\gamma_{\sigma} = \gamma_0$.

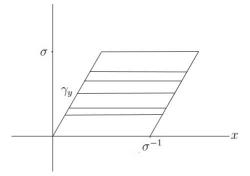


Figura 7: Toro

Pelo Teorema de Fubini, nós obtemos

$$E_{\mu}(f) = \int_{0}^{\sigma} \left(\int_{\gamma_{y}} f(x) dx \right) dy$$
$$= \int_{0}^{\sigma} length(\gamma_{y}) dy$$
$$\geq \sigma sys(g).$$

Substituindo esse resultado em (2.2) obtemos a desigualdade

$$area(g) - \sigma^2 sys(g)^2 \ge Var(f)$$
,

onde f é o fator conforme da métrica g com respeito a métrica da unidade de área g_0 .

Uma vez que $\sigma^2 \ge \frac{\sqrt{3}}{2}$, nós obtemos que, em particular, uma fortalecimento da desigualdade de Loewner para o toro que é conhecida como desigualdade com defeito isosistólico:

$$area(g) - \frac{\sqrt{3}}{2}sys(g)^2 \ge Var(f),$$
 (2.7)

que foi relatada na introdução.

Corolário 2.3.1. Se τ é um imaginário puro, então a métrica $g = f^2g_0$ satisfaz a desigualdade

$$area(g) - sys(g)^{2} \ge Var(f)$$
.

Demonstração. Observe que se τ é um imaginário puro, então $\sigma \geq 1$ e a desigualdade segue de (2.6)

2.4 Primeira Forma Fundamental e Superfícies de Revolução

Nesta seção estamos interessados nas superfícies de revolução e na construção de coordenadas isotérmicas em tal superfície. Sabemos que a primeira forma fundamental de uma superfície parametrizada regular $\mathbf{x} = (u^1, u^2)$ em \mathbb{R}^3 é uma forma bilinear no plano tangente definido pela restrição do produto interno ambiente $\langle \cdot, \cdot \rangle$. Agora, com respeito a base $\{x_1, x_2\}$, onde $x_i = \frac{\partial x}{\partial u^i}$, a primeira forma fundamental é dada por uma matriz $(g_{ij})_{2\times 2}$, onde $g_{ij} = \langle x_i, x_j \rangle$ são os coeficientes métricos.

No caso especial de uma superfícies de revolução, é comum utilizar a notação $u^1 = \theta$ e $u^2 = \varphi$. Para construir uma superfície de revolução tomamos inicialmente uma curva C no plano xz, parametrizada por uma par de funções $x = f(\varphi)$ e $y = g(\varphi)$, onde podemos supor que $f(\varphi) > 0$. A superfície de revolução em torno do eixo z definida por C é o conjunto $S \subset \mathbb{R}^3$ obtido ao girarmos a curva C em torno do eixo z.

Uma parametrização para essa superfície é dada por:

$$\mathbf{x}\left(f\left(\varphi\right)\cos\theta,f\left(\varphi\right)\sin\theta,g\left(\varphi\right)\right).$$

Daí, nós obtemos a primeira forma fundamental

$$(g_{ij}) = \begin{pmatrix} f^2 & 0 \\ 0 & \left(\frac{df}{d\varphi}\right)^2 + \left(\frac{dg}{d\varphi}\right)^2 \end{pmatrix}$$
 (2.8)

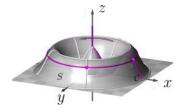


Figura 8: Uma superfície de revolução

Lema 2.4.1. Para uma superfície de revolução obtida de uma parametrização de velocidade unitária da curva de geração $(f(\varphi), g(\varphi))$, temos que a matriz da primeira forma fundamental e dada por:

$$(g_{ij}) = \left(\begin{array}{cc} f^2 & 0\\ 0 & 1 \end{array}\right).$$

Demonstração. Uma vez que a parametrização tem velocidade unitária temos que $\left(\frac{df}{d\varphi}\right)^2 + \left(\frac{dg}{d\varphi}\right)^2 = 1$, daí usando (2.8) temos o resultado desejado.

O lema abaixo expressa a métrica de uma superfície de revolução em coordenadas isotérmicas.

Lema 2.4.2. Seja $(f(\varphi), g(\varphi))$ uma curva parametrizada pelo comprimento de arco que gera uma superfície de revolução, com $f(\varphi) > 0$. Então, a mudança de variável

$$\psi = \int \frac{d\varphi}{f(\varphi)}$$

produz uma nova parametrização, em termos das variáveis θ, ψ , com relação a qual a primeira forma fundamental é dada pela matriz escalar $(g_{ij}) = (f^2 \delta_{ij})$.

Demonstração. Considere $\varphi = \varphi(\psi)$, daí pela regra da cadeia temos que

$$\frac{df}{d\psi} = \frac{df}{d\varphi} \frac{d\varphi}{d\psi}.$$
 (2.9)

Utiziando a primeira forma fundamental (2.8) e impondo a condição $g_{11}=g_{22}$ obtemos a seguinte equação

$$f^2 = \left(\frac{df}{d\varphi}\right)^2 + \left(\frac{dg}{d\varphi}\right)^2,$$

onde, por (2.9) obtemos

$$f^{2} = \left(\frac{df}{d\varphi}\frac{d\varphi}{d\psi}\right)^{2} + \left(\frac{dg}{d\varphi}\frac{d\varphi}{d\psi}\right)^{2},$$

ou seja,

$$f^{2} = \left(\left(\frac{df}{d\varphi} \right)^{2} + \left(\frac{dg}{d\varphi} \right)^{2} \right) \left(\frac{d\varphi}{d\psi} \right)^{2}. \tag{2.10}$$

Como a curva é parametrizada pelo comprimento de arco a equação (2.10) se reduz a $f = \frac{d\varphi}{d\psi}$ ou $\psi = \int \frac{d\varphi}{f(\varphi)}$. Substituindo φ por ψ , obtemos uma parametrização da superfície de revolução em coordenadas (θ, ψ) , tal que (2.8) se torna a matriz escalar $(g_{ij}) = (f^2 \delta_{ij})$.

Corolário 2.4.1. Considere um toro de revolução em \mathbb{R}^3 formado pela rotação de uma curva de Jordan C com parametrização $(f(\varphi), g(\varphi))$ de velocidade unitária, onde $\varphi \in [0, L]$, e L é o comprimento total da curva fechada. Então, o toro é equivalente em conformidade a um toro plano definido por um reticulado retangular

$$a\mathbb{Z} \oplus b\mathbb{Z}$$
.

onde $a = 2\pi \ e \ b = \int_0^L \frac{d\varphi}{f(\varphi)}$.

2.5 Um Segundo Defeito Isosistólico

Utilizando a notação da seção 2.2 iremos assumir, por simplicidade, que $\tau = i$.

Lema 2.5.1. Seja h uma função contínua com média zero no intervalo [0,1]. Em termos da norma de L^1 , temos a seguinte limitação:

$$\int_{0}^{1} (h - min_{h}) \ge \frac{1}{2} |h|_{1}.$$

Demonstração. Considere $P \subset [0,1]$ como o conjunto onde a função h é positiva. Dessa forma, temos que

$$|h|_1 = \int |h| = 2 \int_P h.$$

Uma vez que a função h tem média zero em [0,1], temos que $min_h \leq 0$, daí

$$\int_{0}^{1} (h - min_{h}) \ge \int_{P} (h - min_{h}) \ge \int_{P} h = \frac{1}{2} |h|_{1},$$

como queríamos demonstrar.

Considere o toro $(\mathbb{R}^2/\mathbb{Z}^2, ds^2)$, onde $ds^2 = dx^2 + dy^2$, coberto pelo plano (x,y).

Teorema 2.5.1. Se o fator conforme f para uma métrica $g = f^2 ds^2$ em $\mathbb{R}^2/\mathbb{Z}^2$ somente depende de uma das duas variáveis, então g satisfaz a seguinte designaldade:

$$area(g) - Var(f) \ge \left(sys(g) + \frac{1}{2}|f_0|_1\right)^2,$$
 (2.11)

onde $f_0 = f - m$ e m é o valor da esperança de f.

Demonstração. Suponha, sem perda de generalidade, que f depende somente de y. Seja y_0 o ponto onde o mínimo de f = f(y) é atingido. Temos que

$$\int_{0}^{1} f(x, y_0) dx = \int_{0}^{1} min_f dx = min_f$$

Tal intervalo parametriza um laço não homotópico a zero no toro e nós obtemos

$$sys(g) = min_f.$$

Pelo **Lema 2.5.1**, para $f_0 = f - E(f)$, onde f é o fator conforme, temos que

$$E(f) - sys(g) = \int_0^1 (f - min_f) = \int_0^1 (f_0 - min_{f_0}) \ge \frac{1}{2} |f_0|_1$$
 (2.12)

Daí

$$(E(f))^2 \ge \left(sys(g) + \frac{1}{2}|f_0|_1\right)^2$$

Uma vez que $area\left(g\right)-\left(E\left(f\right)\right)^{2}=Var\left(f\right)$ segue

$$area(g) - Var(f) \ge \left(sys(g) + \frac{1}{2}|f_0|_1\right)^2.$$

A desigualdade (2.11) lembra a desigualdade de Loewner no toro. Podemos reescrever essa desigualdade do seguinte modo:

$$area(g) - (sys(g))^{2} \ge Var(f) + sys(g) |f_{0}|_{1} + \frac{1}{4} |f_{0}|_{1}^{2},$$

daí, em particular, obtemos uma desigualdade onde o segundo membro não depende da sístole:

$$area(g) - (sys(g))^{2} \ge Var(f) + \frac{1}{4} |f_{0}|_{1}^{2}.$$

2.6 A Projeção Biaxial e o Segundo Defeito

Agora, iremos considerar um fator conforme arbitrário f>0 em $\mathbb{R}^2/\mathbb{Z}^2$. Podemos decompor f na soma

$$f(x,y) = E(f) + g_f(x) + h_f(y) + k_f(x,y),$$

de modo que as funções g_f e h_f tenham média zero, e k_f tenha média zero ao longo de cada intervalo unitário horizontal ou vertical. Assim, definimos a projeção biaxial $\mathbb{P}_{BA}(f)$ pela seguinte relação

$$\mathbb{P}_{BA}(f) = g_f(x) + h_f(y).$$

Teorema 2.6.1. Na classe conforme da unidade quadrada do toro, a métrica f^2ds^2 definida pelo fator conforme f(x,y) > 0, satisfaz a seguinte versão da desigualdade de Loewner no toro com o segundo defeito:

$$area(g) - (sys(g))^{2} \ge Var(f) + \frac{1}{16} |\mathbb{P}_{BA}(f)|_{1}^{2}.$$

Se f depende somente de uma das variáveis, então a desigualdade pode ser fortalecida por:

$$area(g) - (sys(g))^{2} \ge Var(f) + \frac{1}{4} |\mathbb{P}_{BA}(f)|_{1}^{2}.$$

Demonstração. Uma vez que $\mathbb{P}_{BA}(f) = g_f(x) + h_f(y)$ temos, pela desigualdade triângular que

$$|\mathbb{P}_{BA}(f)|_1 \leq |g_f(x)|_1 + |h_f(y)|_1$$
.

Devido à simetria dos dois eixos coordenados, podemos assumir, sem perda de generalidade, que

$$|h_f(y)|_1 \ge \frac{1}{2} |\mathbb{P}_{BA}(f)|_1.$$
 (2.13)

Agora, definimos a função \overline{f} pondo

$$\overline{f}(y) = E(f) + h_f(y).$$

Uma vez que

$$E(f) + h_{f}(y) = \int_{0}^{1} (E(f) + h_{f}(y)) dx$$

$$= \int_{0}^{1} (f(x, y) - g_{f}(x) - k_{f}(x, y)) dx$$

$$= \int_{0}^{1} f(x, y) dx$$

podemos escrever

$$\overline{f}(y) = \int_0^1 f(x, y) \, dx$$

Como \overline{f} é a média de uma função positiva temos que $\overline{f} > 0$.

Note que

$$\overline{f_0} = \overline{f} - E(\overline{f}) = \int_0^1 f(x, y) dx - E(f) = h_f.$$

Uma vez que $\overline{f_0}$ tem média zero podemos aplicar o **Lema** 2.5.1 a $\overline{f_0}$ obtendo

$$\int \left(\overline{f} - min_{\overline{f}}\right) = \int \left(\overline{f_0} - min_{\overline{f_0}}\right) \ge \frac{1}{2} \left|\overline{f_0}\right|_1$$

Como $\overline{f_0} = h_f$, temos de (2.13) que

$$\int \left(\overline{f} - min_{\overline{f}}\right) \ge \frac{1}{2} \left| \overline{f_0} \right|_1 = \frac{1}{2} \left| h_f \right|_1 \ge \frac{1}{4} \left| \mathbb{P}_{BA} \left(f \right) \right|_1.$$

Agora iremos fazer uma comparação entre as métricas $\overline{f}^2 ds^2$ e $f^2 ds^2$. Considere y_0 o ponto onde a função \overline{f} atinge o seu mínimo. Então,

$$sys\left(\overline{f}^{2}ds^{2}\right) = min_{\overline{f}} = \int_{0}^{1} f\left(x, y_{0}\right) dx \ge sys\left(f^{2}ds^{2}\right). \tag{2.14}$$

De (2.12) aplicado a métrica $\overline{f}^2 ds^2$ temos que

$$E(f) = E(\overline{f}) \ge sys(\overline{f}^2 ds^2) + \frac{1}{2} |\overline{f_0}|_1.$$
(2.15)

Assim, usando (2.14) e (2.15) em (2.2) temos

$$\begin{aligned} \operatorname{area}\left(f^{2}ds^{2}\right) - \operatorname{Var}\left(f\right) &= \left(E\left(f\right)\right)^{2} \\ &\geq \left(\operatorname{sys}\left(\overline{f}^{2}ds^{2}\right) + \frac{1}{4}\left|\mathbb{P}_{BA}\left(f\right)\right|_{1}\right)^{2} \\ &\geq \left(\operatorname{sys}\left(f^{2}ds^{2}\right) + \frac{1}{4}\left|\mathbb{P}_{BA}\left(f\right)\right|_{1}\right)^{2}. \end{aligned}$$

Referências

- 1 Horowitz, C., Katz, M., Katz, K.: Loewner's Torus Inequality with Isosystolic Defect.
- 2 Berger, M.: Lectures on Geodesics Riemannian Geometry, Spriger, 2003.
- 3 DeGroot, M., Shervish, M.: Probability and Statistics, Pearson, 2002.
- 4 Do Carmo, M. P. *Geometria Diferencial das Curvas e Superfícies*. 2ªed. Rio de Janeiro: Textos Universitários, SBM, 2005-2006.
- $5\,$ Do Carmo, M. P. $Geometria\ Riemanniana,\ 3^a$ ed., Projeto Euclides, IMPA, Rio de Janeiro, 2005.