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RESUMO

Os dados de precipitação da missão Global Precipitation Measurement (GPM) fornecem uma
nova fonte de informações com uma alta resolução espaço-temporal que supera as limitações das
informações de uma rede de monitoramento pluviométrico convencional. Este estudo avalia o
desempenho do produto Integrated Multi-satellitE Retrievals for GPM (IMERG) V06 Final Run
sobre o Brasil e investiga a sua aplicabilidade de simulação hidrológica através de simulações
realizadas numa bacia de grande escala submetida ao clima tropical/subtropical. Os resultados
mostraram que o GPM-IMERG apresenta uma tendência para subestimar a quantidade de
precipitação para maiores intensidades de precipitação, e que a sua capacidade de detecção
é espacialmente variável e sensível às variações de longitude. Além disso, o GPM-IMERG
mostrou melhores desempenhos em regiões sob climas subtropicais. No contexto do uso do
GPM-IMERG para modelagem hidrológica, os resultados mostraram que o GPM-IMERG foi
capaz de levar o modelo hidrológico a captar o padrão sazonal de precipitação e representar as
variações espaciais e temporais das vazões.

Palavras-chaves: GPM-IMERG; MGB; Bacia do Rio Doce.



ABSTRACT

Rainfall data from the Global Precipitation Measurement (GPM) mission provide a new source
of information with a high spatiotemporal resolution that overcomes the limitations of ground-
based rainfall information worldwide. This study evaluates the performance of the Integrated
Multi-satellitE Retrievals for GPM (IMERG) V06 Final Run product over Brazil and investigates
its applicability hydrological simulation by performing in a large-scale tropical/subtropical basin.
The results showed that GPM-IMERG presents a tendency to underestimate the amount of
precipitation for higher precipitation intensities, and its detection ability is spatially variant and
sensitive for longitude. Moreover, GPM-IMERG showed better performances in regions under
subtropical climates. The GPM-IMERG application for hydrological modeling context showed
that GPM-IMERG could drive the hydrological model to capture the seasonal rainfall pattern
and represent the spatial and temporal streamflow variations.

Keywords: GPM-IMERG; MGB; Doce River Basin.
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1 INTRODUCTION

Reliable information about the locations and extents of rain plays a fundamental role
for water resources management. Besides, ground-based can be considered the reference data
source for precipitation observation(TAPIADOR et al., 2012), and have been used for calibration
and validation for other precipitation data sources, and applied for hydrological modeling
(KALIN; HANTUSH, 2006; AMORIM et al., 2020). Despite its importance, obtaining consistent,
continuously, and with an adequate density ground-based monitoring network still is a challenge
(GADELHA et al., 2019).

In regional applications, where the spatial distribution of rainfall may play a crucial
role, there are limitations for using ground-based measurements, especially in most developing
countries (MAGHSOOD et al., 2020), which the rain gauges are insufficient and unevenly
distributed (SALIO et al., 2015). To overcome these limitations, Satellite Precipitation Products
(SPPs) have the potential to provide a solution for uninterrupted and spatially well-distributed
precipitation measurements with nearly global coverage.

The strengths of the various groups of SPPs were combined to create the Integrated
Multi-satellite Retrievals for Global Precipitation Measurement (GPM-IMERG) (HUFFMAN et
al., 2014). This very high-resolution precipitation product is now available at 0.1◦ x 0.1◦ spatial
and half-hourly temporal resolutions. Its most recent version has a temporal coverage from
June 2000 until the present and introduces significant improvements to the previous versions
(HUFFMAN et al., 2019).

Streamflow information is another main component of water resources management.
In Brazil, the gauge network density for streamflow is even lower than for rain, leading to
limitation of hydrological dynamics understanding over the country. Overall, the use of SPPs
as inputs in hydrological models can overcome the imposed limitations from using rain gauge
networks, providing a better representation of the spatial variability of precipitation (BITEW;
GEBREMICHAEL, 2011; LE et al., 2020).

In this context, the SPPs can be a possible alternative to improve the lack of understanding
of the hydrological dynamics in Brazil throughout the hydrological modeling. Thus, the first part
of this study evaluates the GPM-IMERG product using ground-based precipitation stations over
Brazil. Then, a comparison of the hydrological modeling for streamflow simulation performance
using rain gauges and GPM-IMERG precipitation in a large-scale basin, which encompasses the
main climate zones in Brazil.

1.1 Research questions and objectives

This study main objective was evaluate GPM-IMERG performance over Brazil and its
applicability as input data for hydrological modeling in a large-scale tropical/subtropical basin.
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The research questions of this thesis are:

1. How does the GPM-IMERG daily product precipitation generally perform over Brazil?

2. How does the latest GPM-IMERG daily precipitation product perform in different th-
resholds of precipitation intensity?

3. How is the GPM-IMERG precipitation performance spatially and temporally distributed?

4. Can GPM-IMERG serve as an alternative input to hydrological models?

5. The hydrological model using GPM-IMERG as precipitation input data could capture the
hydrological cycle temporally and spatially?

1.2 Thesis Structure

This thesis is divided into 6 chapters. A general introduction, research rationale, and
objectives are outlined in chapter 1. Then, the thesis is divided into two main parts (papers):
Chapter 2) Long-term ground-based evaluation of GPM-IMERG V6 over Brazil, and Chapter
3) Evaluation of GPM-IMERG applicability for hydrological modeling in a large-scale tropical
basin. In chapter 4 is presented the general conclusions of the study. Lastly, Chapters 5 and 6 are
supplementary materials.
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2 LONG-TERM GROUND-BASED EVALUATION OF GPM-IMERG V6 OVER BRA-
ZIL

2.1 Introduction

Since precipitation is a fundamental input for a wide range of applications in Earth’s
science, reliable information about the locations and extents of rain is vital to support water re-
sources managers and environmental planners. Despite that, obtaining a consistent, continuously,
and with an adequate density ground-based monitoring network still is a challenge (GADELHA
et al., 2019; HOBOUCHIAN et al., 2017), that can be associated with several factors, such as its
cost of operation and maintenance (PARDO-IGÚZQUIZA, 1998), or the climate system of a
region, where the large spatial and temporal variability makes challenging to measure or estimate
the precipitation (FALCK et al., 2015).

Ground-based stations can be considered the reference data source for precipitation ob-
servation (TAPIADOR et al., 2012), and the most adequate for hydrological modeling (KALIN;
HANTUSH, 2006; AMORIM et al., 2020). In regional applications, where the spatial distribu-
tion of rainfall may play a crucial role, however, there are limitations for using ground-based
measurements, especially in most developing countries (MAGHSOOD et al., 2020), in which
the rain gauges are insufficient and unevenly distributed (SALIO et al., 2015). Currently, Brazil
has an average density of rain gauge per km2 below the World Meteorological Organization
(WMO) recommendation (GADELHA et al., 2019). Moreover, the gauges are non-uniformly
distributed throughout the country, with a more acute lack in some basins. Also, frequently the
available gauged stations include observation periods shorter than needed, and a few stations
have uninterrupted data with most of the time series containing temporal gaps (MONTEIRO et
al., 2016; GADELHA et al., 2019).

Weather radars are a common ground-based method to provide an indirect measurement
of rainfall. The estimated precipitation from weather radars may have advantages compared to
conventional rain gauge networks, such as extensive spatial coverage and high-resolution in
space-time monitoring (TAPIADOR et al., 2012). However, a radar system network remains
expansive due to high installment costs and maintenance demands (LE et al., 2020). Furthermore,
radar rain rates may also be a source of errors and uncertainties that can result in low-quality
hydrological forecasts (JORDAN; SEED; AUSTIN, 2000; FRANZ; HOGUE, 2011; CECINATI
et al., 2017).

Satellite Precipitation Products (SPPs) have the potential to provide a solution for unin-
terrupted and spatially well-distributed precipitation measurements with nearly global coverage.
The Tropical Rainfall Measuring Mission (TRMM) was the first satellite for space-borne pre-
cipitation measurements, which became operational in 1997. Several SPPs have been released
since TRMM, and numerous studies have been evaluating them, both in terms of mean errors
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and detection capabilities in different parts of the world encompassing diverse climatic and
topographic conditions (MAGGIONI; MEYERS; ROBINSON, 2016; LE et al., 2020). The most
frequent reported limitation is the underestimation of light precipitation and warm rain events,
biased estimation over complex terrain (e.g., mountainous areas and orographic enhancement of
rainfall) (MAGGIONI; MEYERS; ROBINSON, 2016).

The strengths of the various groups of SPPs were combined to create the Integrated
Multi-satellite Retrievals for Global Precipitation Measurement (GPM-IMERG) (HUFFMAN et
al., 2014). This high-resolution precipitation product is now available at 0.1◦ x 0.1◦ spatial and
half-hourly temporal resolutions. Its most recent version has a temporal coverage from June 2000
until the present and introduces significant improvements to the previous versions (HUFFMAN
et al., 2019).

The GPM-IMERG products can improve the understanding of the hydrological dynamics,
especially in ungauged areas (ASONG et al., 2017; GADELHA et al., 2019). Although, still is
necessary its evaluation concerning station gauge observations in different regions of the world
(PRAKASH et al., 2018). In that way, to our knowledge, only two studies that investigate the
performance of the GPM-IMERG product over Brazil at country level (ROZANTE et al., 2018;
GADELHA et al., 2019), which used version 05. Moreover, none of them had used more than
three years of data on their analyses.

Considering the above, the newly available GPM-IMERG products version (i.e., version
06) have not been explored for Brazil. This study aims to aggregate into the analyses of the
GPM-IMERG Final Run (i.e., research product) over Brazil. Provides a better understanding of
the performance of the GPM-IMERG product across the whole country can open opportunities
to future studies regarding hydrological and hydrometeorological applications of these products.

2.2 Materials and Methods

2.2.1 Study Area

Brazil is the largest country in Latin America with continental dimensions, covering
about 8,516,000 km2, encompassing a vast diversity of landscapes, climate, topography, bio-
diversity, and precipitation regimes. By the Köppen’s climate classification (ALVARES et al.,
2013), Brazil has three main zones, classified as Tropical, Semiarid, and Humid Subtropical,
which are subdivided into 12 different climate types (Figure 2.1a). On the other hand, it was
identified (REBOITA et al., 2010; ROZANTE et al., 2018) four dominant precipitation regimes
within Brazilian territory (Figure 2.1b). Region 1, located in southern Brazil, presents a well
annually distributed precipitation with around 1,750-2,100 mm/year, mainly influenced by the
South Atlantic Convergence Zone, cold fronts, mesoscale convective complexes, and low-level
jetstream (VELASCO; FRITSCH, 1987; VERA et al., 2006; QUADRO et al., 2012). Region
2 encompasses most of the country, with a monsoon regime (ZHOU; LAU, 1998) featured by
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seasonal rainfall variability with very rainy and dry seasons. Region 3 is influenced by the Inter-
tropical Convergence Zone (ITCZ), and upper-level cyclonic vortexes (KOUSKY; GAN, 1981),
and it is the driest region of the Brazilian territory, with totals of precipitation ranging around
200-500 mm/year. Region R4 comprises the northern region and the northeastern coast of Brazil,
with maximum precipitation in winter and minimum in summer. The precipitation is above 2,000
mm/year in the northern region, while it is around 1,500 mm/year on the northeastern coast. The
central systems in both regions are the ICTZ, the Trade Winds, upper-level cyclonic vortexes, and
topical mesoscale convective system (KOUSKY; GAN, 1981; KOUSKY, 1988) The northeastern
coast is also influenced by the easterly waves and sea breeze circulation (KOUSKY, 1988).

Figure 2.1 – (a) Köppen’s climate classification map for Brazil according to Alvares et al. (2013),
(b) Spatial distribution of precipitation climatology adapted from Reboita et al.
(2010), (c) Spatial distribution of grid points which present rain gauge data frequency
of at least 90% in the studied period.

2.2.2 Data Acquisition and Processing

2.2.2.1 Ground-based Precipitation

The ground-based daily precipitation data were obtained from the Brazilian Water Agency
(ANA) database (http://www.snirh.gov.br/hidroweb/ ). For the last 20 years, ANA provides
precipitation data for 5,336 rain gauges across the country, where some of these stations are not
currently active. Besides the measured data, ANA provides classification regarding its consistency
(i.e., if the data is already validated). In order to get more accurate statistical results, it was
obtained only the validated data and it was selected the stations with high temporal overlap with
the GPM-IMERG product, considering a maximum of 10% threshold of missing data between
01-June-2000 until 30-June-2020, which resulted in a total of 2,259 rain gauges (Figure 2.1c).
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2.2.2.2 GPM-IMERG

The Global Precipitation Measurement (GPM) mission is a collaboration between the
National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration
Agency (JAXA), which was launched in February 2014. The CPM Cory Observatory carries a
constellation with the most advanced sensors for measuring precipitation. From its publically
available data, the GPM-IMERG products have a spatial resolution of 0.1º x 0.1º and multiples
temporal resolutions ranging from half-hourly to monthly, which are categorized by Early, Late,
and Final runs. The Early runs provide a near real-time estimate with a low-latency period (4-h).
Late runs are available with a latency of 12-h, with better estimates as data from more partner
satellites is merged. The IMERG-Final run provides the highest quality precipitation estimates
with a latency of 3.5 months once it is presented after bias adjustment. More detailed information
and an algorithm description can be found in Huffman et al. (2017).

The final run of daily GPM-IMERG V6 (HUFFMAN et al., 2019) from 01-June-2000
until 30-June-2020 was used in this study. In order to use a point-to-grid approach where the
precipitation at rain gauges (i.e. point) is compared with the indirect precipitation measurement,
it was selected, only the 0.1º x 0.1º pixels had a gauged station within to be compared. Thus, a
database was formed that pairs the selected rain gauge dataset and the selected GPM-IMERG
grids. The database has three dimensions: 7334 days on the rows, 107 gauged stations/grids on
columns, and attributes on aisles (i.e., z or depth direction). The first and second attributes are
selected rain gauge dataset and selected and selected GPM-IMERG grids.

2.2.2.3 Digital Elevation Model (DEM)

In consideration of the elevation is one of the factors that affect the precipitation pattern
(HASHEMI et al., 2017), spatial attributes were included in the database in order to evaluate the
relationship between the precipitation product and the topography. In that way, for each selected
grid, it was included as variables the grid centroid latitude and longitude, and the elevation
mean (Emean)[m]. The Shuttle Radar Topographic Mission (SRTM) images by 3 arc-seconds
(approximately 90 meters, varies in different locations due to the curvature of the earth) were
used to obtain these physiographic attributes (USGS, 2015).

2.2.2.4 Climate Classification

In order to encompass a climate variable in the assessment, Köppen’s climate classifica-
tion provided by Alvares et al. (2013) was also included in the database. This product (ALVARES
et al., 2013) has twelve different Köppen’s climate types, which are divided into three main
zones: Tropical (Zone A), Semiarid (Zone B), and Humid Subtropical (Zone C).
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2.2.3 Evaluation Procedures

Despite its limitations, the evaluation procedure for ground validation used in this study
was a point-to-pixel approach (XU et al., 2017; GADELHA et al., 2019; MAHMOUD; HA-
MOUDA; MOHAMED, 2019; MAGHSOOD et al., 2020), due to the accuracy limitations for the
methods that consider spatial interpolation methods in the evaluation procedure (STEPHENSON;
PATRICK, 1990).

The statistical metrics were calculated using all the gauged stations/grids in a first appro-
ach. Then, it was performed a four steps evaluation: i) national scale (i.e., general evaluation);
ii) spatial distribution of rainfall detection ability of the satellite sensors; iii) spatial and to-
pographical performance analyses; and iv) temporal (i.e., monthly) performance by climatic
zones.

As highlighted by Tian et al. (2018), to evaluate the performance of satellite rainfall
products, it is fundamental to incorporate an assessment of differentiating precipitation events
according to their intensities in the analyses. Table 2.1 presents an intensity rain classification
based on daily thresholds following the classification suggested by Xu et al. (2017) adapted for
Brazil based on Rozante et al. (2018), which allows exploring GPM-IMERG ability to detect
different precipitation intensities ranging from light to extreme precipitation, where it was used
on the national scale evaluation.

Rain Intensity Classification Daily Precipitation (P) Thresholds (mm)
Rain/no-rain P≤0.5
Light precipitation 0.5≤P<2
Low moderate precipitation 2≤P<5
Moderate precipitation 5≤P<20
Heavy precipitation 20≤P<40
Extreme precipitation 40≤P<90
Torrential precipitation 90≤P

Table 2.1 – Rain classification and thresholds. Adapted from Xu et al. (2017) and Rozante et al.
(2018).

2.2.3.1 Performance Measures

To assess the quality of the GPM-IMERG V06 product, seven statistical metrics divided
into three main groups were used. As in Gadelha et al. (2019), all GMP-IMERG V06 and/or rain
gauge data with daily values below 0.1 mm were treated as zero. This consideration is due to the
temporal resolution of the rain gauge network (i.e., daily measures).

The first group of metrics is related to comparison of detecting the observed rainfall
events (WILKS, 2011), including : (i) probability of detection (POD), which gives the fraction of
rain occurrences correctly detected; (ii) false alarm ratio (FAR), which gives the fraction of rain
occurrences estimated which are not detected in the ground-based data; and (iii) critical success
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index (CSI), which combines the characteristics of false alarms and missed events.

POD =
a

a+ c
(2.1)

FAR =
b

a+ b
(2.2)

CSI =
a

a+ b+ c
(2.3)

where a is the number of times that rainfall events was observed and correctly detected, b is the
number of times that rainfall was detected but not observed, c is the number of times that rainfall
was observed but not detected. The preferable values of POD and CSI are closer to one, while
for FAR are nearest to zero.

The second group corresponds metrics to analyze the quantitative rainfall differences
between the GMP-IMERG V06 detection and the rain gauged data. The comparison was per-
formed using: (i) the Mean Absolute Error (MAE), which indicates the error distribution and
mean magnitude of errors without considering the direction, providing a stable estimate of the
differences in the temporal precipitation data (HASHEMI et al., 2017); (ii) the Root Mean
Square Error (RMSE), which gives the sample standard deviation of the differences between
the GPM-IMERG V06 product and the observed rainfall; (iii) the modified relative bias (rBiasε),
which shows the deviation of the detected from the ground-observed rainfall defined by Hashemi
et al. (2017) as the Equation 2.6, where the ε is used to regularize grids where very low values of
precipitation can result in a very large relative bias. A value of 0.5mm/day for ε, can adequately
large the huge relative bias for low-precipitation events (HASHEMI et al., 2017) and was set in
this study.

MAE =
1

n

n∑
i=1

|Si −Gi| (2.4)

RMSE =

√√√√ 1

n

n∑
i=1

(Si −Gi)
2 (2.5)

rBiasε = 2
Si −Gi

ε− (Si −Gi)
(2.6)

where Gi and Si are the ground-base rain gauge and satellite-based precipitation data at pixel i
and n is the total number of pixels.

The third group describes the agreement between GPM-IMERG V06 estimates and
ground-based data, where was included the Pearson correlation coefficient (CC). CC gives the
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degree of linear association between two variables, ranging from +1 to -1, where +1 represents
the total positive linear correlation, and -1 is the total negative

CC =

∑n
i=1(GiSi)− (

∑n
i=1Gi) (

∑n
i=1 Si)√[

(
∑n

i=1G
2
i )− (
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i=1Gi)

2
] [

(
∑n

i=1 S
2
i )− (

∑n
i=1 Si)

2
] (2.7)

where Gi and Si are the ground-base rain gauge and satellite-based precipitation data at pixel i
and n is the total number of pixels.

2.3 Results and Discussion

2.3.1 General Evaluation

As a first analysis, a general evaluation of IMERG V06 was performed using all selected
grid points lumped together, where was obtained a general overview of GPM-IMERG V06
accuracy over the whole country for the selected time frame (01 June 2000 to 30 June 2020).

The capability of GPM-IMERG to estimate the frequency of the ranging precipitation
intensities is presented in Figure 2.2 by the empirical cumulative distribution function (ECDF).
The figure shows that the GPM-IMERG underestimates the frequency of dry days, where the
probability of precipitation less than 0.1 mm is 0.56 while the gauged precipitation is 0.72. The
GPM-IMERG frequency underestimation decreases with higher precipitation values, where the
frequency of precipitation starting from 5mm (0.81 for GPM-IMERG and 0.83 for gauged) is
well-estimated. It is important to note that GPM-IMERG can accurately estimate the frequency
of precipitation above 10 mm, referring to how often they might happen, but it might not be
able to estimate their magnitude correctly. On the other hand, for the metrics CORR and CSI
(Table 2.2) show a poor agreement between the two datasets with 0.43 and 0.41. However, the
RMSE and MAE presents relatively low values, and the positive value for rBIASε indicates
that GPM-IMERG generally overestimates precipitation over Brazil.
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Figure 2.2 – Empirical cumulative distribution func-
tion of gauged data precipitation at stati-
ons and GPM-IMERG.

Perfomance measures Values
RMSE 11.46
MAE 4.66
rBIASε 0.18
CORR 0.43
POD 0.77
FAR 0.53
CSI 0.41

Table 2.2 – Performance measures for
the paired gauge-satellite
dataset.

Performances measures for different precipitation thresholds are presented in Table
2.3. Except for the "Rain/no-rain"category, all days are rainy, which means that FAR = 0 and
CSI = POD hence FAR and CSI are not presented in Table 2.3. It is possible to note that
while the probability of detection (POD) increases along with the precipitation intensity, the
accuracy in estimate the amount of precipitation (RMSE,MAE, rBIASε) decreases. Moreover,
GPM-IMERG could not capture the dynamics (i.e., CORR) for each precipitation intensity
category presenting a worse performance relative to the validation where all data grid points
were considered together (Table 2.2).

Metrics
Daily Precipitation (P) Thresholds (mm)

Rain/no-rain Light Low moderate Moderate Heavy Extreme Torrential
P≤0.5 0.5≤P<2 2≤P<5 5≤P<20 20≤P<40 40≤P<90 P≥90

RMSE 6.66 9.98 10.79 13.59 22.63 41.19 85.58
MAE 1.91 4.61 5.86 9.83 19.57 36.45 76.38
rBIASε 0.46 -0.06 -0.42 -0.72 -0.92 -1.01 -1.12
CORR 0.04 0.03 0.04 0.12 0.10 0.14 0.09
POD 0.53 0.63 0.70 0.80 0.89 0.93 0.95

Table 2.3 – Performance measures for the paired gauge-satellite dataset for different precipitation
intensity thresholds.

Moazami e Najafi (2021) found that GPM-IMERG V06 tends to overestimate moderate
to heavy precipitation events in Canada. In opposition to that, GPM-IMERG V06 increases its
underestimation with higher amounts of precipitation in Brazil, as can be seen in Table 2.3.
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2.3.2 Spatial Distribution of Rainfall Detection Ability

The rainfall detection ability of the satellite sensors can partly explain the agreement
between the gauged and the estimated data (MAGHSOOD et al., 2020). In this section, the
GPM-IMERG V06 was evaluated through spatial maps of the rainfall detection ability using the
POD, FAR, and CSI metrics to investigate how the metrics vary for different parts of Brazil.
The criteria indices were mapped using the Inverse of Distance Weighting method in ArcMap

10.3.1 environment.

The spatial distribution of POD over Brazil (Figure 2.3 a), the satellite performance for
precipitation detection shows high values (POD > 0.8) in most part of the country. Only along
the eastern coast of the Brazilian North-East were observed values lower than 0.5. The poor
POD over the eastern Brazilian coast has also been observed for GPM-IMERG V05 by Gadelha
et al. (2019). Besides, lower values of POD in coastal areas is already expected (MAGHSOOD
et al., 2020; GADELHA et al., 2019; PRAKASH et al., 2018).

According to Figure 2.3 (b), the GPM-IMERG V06 product exhibited higher false alarms
at the central part of the NE, which is the Brazilian driest zone, and at the west part of the
Midwest, these regions also showed a low number of rainy days during the study period, which
can affect the FAR values, as was also noticed by Gadelha et al. (2019).

The critical success index (Figure 2.3 c) shows lower values in the Brazilian driest zone,
which is consistent with the POD values, once the CSI combines the characteristics of FAR
and the missed events.

Figure 2.3 – Spatial distribution of (a) Probability of Detection - POD, (b) False Alarm Ration -
FAR, and (c) Critical Success Index - CSI.
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2.3.3 Spatial and Topographical Performance

To explore the impact of latitude, longitude, and topography on GPM-IMERG perfor-
mance, the RMSE, MAE, rBIASε, and CORR metrics were scatter plotted against these
variables. Showing the distribution of the performance metrics allows identifying locations that
with the worse GPM-IMERG perform.

Figure 2.4 shows that GPM-IMERG has a negative trend for the estimation errors (i.e.,
lower RMSE and MAE) from south to north until around 15◦S, where there is a zone with
higher dispersion of the performances (from 15◦S to 5◦S), then the trend changes to positive. The
zone from 15◦S to 5◦S encompasses three different precipitation zones (Figure 2.1 b), including
the Brazilian driest region, which is the region with higher FAR. It is possible that the trends
are associated with the amount of precipitation, where the regions with higher amounts tend to
have higher RMSE and MAE.

While in rBIASε, there is a low positive trend from south to north, it is not possible to
see a clear trend for CORR, with its moving average ranging around 0.4.

Figure 2.4 – Performance metrics of paired gauge-satellite data pixels plotted against the corres-
ponding latitude of the pixel.

For metrics scatter plotted against Longitude (Figure 2.5) it is possible to see a clear
negative trend for RMSE, MAE, and rBIASε, and a positive trend for CORR, from west to
east, which means that GPM-IMERG V06 has better performance in the eastern parts of Brazil
compared to western parts. The trends indicate that the performance of GPM-IMERG is more
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sensitive to longitude compared to latitude.

Although some studies suggest that elevation as a predictor for poor performance
(BHUIYAN et al., 2020; CHEN et al., 2018; LU et al., 2018), where the overestimation increases
in highlands, Figure 2.6 shows a weak relationship between elevation and the performance
metrics in Brazil, furthermore, the poor performance of GPM-IMERG for intense precipitation
was found in this study, which corroborates with Hosseini-Moghari e Tang (2020) that argued
the poor performance found in highlands is due to the precipitation intensity.

Figure 2.5 – Performance metrics of paired gauge-satellite data pixels plotted against the corres-
ponding longitude of the pixel.
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Figure 2.6 – Performance metrics of paired gauge-satellite data pixels plotted against the corres-
ponding elevation mean of the pixel.

2.3.4 Temporal Performance by Climatic Zones

To explore the temporal characteristics of the calculated criteria and the effects of the
climate zone in the GPM-IMERG performance, a monthly-based comparison was conducted
using boxplots of the monthly precipitation average precipitation for the climatic zones (Figure
2.7) and using radar charts of performance indices for GPM-IMERG V06 daily product (Figure
2.8). The boxplots for all climate zones separately and the performance values used in the radar
chart are displayed radar charts are separately displayed in the Supplementary Materials (Chapter
5).

In general, there is an association in temporal variance in the criteria values obtained for
different months with the monthly accumulated precipitation averages, which means that the
precipitation intensities is one of the main factors to determine the GPM-IMERG performance.
As instance for climatic zone B, it is possible to note that the driest months (i.e., months with
smaller accumulated precipitation) are from July to November, it presents lower RMSE, MAE

and rBIASε while the FAR increases and POD and CSI decreases.

The results show that the GPM-IMERG shows the worst criteria values in climatic zone
B (Semiarid climate), the driest zone in Brazil, as mentioned in the previous discussions. The
rBIASε showed that the GPM-IMERG V06 performed better in regions under Subtropical
(Zone C) climates. The Zone A showed the largest amount of outliers (Figure 2.7), which was
already expected because it encompasses the largest climate area in Brazil, and it should be
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pointed out that this zone shows a low density of rain gauges, which may lead to underestimated
GPM-IMERG performance (TIAN et al., 2018).

Figure 2.7 – Boxplots of monthly averages of the Gauged and IMERG data based on monthly
accumulated precipitation for the climatic zones.

Figure 2.8 – Radar charts of the performance indices for IMERG daily products at the monthly
time scale.

2.4 Conclusions

This study has analyzed the performance of the GPM-IMERG V6 final daily precipitation
product over Brazil. Firstly, all available rain gauges across the country were selected, which
were filtered to select the gauges with a maximum of 10% of missing data for the timeframe of 01
June 2000 to 30 June 2020, resulting in a total of 2,259 rain gauges for the ground-validation. The
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selected rain gauge network represents a non-homogeneous density, where some regions have a
relatively lower density, bringing an associated limitation as discussed by Tian et al. (2018) that
found that lower-density gauge networks might conduct to underestimate the performance of the
precipitation product from GPM-IMERG.

Another significant limitation is that this study used the precipitation measured from
rain gauges as the "ground truth". Nonetheless, rain gauges are susceptible to systematic error
measurement, consisting of losses due to evaporation, wetting, and wind-induced losses, which
can vary regardless of the types of measurement (SEVRUK; ONDRÁS; CHVÍLA, 2009). The
World Meteorological Organization (WMO) recommends checking and correcting precipitation
gauge measurements to eliminate these effects. To overcome this limitation, it was selected only
the rain data classified as consistent by the Brazilian Water Agency, but it still is possible to have
measured precipitation data with errors.

Despite the limitations, proceeding the study started by Gadelha et al. (2019), which
have evaluated GPM-IMERG V05 product over Brazil for 2016, this study provided valuable
information about the GPM-IMERG for an improved understanding of its strengths and weak-
nesses over Brazil, by a long-term based evaluation for the sixth version of GPM-IMERG. The
main specific findings are summarised as follow:

• The precipitation frequency estimation was underestimated for dry days and well-estimated
for precipitation above 5 mm by the GPM-IMERG V06;

• The performance of GPM-IMERG for estimating the amount of precipitation decreases
along with the precipitation intensity, where the GPM-IMERG V06 present a tendency to
underestimate the amount of precipitation;

• The detection ability of GPM-IMERG is spatially variant, and its estimation ability is
more sensitive to longitude when compared to latitude. Also, higher values of FAR were
detected in the driest zone, while most lower values of POD were found over the eastern
coast. On the other hand, GPM-IMERG V06 showed batter values of RMSE, MAE,
rBIASε in the eastern parts of Brazil;

• The temporal evaluation by the climatic zones showed that GPM-IMERG presented better
performances in the region under Subtropical climates and the worst performance in
Semiarid climates. Besides, the monthly evaluation showed that the calculated criteria have
an association with temporal variance, mainly due to associated precipitation intensities,
where the driest months showed worst performances compared to rainy months.
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3 EVALUATION OF GPM-IMERG APPLICABILITY FOR HYDROLOGICAL MO-
DELING IN A LARGE-SCALE TROPICAL BASIN

3.1 Introduction

For hydrological modeling applications ground-based stations can be considered the refe-
rence data source for precipitation observation (TAPIADOR et al., 2012), and the most adequate
for hydrological modeling (KALIN; HANTUSH, 2006; AMORIM et al., 2020). In regional
applications, where the spatial distribution of rainfall may play a crucial role, however, there
are limitations for using ground-based measurements, especially in most developing countries
(MAGHSOOD et al., 2020), in which the rain gauges are insufficient and unevenly distributed
(SALIO et al., 2015). Also, frequently the available gauged stations include observation periods
shorter than needed, and a few stations have uninterrupted data with most of the time series
containing temporal gaps (MONTEIRO et al., 2016; GADELHA et al., 2019).

The estimated precipitation from weather radar may have advantages when compared to
conventional rain gauge networks, such as large spatial coverage, high-resolution in space-time
monitoring (TAPIADOR et al., 2012). An important consideration is that the sensitivity of the
hydrological response and thus the added value of higher resolution rainfall data increases for
smaller catchment size, larger catchment spatial variability, smaller storm size, larger storm
variability, and higher storm movement velocity (THORNDAHL et al., 2017). Thus, a balance
between the benefit of higher accuracy and the required investment obtaining such accuracy
is needed for applications. However, a radar system network remains expansive due to high
installment costs and maintenance demands bringing significant deployment limitations (LE
et al., 2020). On the other hand, Satellite Precipitation Products (SPPS) have been providing a
solution for uninterrupted with high spatial resolution precipitation measurements with nearly
global coverage. Overall, the use of SPPs as inputs in hydrological models can overcome the
imposed limitations from using rain gauge networks, providing a better representation of the
spatial variability of precipitation (BITEW; GEBREMICHAEL, 2011; LE et al., 2020).

The strengths of the various groups of SPPs were combined to create the Integrated
Multi-satellite Retrievals for Global Precipitation Measurement (GPM-IMERG) (HUFFMAN et
al., 2014). This very high-resolution precipitation product is now available at 0.1◦ x 0.1◦ spatial
and half-hourly temporal resolutions. Its most recent version has a temporal coverage from
June 2000 until the present and introduces significant improvements to the previous versions
(HUFFMAN et al., 2019). The performance of GPM-IMERG products through hydrologic
simulation has been carried out in different basins of the world and have demonstrated a strong
potential application for horological modeling (BITEW; GEBREMICHAEL, 2011; WANG et
al., 2017; ZHANG et al., 2019; LE et al., 2020; AMORIM et al., 2020).

Currently, Brazil has an average density of rain gauge per km2 below the World Mete-
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orological Organization (WMO) recommendation (GADELHA et al., 2019). For streamflow
observations, the density is even lower leading to limitation of hydrological dynamics understan-
ding over the country. On the other hand, the Doce river basin is one of the most well-monitored
large-scale river basin in Brazil, and it encompasses two of the three main climate zones in Brazil
(ALVARES et al., 2013).

In this context, the application of SPPs for hydrological modeling purposes can be
a possible alternative to improve Brazil’s lack of streamflow data and hydrological dynamics
understanding. According to that, the main objective of this study was to evaluate the applicability
of GPM-IMERG as the precipitation data source for streamflow simulations by comparing with
the simulations driven by gauged data from a spatially well-distributed network in a large-scale
tropical/subtropical basin.

3.2 Materials and Methods

3.2.1 Study Area

The Doce river basin is located in the southeast part of Brazil, with an area of approxi-
mately 86,715 km2, where 98% is inserted within the Atlantic Forest biome, with a strongly
seasonal rainfall pattern (PINTO; LIMA; ZANETTI, 2015) and according to Köppen’s climate
classification (Figure 3.1 a), in general, the upper-part of the basin (approximately 59% of the
basin’s area) is submitted to a humid subtropical climate (i.e., Zone C) mainly with dry winter
(i.e., Zone Cw) and a hot summer (i.e., Zone Cwa) or a temperate summer (i.e., Zone Cwb) while
the lower-part (approximately 59% of the basin’s area) is predominantly submitted to a tropical
zone with dry winter (i.e., Zone Aw).
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Figure 3.1 – a) Köppen’s climate classification map for Doce river basin according to Alvares
et al. (2013); b) Spatial distribution of grid points which present rain gauge data
frequency of at least 90% in the studied period, and flow stations selected.

Doce river basin is currently one of the most well-monitored large-scale river basins in
Brazil, leading a fair evaluation of the satellite precipitation product in the hydrological modeling
application, once Tian et al. (2018) found that lower-density gauge networks might conduct to
underestimate the performance of the precipitation product from GPM-IMERG.

3.2.2 Precipitation Datasets

The ground-based precipitation dataset at daily intervals over the study area was taken
from a collection of 77 rainfall stations (Figure 3.1 b) Brazilian Water Agency (ANA) database
(http://www.snirh.gov.br/hidroweb/). It was selected the stations with high temporal overlap with
the GPM-IMERG precipitation product. The criteria adopted for selecting the gauges was a
threshold of a maximum of 10% of missing data in the precipitation time series from June 2000
to December 2019.

The satellite precipitation product used in this study was the final run of daily GPM-
IMERG V6. The IMERG-Final run provides the highest quality precipitation estimates with
a latency of 3.5 months and a spatial resolution of 0.1º x 0.1º. It is provided by the Global
Precipitation Measurement (GPM) mission, which is a collaboration between the National
Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency
(JAXA) (HUFFMAN et al., 2019). As used by Amorim et al. (2020), the grids containing
the GPM-IMERG data into the boundaries of the study area were transformed into points
representing the centroid of each pixel, and the daily precipitation historical series obtained at



32

each point of the GPM-IMERG were used as input in the hydrological model.

3.2.3 GPM-IMERG Evaluation

In order to have a comparative overview of the GPM-IMERG V 06 performance for the
study area, a ground validation by using the point-to-pixel approach was performed (XU et al.,
2017; GADELHA et al., 2019; MAHMOUD; HAMOUDA; MOHAMED, 2019; MAGHSOOD
et al., 2020). For the point-to-pixel approach, only the GPM-IMERG 0.1º x 0.1º pixels that had a
gauged station within was selected to be compared. Thus, a database with the rain gauge data set
pairs and the selected GPM-IMERG grids were formed. For this analysis were selected the time
frame from 01 June 2000 to 30 June 2020, and 73 gauged stations/grids.

The evaluation was divided into two steps: i) the GPM-IMERG detection rainfall occur-
rence ability; and ii) GPM-IMERG quantitative differences and agreement with the ground-based
data, both steps were performed using all selected grid points lumped together.

3.2.3.1 Rainfall Occurance

The first group of performance indexes applied is related to the effectiveness of GPM-
IMERG rainfall events detection (WILKS, 2011). This group includes Probability of Detection
(POD), which exhibits the fraction of rainfall events correctly detected; False Alarm Ratio
(FAR), which gives the fraction of false alarm detected; and Critical Success Index (CSI),
which combines the characteristics of false alarms and missed events, either rain occurrence of
zero-rainfall. Table 3.1 shows the summary of these indices.

Performance
Indices Equation Equation Meaning Range

Optimal
Score

POD POD = a/(a+ c)
Fraction of rain occurrences

correctly detected 0–1 1

FAR FAR = b/(a+ b)
Fraction of false alarm

detected 0–1 0

CSI CSI = a/(a+ b+ c)
Fraction of success in

events detection 0–1 1

where a is the number of times that rainfall events was observed and correctly detected; b is the number of times
that rainfall was detected but not observed; c is the number of times that rainfall was observed but not detected.

Table 3.1 – Summary of the performance indices for events detection

3.2.3.2 Rainfall Quantitative Difference

A set of statistical metrics were used to compare differences between the estimated
rainfall from GPM-IMERG with the rain gauge data. The metrics include: Mean error (ME),
which represents the average magnitude of the satellite error; Root Mean Square Error (RMSE),
which gives the sample standard deviation of the differences between the GPM-IMERG V06
product and the observed rainfall; modified relative Bias (rBiasε), which shows the deviation of
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GPM-IMERG V06 from the ground-observed rainfall; and to describe the agreement between
GPM-IMERG estimates and the ground-based data, the Pearson Correlation Coefficient (CC).

MAE =
1

n

n∑
i=1

|Si −Gi| (3.1)

RMSE =

√√√√ 1

n

n∑
i=1

(Si −Gi)
2 (3.2)

rBiasε = 2
Si −Gi

ε− (Si −Gi)
(3.3)
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2
i )− (
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2
] [

(
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i=1 S
2
i )− (

∑n
i=1 Si)

2
] (3.4)

where Gi and Si are the ground-base rain gauge and satellite-based precipitation data at pixel i
and n is the total number of pixels.

For the modified relative bias (Equation 3.3), Hashemi et al. (2017) defined ε as a value
to be used to regularize grids where very low values of precipitation can result in a very large
relative bias. The suggested value for ε is 0.5mm/day, which can adequately large the huge
relative bias for low-precipitation events, and was adopted in this study.

The CC (Equation 3.4) gives the degree of linear association between two variables,
ranging from +1 to -1, where +1 represents the total positive linear correlation, and -1 is the total
negative.

3.2.4 Hydrological Modeling

3.2.4.1 Model Descripition

The hydrological model applied in this study was the MGB-IPH, chosen by the successful
application in South American watersheds for different study purposes (SILVA et al., 2007;
SIQUEIRA et al., 2018; PONTES et al., 2017; SORRIBAS et al., 2016; PAIVA et al., 2013;
GETIRANA et al., 2011). The MGB-IPH is a conceptual, semi-distributed, large-scale hydro-
logical model composed of four calculation modules: soil water balance, evapotranspiration,
flow calculation (surface, sub-surface and subterranean), and flow propagation in the drainage
network. (COLLISCHONN et al., 2007). In the latest versions (PAIVA; COLLISCHONN;
TUCCI, 2011; PONTES et al., 2017), basins are discretized into smaller units for simulation (i.
e. unit catchments), each one has a unique drainage network, where the river routing process is
performed, and combinations of soil type and land use categorized as Hydrological Response
Units (HRU). The vertical water and energy balance are calculated independently for each HRU
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of each unit catchment, and its results are propagated to downstream unit catchment using linear
reservoirs. The vertical water and energy balance includes canopy interception estimated in
terms of leaf area index, evapotranspiration calculated by the Penman-Monteith method, surface
runoff produced using the variable contribution area concept, groundwater computed by linear
functions, and subsurface flows that uses nonlinear equations.

The model parameters are composed of four fixed parameter values and six calibrated
parameter values, where such values are based on the HRU characteristics. A more comprehensive
description of the MGB-IPH model may be found in Collischonn et al. (2007). In the current
version, flow routing through the drainage network can be computed using the Muskingum-
Cunge method (COLLISCHONN et al., 2007) or the inertial method (PONTES et al., 2017). The
Muskingum-Cunge method was applied in this work since it can present a lesser computational
cost and was appropriate and able to represent the hydrological process effectively in the Doce
river basin (FAGUNDES; FAN; PAIVA, 2019).

3.2.4.2 Model Setup

The physiographic information of the sub-basins was obtained using Geographic Infor-
mation System (GIS), and all geoprocessing steps were conducted using the IPH-Hydro tools
(SIQUEIRA et al., 2016). It was used the Shuttle Radar Topographic Mission (SRTM) images by
3 arc-seconds (approximately 90 meters) spatial resolution (USGS, 2015) as the Digital Elevation
Model (DEM), which is sufficient to meet the demands related to the water balance simulated by
the MGB-IPH model.

In order to support the calibration of the model, it was defined ten sub-basins (Figure 3.2
a), subdivided into 2,443 unit catchments. The composition of the type of land cover and soil
type was defined (Figure 3.2 b) using the HRU product from Fan et al. (2015).
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Figure 3.2 – (a) Sub-basins and and spatial distribution of elevation. (b) Spatial distribution of ,
adapted from Fan et al. (2015).

Flow data from stations in the Doce river basin were obtained from the ANA. It was
selected only the stations without the influence of reservoirs and with a maximum of 10%
threshold of missing data the time frame from June 2000 to December 2015, resulting in 19
stations. Seven stations downstream to the reservoirs with estimated naturalized flows from
National Electric System Operator (ONS) were selected in addiction. These 26 stations (Figure
3.1 b) were used for comparison with the MGB-IPH simulation results. Code identification for
the selected flow stations are displayed in Figure 6.1 (Supplementary Materials - Chapter 6).

The selected time frame (i.e., June 2000 to December 2015) was based on the temporal
validity of the flow rating curves from ANA since the observed flow time series from its stations
are estimated using rating curves applying stage measurements.

Naturalized streamflows can be defined as the flow that occurs if there were no anthropic
actions that alter the hydrological regime, which means a river without reservoir operation, nor
evaporation from artificial lakes, and nor withdrawals for water supply (GUILHON; ROCHA;
MOREIRA, 2007). Naturalized streamflows have been succesfully used in a range of hydrological
modeling studies in Brazil such as Amorim et al. (2020), Cassalho et al. (2020) and Nóbrega et
al. (2011).

In order to reduce the subjective nature and have a fair comparison between the MGB-IPH
simulation results using each source of precipitation as model input (i.e., using GPM-IMERG and
gauged-data separately), the model was calibrated using the Multi-objective Complex Evolution–
University of Arizona (MOCOM-UA) optimization algorithm developed by Yapo, Gupta e
Sorooshian (1998). In order to have meaningful physically based parameters, the optimization
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algorithm was bounded by a range of MGB-IPH calibrated parameters for similar basins in
Brazil found by Siqueira et al. (2016).

This study ran the MGB-IPH model on daily time scale, selecting the period from
June 2000 to December 2001 as the warm-up period, the next seven years (2002–2008) as the
calibration period, and the last seven years (2009–2015) as the validation period. The calibration
step was performed separately for both rain gauge-based and GPM-IMERG data.

3.2.4.3 Performance Evaluation Criteria

In this study, the same performance evaluation criteria were adopted for both calibration
and validation periods as recommended by Moriasi et al. (2015). The performances at spatial
and temporal were also observed in calibration and validation periods in order to identify the
consistency of model computations for the selected time frames since substantial differences
in performance during the calibration and validation periods may indicate the need for further
calibration (MORIASI et al., 2015).

For optimization algorithm during calibration step, the performance evaluation criteria
was driven by objective functions while for simulation results quantitative and qualitative
analyses were utilized for both calibration and validation were utilized. The qualitative analyses,
the simulated hydrograph was compared with the observed ones, while objective functions
measured the quantitative performance.

The objective functions used in this study were the Nash-Sutcliffe efficiency (NSE)
(NASH; SUTCLIFFE, 1970); the Nash-Sutcliffe efficiency calculated using logarithms (NSlog)
in order to analyze the simulation efficiency by removing the weight of the maximum observed
flows; the difference in volume in percentage (PBIAS), to quantify the proportion not represen-
ted by the model; and the Kling-Gupta efficiency (KGE) (GUPTA et al., 2009), which combines
the three components of NSE (i.e., correlation, bias, the ratio of variances or coefficients of
variation) in a more balanced way.

NS = 1−
∑n

i=1 (Qobs −Qsim)
2∑n

i=1

(
Qobs −Qobs

)2 (3.5)

NSlog = 1−
∑n

i=1 (log(Qobs)− log(Qsim))
2∑n

i=1

(
log(Qobs)− log(Qobs)

)2 (3.6)

PBIAS = 100 ∗
∑n

i=1Qsim −
∑n

i=1Qobs∑n
i=1Qobs

(3.7)

where Qobs and Qsim are the observed and simulated daily discharge, respectively and Qobs is



37

the average observed discharge.

KGE = 1−
√
(r − 1)2 + (α− 1)2 + (β − 1)2 (3.8)

where r the linear correlation coefficient between the simulated and observed flows; α is a
measure of relative variability in the simulated and observed values; and β is the ratio between
the mean simulated and mean observed flows.

3.3 Results and Discusssion

3.3.1 GPM-IMERG Evaluation Overview

The first analysis was made regarding the monthly average accumulated rainfall volume
for the selected grids in the study area. Figure 3.3 shows boxplots of the monthly averages for
the ground-based and GPM-IMERG data. We can see that the GPM-IMERG could capture the
seasonal rainfall pattern variations of precipitation. However, in the first place, GPM-IMERG
overestimates the amount of precipitation associated with a determined frequency. For instance,
the median of the monthly accumulated precipitation was predominantly higher for GPM-IMERG
than the ground-based data.

Figure 3.3 – Boxplots of monthly averages of the Gauged and GPM-IMERG data based on
monthly accumulated precipitation for study area

The Figure 3.4 brings the rainfall detection ability of GPM-IMERG trough spatial maps
using POD, FAR, and CSI metrics to investigate how the metrics vary for the study area. The
criteria indices were mapped using the Inverse of Distance Weighting method in ArcMap 10.3.1

environment.
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According to the Figure 3.4 (a), the values of POD mainly were higher than 0.7 or
around it showing a satisfactory precipitation detection by GPM-IMERG while the values of
FAR (Figure 3.4 b) ranged between 0.37 and 0.6 with the upper-part of the basin showing
lower values than the lower-part. This difference can be associated with the number of dry days
during the study period since the upper part of the basin showed fewer dry days than the lower
part, directly affecting the FAR values. As expected, a similar behavior was observed for CSI
(Figure 3.4 c), once it combines the characteristics of FAR and the missed events.

Figure 3.4 – Spatial distribution of (a) Probability of Detection - POD, (b) False Alarm Ration -
FAR, and (c) Critical Success Index - CSI.

Figure 3.5 shows the empirical cumulative distribution function (ECDF ) for GPM-
IMERG and the gauged stations. GPM-IMERG underestimates the frequency of precipitation
lower than 30 mm, with the GPM-IMERG frequency underestimation increasing with lower
precipitation values. For precipitation above 30 mm, the frequency is well-estimated.

Table 3.2 presents overall performance measures of GPM-IMERG, while Table 3.3
brings performance measures for different precipitation thresholds following the classification
suggested by (XU et al., 2017) and adapted for Brazil based on Rozante et al. (2018).

GPM-IMERG presents a positive rBIASε when it is calculated using all the data, saying
that its overestimates precipitation, but by Table 3.3 it is possible to note that GPM-IMERG
underestimates precipitation for intensities higher than 0.5 mm. Besides, the rBIASε decreases
when the precipitation intensities decrease, which means that there is a higher underestimation
for a higher amount of precipitation. It is possible to associate the GPM-IMERG underestimation
for precipitation lesser 0.5 mm since there is an identified FAR of 0.49.

In the same way of rBIASε, due to the increased GPM-IMERG underestimation for
higher amounts of precipitation, the RMSE and MAE increases with the precipitation inten-
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sities. On the other hand, the POD also increases with precipitation, which means there are
greater chances of GPM-IMERG detecting higher precipitation amounts.

Figure 3.5 – Empirical cumulative distribution func-
tion of gauged data precipitation at stati-
ons and GPM-IMERG for study area.

Perfomance measures Values
RMSE 9.92
MAE 3.70
rBIASε 0.12
CORR 0.50
POD 0.71
FAR 0.49
CSI 0.42

Table 3.2 – Performance measures for
the paired gauge-satellite
dataset.

Metrics
Daily Precipitation (P) Thresholds (mm)

Rain/no-rain Light Low moderate Moderate Heavy Extreme Torrential
P≤0.5 0.5≤P<2 2≤P<5 5≤P<20 20≤P<40 40≤P<90 P≥90

RMSE 5.17 9.20 10.74 14.02 21.78 38.65 80.00
MAE 1.30 3.99 5.84 10.11 18.50 34.00 72.56
rBIASε 0.34 -0.25 -0.49 -0.63 -0.76 -0.91 -1.02
CORR 0.05 0.05 0.06 0.16 0.11 0.15 0.14
POD 0.43 0.53 0.65 0.80 0.92 0.96 0.98

Table 3.3 – Performance measures for the paired gauge-satellite dataset for different precipitation
intensity thresholds.

3.3.2 Hydrological Modeling Perfomance

The performance measures for daily streamflow MGB-IPH simulation, driven by both
precipitation datasets (i.e., gauged and GPM-IMERG) was analysed using boxplots for calibration
and validation (Figure 3.6) and by a classified spatial distribution of performances (Figure 3.7 and
Figure 3.8). Performance metrics values for each flow station for both calibration and validation
steps using gauged and GPM-IMERG as precipitation input data are displayed in Supplementary
Materials (Chapter 6).
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Overall, based on the Figure 3.3, the rain gauge-based simulations exhibited better
performances than IMERG-based simulations for NSE, NSElog and KGE while the best
PBIAS values were found in IMERG-based simulations for both calibration and validation
steps. The lower values of NSE and KGE for rain IMERG-based simulations are possibly
associated with GPM-IMERG underestimations, leading the MGB-IPH simulations not to reach
the high peaks of discharges while GPM-IMERG false alarm is probably impacting on NSlog by
inputting precipitation during the low flow period.The lower performance for high peaks and low
flow periods is likely to compensate and drive towards lower PBIAS values for IMERG-based
simulations. When the comparison is between the simulation steps, the model performance was
better in the calibration than in the validation period, as already expected.

Figure 3.6 – MGB-IPH model performances for both gauged and IMERG as precipitation input
data.

For rain gauged-based simulations the metrics median were mostly at Very Good levels
(MORIASI et al., 2015) for both calibration and validation steps while for IMERG-based simula-
tions the metrics median ranging from Good to Satisfactory levels (Table 3.4), which means that
GPM-IMERG can serve as alternative input to enhance the performance of hydrological models.

Metric
Calibration Validation

gauge-based IMERG-based gauge-based IMERG-based
NSE 0.82 0.74 0.80 0.68
NSElog 0.83 0.78 0.80 0.72
KGE 0.86 0.79 0.83 0.76
PBIAS 5.76 3.05 -4.3 -8.5

Table 3.4 – Performance measures median
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Figure 3.7 – MGB-IPH model spatial performances for both (a) gauged and (b) IMERG as
precipitation input data for the calibration period.

Figure 3.8 – MGB-IPH model spatial performances for both (a) gauged and (b) IMERG as
precipitation input data for the validation period.

Figure 3.7 and Figure 3.8 shows metrics performances spatially distributed through the
study area for calibration and validation steps, respectively. It was not possible to identify any
spatial pattern for MGB-IPH simulation performances. Generally, the stations with lower metrics
for rain gauge-based simulations also had lower metrics for IMERG-based simulations. The
rain gauge network density used in this study was sufficient to capture the spatial distribution of
rainfall (see Figure 3.1 b) at the study area leading to a fair comparison with GPM-IMERG. It is
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possible to say that IMERG-based simulation could drive the hydrologic model to capture the
hydrological cycle through the study area. These results support the GPM-IMERG applicability
for hydrological modeling purposes.

Figure 3.9 shows the daily simulated discharge using both precipitation datasets for some
representative stations, and the remaining stations are presented in the Supplementary Materials
(Chapter 6. According to the hydrographs presented, there is a notable agreement most of the
simulation time in both calibration and validation steps. There are no significant differences
between the simulations using ground-based and IMERG-based precipitation for medium and
low flows. On the other hand, differences in high flows were noted between the simulations since
IMERG-based simulations underestimated the majority of high flows, likely associated with
GPM-IMERG precipitation underestimation for high intensities.

Figure 3.9 – Comparison between rain gauged-based (red) and IMERG-based (black) daily
simulations with the observed (gray) discharge.

3.4 Conclusions

This study evaluated the GPM-IMERG applicability for hydrological modeling purposes
in tropical/subtropical basins. The work was divided into two main parts: i) Comparative overview
of GPM-IMERG precipitation estimation based on gauged-based stations, and ii) using gauged-



43

based and IMERG-based precipitation datasets to simulate daily discharges using the MGB-IPH
model at 26 different stations in the Doce river basin.

In the context of using precipitation datasets for hydrological modeling applications,
observed streamflow data plays a dominant role in model parameters calibration and validation
of the simulated outputs, which means reliable streamflow observations have utmost importance
for the trustworthiness of results. An important limitation of the study was the set of observed
streamflow data used that was provided from ANA, which was estimated using rating curves,
and ONS, which was estimated by flow naturalization methods. Both methods have limitations
and bring estimation uncertainties with them. Moreover, flows from the rating curve bring highly
variable uncertainty over time and stage within each gauge and between gauges, which can be
propagated differently for practical applications (DOMENEGHETTI; CASTELLARIN; BRATH,
2012; TOMKINS, 2014).

Despite the limitations, this study could find valuable information about GPM-IMERG
application for hydrological modeling purposes. The main specific findings can be summarised
as follow:

• GPM-IMERG V06 was capable of capturing the seasonal rainfall pattern variations and
showed satisfactory precipitation detection. On the other hand, the false alarm ratio was
different from the upper part to the lower part of the study area, which can be associated
with the number of dry days (i.e., more dry days, higher the false alarm);

• GPM-IMERG V06 presented an increasing trend of underestimation of e precipitation
amount along with precipitation intensity;

• This study determines the ability of GPM-IMERG V06 to estimate rainfall and produce
input data for streamflow simulations in a tropical/subtropical large-scale river basin;

• GPM-IMERG V06 could drive the hydrological model to capture the hydrological cycle
to represent spatial and temporal streamflow variations.
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4 CONCLUSIONS

This study has analyzed the performance of the GPM-IMERG V6 final daily precipitation
product over Brazil and the GPM-IMERG applicability for hydrological modeling purposes in
tropical/subtropical basins.

Despite the limitations encountered along with the study, valuable information about
GPM-IMERG performance and application for hydrological modeling purposes was found. The
main finds for GPM-IMERG performance over Brazil are; i) the GPM-IMERG present a tendency
to underestimate the amount of precipitation for higher precipitation intensities; ii) the detection
ability of GPM-IMERG is spatially variant and more sensitive to longitude when compared to
latitude; iii) GPM-IMERG presented better performances in regions under subtropical climates
and the worst performance in semiarid climates. For GPM-IMERG application for hydrological
modeling purposes, the main finds were that GPM-IMERG could drive the hydrological model to
capture the seasonal rainfall pattern and represent the spatial and temporal streamflow variations.
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5 APÊNDICE A: SUPPLEMENTARY MATERIALS - GROUND-BASED EVALUA-
TION OF GPM-IMERG V6 OVER BRAZIL

Figure 5.1 – Monthly averages of the Gauged and IMERG data based on monthly accumulated
precipitation for the climatic zones Af , Am and As.

Figure 5.2 – Monthly averages of the Gauged and IMERG data based on monthly accumulated
precipitation for the climatic zones Aw, Bsh and Cfa.

Figure 5.3 – Monthly averages of the Gauged and IMERG data based on monthly accumulated
precipitation for the climatic zones Cfb, Cwa and Cwb.
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Month
POD FAR CSI

Zone A Zone B Zone C Zone A Zone B Zone C Zone A Zone B Zone C
Jan 0.86 0.83 0.82 0.49 0.69 0.44 0.47 0.29 0.50
Feb 0.87 0.85 0.80 0.48 0.68 0.48 0.49 0.30 0.46
Mar 0.87 0.86 0.76 0.47 0.64 0.49 0.50 0.34 0.44
Apr 0.81 0.81 0.67 0.51 0.66 0.55 0.44 0.31 0.36
May 0.71 0.67 0.63 0.61 0.72 0.60 0.33 0.23 0.31
Jun 0.60 0.53 0.60 0.68 0.76 0.61 0.25 0.18 0.31
Jul 0.53 0.42 0.59 0.72 0.80 0.62 0.20 0.13 0.30
Aug 0.57 0.35 0.62 0.74 0.86 0.61 0.19 0.08 0.31
Sep 0.59 0.28 0.70 0.71 0.90 0.53 0.22 0.06 0.38
Oct 0.69 0.56 0.75 0.68 0.87 0.52 0.27 0.11 0.41
Nov 0.74 0.58 0.75 0.62 0.88 0.48 0.34 0.11 0.44
Dec 0.83 0.78 0.79 0.57 0.81 0.46 0.40 0.17 0.48

Table 5.1 – Summary of the results for the first group of statistical metrics for each month of the
year grouped by the climate zones.

Month
RMSE MAE rBIASε

Zone A Zone B Zone C Zone A Zone B Zone C Zone A Zone B Zone C
Jan 14.32 9.55 15.32 7.41 3.45 7.94 0.30 0.32 0.22
Feb 14.50 10.13 13.88 7.77 4.31 6.97 0.31 0.41 0.24
Mar 14.62 10.90 12.97 7.85 4.97 6.14 0.30 0.40 0.18
Apr 12.89 10.41 11.08 6.45 4.66 4.44 0.24 0.39 0.12
May 9.77 7.41 9.80 4.28 2.67 3.65 0.17 0.24 0.10
Jun 6.58 5.57 7.85 2.75 1.84 2.80 0.07 0.12 0.07
Jul 5.25 3.84 7.11 2.07 1.09 2.55 0.03 0.05 0.06
Aug 4.36 2.41 6.41 1.52 0.47 2.23 0.05 0.01 0.07
Sep 5.72 1.36 9.42 2.03 0.23 3.74 0.12 0.02 0.09
Oct 8.36 2.71 12.17 3.42 0.44 5.56 0.22 0.07 0.16
Nov 11.23 2.98 14.27 5.39 0.68 7.13 0.26 0.12 0.16
Dec 12.69 5.31 15.24 6.40 1.50 7.87 0.31 0.25 0.20

Table 5.2 – Summary of the results for the second group of statistical metrics for each month of
the year grouped by the climate zones.
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Month
CORR

Zone A Zone B Zone C
Jan 0.40 0.48 0.37
Feb 0.40 0.44 0.34
Mar 0.38 0.43 0.37
Apr 0.39 0.42 0.38
May 0.39 0.42 0.43
Jun 0.34 0.36 0.45
Jul 0.31 0.33 0.46
Aug 0.31 0.19 0.47
Sep 0.32 0.20 0.48
Oct 0.37 0.43 0.43
Nov 0.34 0.37 0.35
Dec 0.38 0.45 0.36

Table 5.3 – Summary of the results for the third group of statistical metrics for each month of
the year grouped by the climate zones.
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6 APÊNDICE B: SUPPLEMENTARY MATERIALS - EVALUATION OF GPM-
IMERG APPLICABILITY FOR HYDROLOGICAL MODELING IN A LARGE-
SCALE TROPICAL BASIN

Figure 6.1 – Spatial distribution and code identification for selected flow stations.
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Station
Calibration

Gauged IMERG
NSE NSElog KGE PBIAS NSE NSElog KGE PBIAS

56075000 0.841 0.88 0.907 -0.63 0.756 0.799 0.808 2.86
56110005 0.869 0.872 0.923 -0.55 0.768 0.778 0.824 1.61
56415000 0.761 0.806 0.871 4.42 0.609 0.656 0.773 -13.02
56484998 0.836 0.703 0.82 14.97 0.671 0.701 0.747 3.64
56510000 0.852 0.746 0.881 9.38 0.677 0.7 0.813 -2.18
56610000 0.819 0.849 0.864 5.04 0.699 0.811 0.695 8.12
56775000 0.727 0.761 0.675 20.86 0.643 0.778 0.622 20.65
56787000 0.722 0.721 0.73 16.9 0.723 0.775 0.794 3.38
56800000 0.764 0.811 0.773 7.76 0.648 0.767 0.698 2.31
56845000 0.799 0.848 0.801 6.49 0.698 0.819 0.754 8.1
56850000 0.897 0.902 0.895 0.4 0.834 0.853 0.871 -5.49
56891900 0.851 0.843 0.886 -3.95 0.749 0.808 0.734 5.85
56920000 0.858 0.761 0.874 10.11 0.84 0.773 0.895 6.46
56940002 0.773 0.826 0.795 2.16 0.62 0.736 0.685 0.43
56978000 0.684 0.514 0.623 31.61 0.659 0.458 0.613 26.88
56989400 0.756 0.797 0.734 14.75 0.685 0.702 0.772 2.17
56990000 0.795 0.849 0.846 10.81 0.774 0.721 0.879 1.54
56992000 0.629 0.578 0.605 21.78 0.627 0.672 0.77 3.24
56998400 0.633 0.686 0.589 29.53 0.644 0.732 0.674 17.81
ONS19105 0.884 0.85 0.908 2.67 0.78 0.817 0.829 3.47
ONS19106 0.884 0.862 0.911 0.09 0.779 0.823 0.856 -1.01
ONS19108 0.844 0.824 0.763 16.76 0.765 0.846 0.787 9.72
ONS19109 0.913 0.907 0.939 4.37 0.776 0.806 0.873 3.76
ONS19110 0.85 0.897 0.897 -0.89 0.815 0.836 0.865 -7.48
ONS19111 0.799 0.857 0.846 -11.74 0.761 0.788 0.789 -17.46
ONS19112 0.817 0.889 0.869 1.26 0.812 0.849 0.879 -4.26

Table 6.1 – Statistical metrics of MGB-IPH streamflow simulation using both gauged and
IMERG as precipitation input data for the calibration period.
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Station
Calibration

Gauged IMERG
NSE NSElog KGE PBIAS NSE NSElog KGE PBIAS

56075000 0.823 0.841 0.872 -8.68 0.763 0.757 0.8 -7.87
56110005 0.873 0.846 0.92 -4.45 0.766 0.741 0.783 -4.36
56415000 0.712 0.716 0.841 -5.76 0.629 0.504 0.704 -17.09
56484998 0.837 0.8 0.907 3.29 0.672 0.637 0.743 -0.09
56510000 0.741 0.775 0.83 -10.2 0.66 0.582 0.736 -6.77
56610000 0.816 0.792 0.853 -0.31 0.68 0.751 0.717 -2.01
56775000 0.749 0.759 0.674 19.18 0.645 0.751 0.633 14.32
56787000 0.721 0.741 0.802 7.78 0.626 0.683 0.768 -11.91
56800000 0.73 0.708 0.824 -12.15 0.522 0.534 0.682 -23.1
56845000 0.761 0.703 0.809 -9.73 0.627 0.54 0.726 -21.52
56850000 0.894 0.887 0.904 -5.14 0.831 0.788 0.825 -14.73
56891900 0.632 0.304 0.397 -57.07 0.628 0.321 0.555 -41.86
56920000 0.854 0.858 0.889 -7.61 0.808 0.756 0.831 -14.18
56940002 0.697 0.803 0.781 2.41 0.674 0.725 0.733 1.67
56978000 0.764 0.698 0.669 26.66 0.653 0.637 0.671 22.36
56989400 0.74 0.774 0.779 10.15 0.611 0.658 0.793 -4.32
56990000 0.784 0.829 0.778 -0.98 0.523 0.711 0.666 -9.2
56992000 0.724 0.742 0.811 -1.73 0.592 0.568 0.719 -17.5
56998400 0.72 0.72 0.751 15.07 0.743 0.668 0.856 2.35
ONS19105 0.903 0.834 0.904 -5.39 0.803 0.802 0.845 -6.75
ONS19106 0.889 0.824 0.876 -7.48 0.801 0.785 0.846 -10.3
ONS19108 0.853 0.821 0.795 12.93 0.768 0.772 0.824 1.66
ONS19109 0.918 0.901 0.957 0.45 0.794 0.809 0.85 -3.84
ONS19110 0.877 0.873 0.882 -9.02 0.819 0.753 0.787 -19.44
ONS19111 0.834 0.808 0.818 -16.15 0.755 0.691 0.741 -23.17
ONS19112 0.845 0.857 0.885 -4.16 0.793 0.766 0.844 -10.75

Table 6.2 – Statistical metrics of MGB-IPH streamflow simulation using both gauged and
IMERG as precipitation input data for the validation period.
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Figure 6.2 – Comparison between the simulated using gauged (red) and IMERG (black) as
precipitation input data, and the observed (gray) discharge - Part 1.
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Figure 6.3 – Comparison between the simulated using gauged (red) and IMERG (black) as
precipitation input data, and the observed (gray) discharge - Part 2.
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Figure 6.4 – Comparison between the simulated using gauged (red) and IMERG (black) as
precipitation input data, and the observed (gray) discharge - Part 3.
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