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Resumo

O câncer de pulmão é o tipo mais frequente e letal de câncer e o seu diagnóstico pre-

coce é crucial para a sobrevivência do paciente. A tomografia computadorizada (TC) é o

padrão-ouro para o rastreio da doença, mas estudos recentes têm demonstrado o potencial

da ressonância magnética (RM) no diagnóstico de nódulos pulmonares, bem como da com-

binação de imagens médicas multimodalidade. Neste estudo, foi avaliado se a combinação

de características radiômicas de imagens de TC e RM de pacientes de câncer pulmonar con-

tribui para classificações mais precisas da suspeita de malignidade de nódulos. Para atingir

tal objetivo, foi realizado o registro de exames de TC e RM de 47 pacientes, segmentação dos

nódulos em cada modalidade, extração de características radiômicas dos nódulos, e classi-

ficação usando XGBoost, avaliando métricas de desempenho dos modelos em 30 iterações.

O mesmo experimento foi realizado para quatro conjuntos de características: 1) somente

de TC; 2) somente de RM; 3) concatenação de TC e RM; 4) fusão de TC e RM. Nossos

resultados indicam que a estratégia de fusão de imagens pode levar a ganhos de desem-

penho significativos, em um teste dos postos sinalizados de Wilcoxon, sobre os modelos de

modalidades individuais, com AUC média de 0.794, mas a concatenação de características

não se provou uma abordagem adequada para lidar com imagens multimodalidade, uma vez

que a AUC média de 0.770 não indicou ganhos de desempenho. Além disso, foi observado

que RM, com AUC média de 0.770, apresentou desempenho significativamente superior à

TC, com 0.755, encorajando estudos em RM como modalidade para o acompanhamento do

câncer de pulmão. Por fim, a análise das características reforçou a relevância da morfolo-

gia de um nódulo, como seu tamanho e esfericidade, além de características de textura que

quantificam a complexidade e homogeneidade do ambiente intratumoral.

Palavras-chave: Imagens médicas multimodalidade; Câncer de pulmão; Características

Radiômicas.
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Abstract

Lung cancer is the most common and deadly form of cancer, and its early diagnosis is de-

cisive to the patient’s survival. Computed Tomography (CT) is the gold-standard imaging

modality for lung cancer management, but recent studies have shown the potential of Mag-

netic Resonance Imaging (MRI) in lung cancer diagnosis and how combining multimodality

medical images can yield better outcomes. In this study, we evaluated whether the combina-

tion of CT and MRI scans from lung cancer patients can leverage a more precise malignancy

suspiciousness classification. For such, we registered paired CT and MRI scans from 47 pa-

tients, segmented the nodules in each modality, extracted radiomics features, and performed

an experiment with an XGBoost classifier, evaluating models’ performance metrics across

30 trials. The same experiment was performed with four sets of features: 1) CT-only; 2)

MRI-only; 3) CT and MRI features; 4) CT/MRI fused images. Our results indicate that the

image fusion approach can yield significant AUC performance gains over the single modal-

ities models, with an average AUC of 0.794, but feature concatenation is not an adequate

strategy for dealing with multimodality data, as its average AUC of 0.770 didn’t indicate

any improvement over the single modalities. Additionally, we observed that MRI, with an

average AUC of 0.770, has shown significantly better performance than CT, with 0.754, en-

couraging further studies in MRI as a lung cancer management image modality. Finally, the

analysis on the importance of radiomics features reinforced the relevance of features that re-

flects on morphological characteristics of a nodule, such as its dimension and roundness, as

well as texture features that relate to the intratumoral environment, measuring its complexity

and homogeneity.

Keywords: Multimodality medical imaging; Lung cancer; Radiomics.
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1 Introduction

Globally, lung cancer is the most common cause of cancer incidence and mortality. The

Global Cancer Observatory (GCO) estimated 2.1 million new cases and 1.8 million deaths

in 2018 (SIEGEL; MILLER; JEMAL, 2018). The moment of detection is a determinant

factor for the prognosis; e.g., when a nodule is detected in its early stages, survival rates can

reach up to 90%, in contrast to only 15% when diagnosed in its final stages (KNIGHT et al.,

2017a). Therefore, early diagnosis is a decisive factor for patients’ treatment and survival

(SIEGEL; MILLER; JEMAL, 2018; KNIGHT et al., 2017b).

Currently, early detection of lung nodules is supported by screening programs using com-

puted tomography (CT). However, despite being the gold standard in lung cancer screen-

ing, CT still presents some shortcomings; since the exam requires a considerable radiation

dose, performing periodic examinations can be undesirable because of the risks of radiation-

induced cancers (OHNO, 2014; KNIGHT et al., 2017b). In this context, low-dose computed

tomography (LDCT) comes up as an alternative that requires a lower radiation dose, whose

safety was backed up by several trials (PASTORINO et al., 2012; RAMPINELLI et al.,

2017). Nevertheless, the reduced radiation dose from LDCT provides noisier images that

can result in a high rate of false positives, leading to unnecessary invasive procedures (LI et

al., 2018; LI et al., 2019).

In the last decades, technical advancements in sequencing, scanners, and coils made

magnetic resonance imaging (MRI) a viable modality for the management of patients with

chest diseases such as lung cancer (YI et al., 2008; SOMMER et al., 2014; KOENIGKAM-

SANTOS et al., 2015). Apart from not exposing the patient to radiation, MRI presents

particular advantages over CT and LDCT, such as superior soft-tissue contrast, which allows

for better characterization of nodules (YI et al., 2008; BECKETT; MORIARITY; LANGER,

2015). Still, thoracic MRI is not as established as CT, requiring further clinical trials and

protocol development to ascertain its actual potentials. Nonetheless, preliminary works dis-

play the benefits of using MRI as a complement to the standard screening protocol with CT

(OHNO et al., 2018; FRANCISCO et al., 2019).

As a result of recent developments in both hardware and software, multimodality medical
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imaging has been progressively applied in research and clinical practice (WEI et al., 2019).

The intuition behind multimodality imaging is that distinct modalities can provide comple-

mentary information of a disease, allowing for better characterization and decision support

(WEI et al., 2019). Moreover, this field holds potential for computer-aided diagnosis (CADx)

research, as several works suggest that the combination of different imaging modalities can

bring better results in computer-aided segmentation (GUO et al., 2019), therapy planning

(VAIDYA et al., 2012), and prognosis (WEI et al., 2019) when compared to single-modality

imaging.

While the literature on lung cancer CT-based CADx systems is vast, few studies have

addressed the applicability of multimodality medical images for this type of cancer (YANG

et al., 2018). Furthermore, CT/MRI is not a typical combination of imaging modalities

for lung cancer assessment, making it beneficial to study the combination of these images’

capabilities in CADx systems design (YANG et al., 2018). Lastly, there are still gaps in

the knowledge on MRI as a lung cancer management image modality (FRANCISCO et al.,

2019).

In this study, we intended to determine whether the combination of radiomics features

extracted from lung nodules in paired CT and MRI scans can yield better classification results

than its individual modalities. As a secondary objective, we compared the performance of

two different approaches to combine multimodality information.

The work’s main contribution is in showing that combining multimodality images can

provide a more precise lung cancer malignancy suspiciousness classification. Our results

pointed that a simple pixel average image fusion is enough to provide significant gains in

most classification metrics compared to the best single modalities models. On the other hand,

concatenating the features into a larger dataset has shown to be a poor strategy for dealing

with multimodality data. A secondary contribution is in showing that MRI models presented

an advantage over CT models. This improvement is exciting because using MRI for lung

cancer management can mitigate issues such as radiation exposure and adverse reactions to

contrast materials commonly used in CT.

The remainder of this dissertation is structured in the following chapters:

• Chapter 2 - Theoretical Framework: this chapter covers the main theoretical con-

cepts related to this work, such as medical imaging modalities, radiomics, and multi-
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modality medical imaging.

• Chapter 3 - Related Work: this chapter presents an overview of the multimodality

medical images machine learning research field.

• Chapter 4 - Material and Methods: this chapter describes the steps taken into our ex-

periments, including the source of data, participants’ information, data preprocessing

pipeline, multimodality fusion approaches, and model development and validation.

• Chapter 5 - Results and Discussion: this chapter reports the results obtained through

the experiments and its interpretation.

• Chapter 6 - Conclusion: this chapter concludes this work by summarising the main

observed results, its limitations, and future works.
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2 Theoretical Framework

2.1 Lung Nodules in Medical Images

The Fleischner Society defines a lung nodule as an approximately rounded opacity in

radiography or CT imaging, well or poorly defined, measuring up to 30mm in diameter

(HANSELL et al., 2008). Rounded lesions measuring more than 30mm are designated lung

masses and should be considered indicative of lung cancer until histologically proven other-

wise (LOVERDOS et al., 2019).

Lung nodules are categorized into three different types according to their attenuation in

CT imaging, as shown in Figure 1: (1a) solid nodules, the most common, characterized

by uniform soft-tissue attenuation; (1b) ground-glass nodules, nonuniform in appearance

with a hazy attenuation of lung parenchyma not obscuring the underlying structures, and

(1c) part-solid nodules, comprising both solid and ground-glass attenuation characteristics

(HANSELL et al., 2008).

(a) Solid lung nodule. (b) Ground-glass lung nodule. (c) Part-solid lung nodule.

Figure 1 – Different lung nodules types.

2.2 Computed Tomography

Computed tomography is a medical imaging technique that combines multiple X-ray

measurements to produce cross-sectional (tomographic, from the greek tomos, "slice") im-

ages of a scanned object. Figure 2 exhibits an overview of a CT scanner operation. The
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patient is placed well-centered and usually in a supine position over the table. Then, the CT

computer controls table motion by using precision motors and moves the patient along the

bore, where the data is effectively collected. Inside the gantry, an X-ray tube performs a full

360-degree rotation emitting a fan of X-ray beams that are received by a detector array that

rotates along the same axis. Modern CT scanners possess more detectors arrays in the z-axis,

improving acquisition time and image quality.

b
o

r
e




gantry


patient table


Translates patient during scanning


CT x-ray beam


x-ray

beans


detector


x-ray tube


Figure 2 – CT schematics. (RASHI, 2020)

X-ray imaging is acquired by emitting a pulse of X-radiation through the body of the

patient. A fraction of the radiation interacts with the patient tissues, while the remaining

pass through the body, reaching the detector. The result is an X-ray distribution that reflects

the tissues’ unique attenuation properties, such as bone, soft tissue, and air inside the patient

(BUSHBERG; BOONE, 2011). This distribution is measured in Hounsfield Units (HU),

which standardizes the values of each tissue in a scale, which is shown in Figure 3.

Figure 3 – Hounsfield Scale (HU) simplified. (RASHI, 2020)
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2.3 Magnetic Resonance Imaging

Magnetic resonance is a medical imaging procedure that generates detailed tomographic

images of the organs inside the body. MRI uses a powerful magnet to generate a strong mag-

netic field (1.5T and 3T are typical values) that align the protons of the patient’s body with

that field. A radiofrequency current is pulsed through the patient, causing the protons to mis-

align with the magnetic field. When the radiofrequency pulse is turned off, the sensors can

detect the energy which is released as the protons realign with the magnetic field, whose time

varies according to the chemical nature of the molecule, allowing for tissue differentiation

(BUSHBERG; BOONE, 2011). Figure 4 shows an MRI scanner and its main components.

Figure 4 – MRI scanner components. (RASHI, 2020)

The MRI acquisition protocol can be fine-tuned to better reflect specific tissues proper-

ties. For example, T1-weighted images can be acquired through the T1 relaxation process

(magnetization in the same direction as the magnetic field) by allowing magnetization to re-

cover before measuring the MR signal. In these settings, MRI can better reflect tissues such

as fat.

CT and MRI images may differ significantly, as each modality is sensitive to different

tissue properties. CT images present lower soft tissue detail, as denser tissues such as bones

block the X-rays. MRI customarily uses the hydrogen nucleus spin to capture the imaging
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signal, as this atom is abundant in water and fat, allowing this modality to present richer

soft tissue contrast (BUSHBERG; BOONE, 2011). Figure 5 compares the same anatomical

region as seen in CT (5a) and T1 MRI (5b).

(a) CT image. (b) T1 MRI.

Figure 5 – A comparison between CT and different MRI sequences.

2.4 Image Registration

Image registration consists of finding the spatial transform that maps points from one

image to the corresponding points in another image (MAINTZ; VIERGEVER, 1998). Med-

ical image registration has many applications. For instance, repeated images of a subject are

often used to obtain temporal information of diseases, and image registration is utilized to

align these acquisitions and allow for the detection of more subtle changes (YOO, 2004).

Moreover, registration is a valuable tool for correlating information obtained from different

imaging modalities (MAINTZ; VIERGEVER, 1998; BASHIRI et al., 2019). Figure 6 illus-

trates the registration process by presenting CT (in cyan) and MRI (in magenta) overlapped

slices in the transverse plane before and after performing rigid image registration.

A registration problem is classified according to the spatial transformation used to map

the points of one or more moving images to a fixed image. The transformations may be

rigid, when only translations and rotations are allowed; affine, when skewing and scaling

transformations are also allowed; and elastic, whose transformations can define free-form

mappings between the images (YOO, 2004).
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(a) Before registration. (b) After registration.

Figure 6 – Overlapped CT (in cyan) and MRI (in magenta) slices in the transverse plane
before and after performing image registration.

Registration can be seen as an optimization problem, where the objective is to minimize

a cost function that maps the quality of the alignment between the images. A typical cost

function is the Mean Square Error (MSE) (Equation 1), which accounts for the difference in

pixel intensities between the corresponding pixels X in the fixed image and Y in the moving

image.

MSE(X, Y ) =
1

n

n∑
i=1

(Xi − Yi)
2 (1)

However, when it is intended to register images from different modalities, the raw pixel

values are not a useful measure of registration quality. In this case, it is preferable to account

for the statistical distribution of pixel values, using a metric such as Mutual Information

(2), where X and Y are random variables defining the fixed and moving image intensities,

respectively; p(x,y) is the joint probability of X and Y; and p(x) and p(y) are the marginal

probability of X and Y , respectively.

I(X, Y ) =
∑
y∈Y

∑
x∈X

p(x, y)log

(
p(x, y)

p(x)p(y)

)
(2)

Mutual Information measures how much one random variable tells us about another, and

can be thought of as the reduction in uncertainty about one random variable, given knowledge

of another. Higher mutual information values indicate a larger reduction in uncertainty; a

value of zero indicates that the two random variables are independent.
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2.5 Nodule Segmentation

Segmentation consists of subdividing an image into distinct regions or objects. In lung

cancer management, the goal is to divide the image into regions that represent normal

anatomy and those that are abnormal, such as a nodule or its subregions (GILLIES; KINA-

HAN; HRICAK, 2016). Accurate segmentation of a nodule region plays an important role in

image interpretation, analysis, and measurement. Nevertheless, lung nodule segmentation is

challenging because many tumors may have indistinct borders (such as ground-glass opacity

nodules) or be attached to adjacent lung structures, such as the lung wall or mediastinum.

A critical question is whether segmentation will be performed manually, thus having

closer to ground truth volumes, or automatically, allowing for better reproducibility and

design of automated CADe and CADx systems (GILLIES; KINAHAN; HRICAK, 2016).

An example of a semi-automatic segmentation approach is the GrowCut algorithm (ZHU

et al., 2014). This algorithm requires the specialist to manually draw seed regions of the

tissues to be segmented in each anatomical plane. These labels are then propagated based

on principles from cellular automata to classify all the voxels as foreground (nodule) or

background (the remaining of the image).

2.6 Radiomics

Radiomics is the field that aims to convert digital medical images into high-dimensional

data for improved decision support, based on the premise that biomedical images contain

information that reflects underlying pathophysiology and that these relationships can be re-

vealed via quantitative image analyses (GILLIES; KINAHAN; HRICAK, 2016). Quantita-

tive image features may include intensity, shape, size, volume, and texture, offering infor-

mation on tumor phenotype and habitat that is distinct from that provided by clinical reports

and laboratory test results.

Although radiomics can be used in a series of applications, it is most well developed in

oncology because of support from the National Cancer Institute (NCI), Quantitative Imaging

Network (QIN), and other initiatives. Possible applications are improved decision support

(e.g., diagnosis, prognosis assessment, therapy response) and precision medicine (e.g., ther-

apy planning) (PAREKH; JACOBS, 2019).
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2.7 Multimodal Machine Learning and Medical Imaging

As humans, we can perceive the world surrounding us through various modalities - such

as image, sound, textures, and odors. In general terms, a modality consists of a way in which

something can be experienced, for example, through our senses. This definition can also

be applied to machine learning research: a problem is multimodal when its inputs include

multiple modalities. Therefore, multimodality machine learning aims to develop models that

can process and correlate information from multiple modalities (BALTRUŠAITIS; AHUJA;

MORENCY, 2018).

Specifically, the research field of multimodal medical images aims to combine distinct

medical images for diagnostic, therapeutic, and prognostic purposes. Using more than one

image modality can provide separate yet complementary anatomical (e.g., X-ray and CT)

and functional (e.g., PET and MRI) information of a patient, transforming the way the body

can be studied but also presenting several challenges due to the diversity of biophysical and

biochemical mechanisms (WEI et al., 2019). Baltrušaitis et al. presents five core challenges

that surround this research field (BALTRUŠAITIS; AHUJA; MORENCY, 2018):

1. Representation: how to represent and summarize multimodal data in a way that ex-

ploits the complementarity and redundancy of multiple modalities.

2. Translation: how to map information from one modality to another, as not only is the

data heterogeneous, but the relationship between modalities is often subjective.

3. Alignment: identify the direct relations between elements and subelements from dif-

ferent modalities.

4. Fusion: to join information from multiple modalities to perform a prediction.

5. Co-learning: to transfer knowledge between modalities, their representation, and their

predictive models.

In this work, we had to tackle specifically the challenges of representation, alignment,

and fusion, detailed in the Feature Extraction (4.4), Image Registration (4.2) and Multi-

modality Strategies (4.5) subsections.
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2.8 Multimodal Image Feature Fusion Strategies

Multimodal image fusion is an essential step in multimodality model design, compre-

hending the strategy according to which image information is combined. Guo et al. (GUO

et al., 2019) proposes an algorithmic abstraction for image fusion strategies that cover most

supervised multimodal medical imaging analysis. The abstraction divides the possible strate-

gies into fusion at the decision-making, feature, and classifier level, according to the moment

where information is combined into the predictive model pipeline. Although this abstraction

is proposed for Deep Learning models, the concepts are also valid in radiomics-based sys-

tems.

Fusion at Decision-Making Level

This strategy is the most intuitive one: each modality is used to learn a single-modality

classifier. Then, the single-modality classifiers’ output is combined into a multimodality

decision in a process referred to as "voting", although the decision scheme may vary.

Fusion at Feature Level

In this strategy, multimodality images are used together to learn a unified feature set to

support the learning of a classifier. A common practice is fusing the images from multiple

modalities into a new image, requiring proper registration of those images.

Fusion at Classifier Level

In this strategy, each modality’s images are used as separate inputs to learn individual

feature sets that will support the learning of a multimodal classifier. Single modality feature

learning and classifier learning can be conducted in an integrated framework (e.g., using a

CNN with one input for each modality) or separately (e.g., extracting features from single-

modality images and then training a multimodality classifier).
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2.9 Gradient Trees Boosting and XGBoost

Gradient tree boosting is a technique that composes ensembles of decision trees and cal-

culates the final prediction by summing up the score in the corresponding leaves of each tree.

XGBoost is a scalable machine learning system for tree boosting available as an open-source

package widely used and displayed state-of-the-art performance on many standard classifi-

cation benchmarks (RAMRAJ et al., 2016), competitions (NIELSEN, 2016), and real-world

applications (HE et al., 2014). Being a decision tree-based model, this method has a built-in

feature selection mechanism and can be seen as actively taking the bias-variance tradeoff into

account when fitting models. They start with a low variance, high bias model and gradually

decrease bias by reducing the size of neighborhoods where it seems most necessary. Con-

sequently, model development is significantly simplified, allowing the specialist to dedicate

more effort to improve the quality of data (NIELSEN, 2016).

2.10 Model Interpretation

Another advantage of tree-based models is their wide support for model interpretation

approaches, including feature importance analysis. A simple way of investigating feature

importance is by calculating the decrease in node impurity weighted by the probability of

reaching that node. The node probability can be calculated by the number of samples that

reach the node, divided by the total number of samples. The higher the value, the more

important the feature.

Recently, another approach to model interpretation is becoming popular: SHAP (SHap-

ley Additive exPlanations) is a game-theoretic approach proposed by Lundberg et al. to

explain the output of any machine learning model in regards to the contribution of each

feature (LUNDBERG; LEE, 2017).

2.11 Hyperparameter Optimization

Nowadays, a vast number of machine learning methods are available, ranging from tree-

based models over neural networks and ensemble models. A common characteristic of those

methods is that they can be parametrized by a set of hyperparameters which can modify cer-
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tain aspects of the learning algorithm and must be set appropriately by the user to maximize

the usefulness of the learning approach and performance (CLAESEN; MOOR, 2015).

Hyperparameter optimization was traditionally performed manually or following rules-

of-thumb (CLAESEN; MOOR, 2015). However, those approaches leave to be desired in

terms of reproducibility and are impractical in situations where the number of parameters is

large. To solve those issues, it has become necessary to develop automated approaches to

hyperparameter optimization. Currently, a variety of automated hyperparameter approaches

are available, ranging from iterating over a grid of values (BERGSTRA; BENGIO, 2012)

to probabilistic models (FEURER; HUTTER, 2019). A common baseline for hyperparam-

eter optimization is the random search, which is still reliable and competitive in a series of

applications (LI; TALWALKAR, 2020).
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3 Related Work

Due to recent technological progress, multimodality imaging has been progressively ap-

plied in clinical practice and research. Initially, multimodality imaging applications were

essentially combining anatomical and functional images to improve diagnostic accuracy or

target definition. More recently, the fusion of various images, such as CT, positron emis-

sion tomography (PET), and MRI, has become more common, making new applications

possible (VAIDYA et al., 2012; VALLIÈRES et al., 2015; GUO et al., 2019). Employing

machine learning techniques across multimodality images has shown improved results than

single modality modeling for prognostic and prediction of clinical outcomes, holding great

potential for precision medicine (WEI et al., 2019).

Vaidya et al. (VAIDYA et al., 2012) used pre-treatment PET and MRI images from 27 pa-

tients diagnosed with non-small-cell lung carcinoma (NSCLC) to evaluate post-radiotherapy

tumor progression in terms of local and loco-regional recurrence. Thirty-two handcrafted

features were extracted from both PET and MRI, including statistical descriptors of each

modality, total lesion glycolysis of PET images, intensity volume histogram (IX and VX

features), and texture features using the co-occurrence matrix. The predictive value of these

metrics was evaluated using Spearman’s rank correlation coefficient (rs) and multivariate

logistic regression. A two-parameter model using PET and MRI attributes yielded a gain of

performance of 30% for loco-regional and 7% for local failure compared to single modality

models, holding promise as an approach to allow for more individualized treatments.

Desseroit et al. (DESSEROIT et al., 2016) used features from PET and MRI images from

116 patients for developing a nomogram (a device for graphical function calculation used in

several medical fields) for stratification of patients with NSCLC stage I-III. The tumors VOI

were segmented using FLAB algorithm for PET, and 3D Slicer for MRI images, extracting

texture features from each modality. The authors discovered that the features PET entropy

and MRI zone percentage could be used to build a nomogram with a higher stratification

power than staging alone for patients with stage II and III disease.

Vallières et al. (VALLIÈRES et al., 2015) combined PET and MRI features for evalu-

ation of lung metastasis risk in soft tissue sarcomas (STS). Nine non-texture and forty-one
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texture features were extracted from the tumor region of separate (PET, T1, and T2) and

fused (PET/T1 and PET/T2) scans from 51 patients with STSs of the extremities. Image

fusion was performed using the wavelet transform, and the influence of different extrac-

tion parameters on the predictive value of textures was investigated. The model consisted

of a logistic regression classifier that used four texture features from the fused PET/T1 and

PET/T2 scans, reaching an AUC of 0.984±0.002 in bootstrapping validation. PET features

presented a higher predictive value than MRI; however, the addition of MRI information to

PET significantly improved performance.

Mu et al. (MU et al., 2018) investigated PET and MRI images for the prediction of

immunotherapy response in 64 NSCLC patients. The authors extracted 195 features from the

original images and 1,235 features from images fused with multiple methodologies. The best

model was a Support Vector Machine (SVM) classifier using 87 fused features and 13 single-

modality features, yielding an AUC of 0.82, an improvement of 0.14 in AUC compared to

only single-modality features.

Guo et al. (GUO et al., 2019) proposes an algorithmic architecture for supervised multi-

modal image analysis and categorizes feature fusion at Feature Level, Classifier Level, and

Decision-Making Level. The authors designed a deep convolutional neural network system

for image segmentation to contour lesions of STS using multimodal images of CT, MRI, and

PET. The network trained with multiple modalities presented superior performance to net-

works trained with single modal images. According to the author, performing image fusion

within the network layers is generally better than fusing the features at the network output.

Li et al. (LI et al., 2019) proposes a deep learning method to fuse multimodality informa-

tion for tumor segmentation in PET/MRI. The solution consists of a 3D fully convolutional

network to produce a probability map for MRI segmentation, followed by a fuzzy variational

model to incorporate the probability map and the PET intensity for an accurate multimodal-

ity tumor segmentation. The experimental results demonstrated that this model is suitable

for small datasets and can outperform the existing deep learning-based multimodality seg-

mentation methods, with a dice similarity index of 0.86±0.05.

Mu et al. (MU et al., 2020) proposes a multimodality PET/CT deep-learning-based

model to assist NSCLC therapy planning, by combining those modalities into a model to

detect biomarkers that can guide patients’ therapy. The developed deep learning score was
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significantly correlated with different mutations and was evaluated as a non-invasive method

for precise quantification of EGFR mutation status in NSCLC patients, which is promising

to identify NSCLC patients sensitive to certain treatments.

Studies on multimodality imaging for lung cancer assessment are relatively recent and

scarce. To the best of our knowledge, no works were developed regarding lung nodules

classification in CT/MRI sequences. Because MRI is not widely used in clinical practice

and its capacity is still being investigated, research is severely impaired by this lack of data.

Thus, our work intends to fill those gaps in the knowledge by performing an investigation

on how these image modalities can be integrated into a more precise lung cancer diagnosis

support.
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4 Material and Methods

Figure 7 presents an overview of our methods, which can be broken into Data Prepara-

tion, Radiomic Feature Extraction, and Classification. First, the dataset was consolidated,

and viable study cases were selected to compose our CT and MRI image sets (Section 4.1);

Next, CT and MRI images were registered (Section 4.2), and the nodules in each modality

were segmented (Section 4.3). Those steps were important to support our Image Fusion strat-

egy, which fused CT and MRI images and segmentation into a new set (Section 4.5). After

our data was properly prepared, we were able to extract radiomics features from individual

and fused images using the pyradiomics library (Section 4.4). These sets of data supported

our classification experiments (Section 4.6), which consisted of training XGBoost models

to classify nodules as benign or malignant, recording output such as classification metrics,

feature importances, and SHAP values to support analysis.

Data Preparation Radiomic Feature Extraction Classification

Classification 
Experiment

Experiment Outputs

Performance 
Metrics

Feature 
Importances

SHAP 
Values

CT MRI Fusion

Feature Sets

Fusion Features

MRI Features

CT Features
CT/MRI 

Concatenation 
Features

CT MRI

Cases Selection

Image Registration Nodule Segmentation

Image Fusion

Fusion Fusion Segmentation

Figure 7 – Overview of the Methods.

4.1 Source of Data

For this retrospective study, we acquired image information from lung cancer patients

observed in the Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Uni-

versidade de São Paulo (HCFMRP/USP) between October 2017 and November 2019, which
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had both CT and MRI chest images. Figure 8 shows a lung nodule as seen in CT (8a) and

MRI (8b).

(a) CT image. (b) MRI image.

Figure 8 – Lung nodule as seen in each imaging modality.

Our research started from a set of 65 patients, but after a meticulous analysis from two

experient radiologists, we discarded the cases which presented: 1) lung masses; 2) unde-

fined diagnosis; and 3) severe image artifacts in any modality. After this filter, we ended

up with images from 47 patients whose demographic information is summarized in Table

1. The hospital’s institutional research board approved this prospective study with process

number 3733/2017 and all patients’ informed consent. All exams were anonymized to ensure

patients’ privacy.

Table 1 – Demographic Information of Study Population

Gender
Male 25
Female 22

Age
Min-max 18-80
Median 58
Mean 57.95
Standard Deviation 12.77

Diagnosis
Malignant 24
Benign 23

CT imaging was acquired with a CT scanner (Philips, Brilliance CT Big Bore) and MRI

using a 1.5T device (Phillips, Achieva 1.5T). The sequences were obtained with the patients

in the supine, head-first position and using the deep inspiration breath-hold technique. The

clinical chest MRI protocol included the T1 post-contrast (T1) sequence that approximates
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post-contrast CT images with proper spatial and contrast resolution. Table 2 summarizes the

DICOM image acquisition parameters.

4.2 Image Registration

The first step before performing image fusion is the image registration, consisting of

finding the spatial transform that maps points from one image to the corresponding points

in another image (MAINTZ; VIERGEVER, 1998), in our case, CT and MRI images were

registered in two steps.

To provide an initial space alignment between the modalities, we used an automatic rigid

registration using SimpleITK library (version 2.1.1) (LOWEKAMP et al., 2013). The reg-

istration was set up to use CT as fixed image and MRI as moving image, using the Mattes

Mutual Information as an optimization metric with 50 histogram bins and a sampling rate of

1%, a linear interpolator, and a gradient descent optimizer with a learning rate of 1.0 and 400

max iterations. Those settings were chosen empirically, trying to balance registration quality

and registration running time.

This initial registration was considered satisfactory under visual inspection. However,

since the registration method is applied globally, trying to align the whole chest, the align-

ment between the nodules was often not adequate since even a slight difference in air volume

in the lungs may cause a displacement in nodule position between the images. One possible

solution is to apply elastic registration to adjust this difference, however, it could alter the

morphology of the nodule, which is one of the prime factors for diagnosis. Consequently,

we agreed to fine-tune the register performing an additional manual registration step con-

Table 2 – DICOM Image Parameters.

Image Modality

Attribute Computed Tomography Magnetic Resonance Imaging

SliceThickness 1mm 4mm
SpacingBetweenSlices 1mm 2mm
Pixel Size 0.873mm 1.607mm
Spatial Resolution 512x512 224x224
Bits per Pixel 12 12
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sisting of translations in the three axes, assisted by the 3D Slicer (version 4.11.20200930)

transforms tool and resampling using linear interpolation.

4.3 Nodule Segmentation

Next, the nodules were segmented to support radiomics features extraction. For such, we

used the semi-automatic segmentation algorithm FastGrowCut, available as a plugin for 3D

Slicer platform (ZHU et al., 2014). Figure 9 summarizes the algorithm steps, that require the

radiologist to draw seed regions of the tissues to be segmented in each anatomical plane (9a).

These labels are then propagated to classify all the voxels as either foreground or background

(9b), obtaining a segmentation mask (9c) and the nodule outline (9d).

(a) Seeds (b) Grown regions (c) Segmentation mask (d) Final result

Figure 9 – Lung nodule and the segmentation steps taken.

We applied a grayscale lung windowing to highlight the lung tissues by setting the win-

dow in 1,400 and level in -500 Hounsfield unit (HU) in the CT images. A radiologist set the

level and width values for the MRI sequences to 800 and 2,000, respectively.

4.4 Feature Extraction

The radiomics study area consists of turning medical images into high-dimensional data

for improved decision support and precision medicine by extracting a large number of hand-

crafted features from a volume of interest (VOI) (GILLIES; KINAHAN; HRICAK, 2016).

These features can capture characteristics of this region that otherwise would be challenging

or impossible to be discerned even by experienced professionals (HATT et al., 2017).

We extracted a series of radiomics features from each lesion using the open-source li-

brary pyradiomics (version 3.0.1) (GRIETHUYSEN et al., 2017). At the time of this work,
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pyradiomics supported the following feature classes: First Order Statistics; Shape-based;

Gray Level Co-occurrence Matrix (GLCM); Gray Level Run Length Matrix (GLRLM); Gray

Level Size Zone Matrix (GLSZM); Neighboring Gray-tone Difference Matrix (NGTDM);

and Gray Level Dependence Matrix (GLDM).

Shape-based features take into account the morphological characteristics of the nodule

(e.g., nodules with spiculated borders are suspicious for malignancy, while well-defined

round nodules are usually benign) (FERREIRA; OLIVEIRA; AZEVEDO-MARQUES,

2018). First-order statistics describe the gray-level frequency distribution within the region

of interest, which can be obtained from the histogram of pixel intensities. The remain-

ing features contain texture information, taking into account local intensity-spatial distribu-

tion. Those features’ performances are not affected by tumor position, orientation, size, and

brightness (WEI et al., 2019). After the extraction, we obtained a set of 120 features for

each lesion in each imaging modality, divided into 19 first order statistics, 14 shape-based,

24 GLCM, 16 GLRLM, 16 GLSZM, 5 NGTDM, and 14 GLDM features.

4.5 Multimodality Strategies

As for our fusion strategies, we evaluated two distinct approaches, which differ in relation

to the moment into the pipeline in which the information is combined.

CT/MRI Concatenation Approach

The first approach consists of concatenating the radiomics features obtained in each

modality before feeding them to the model. This approach may be classified as classifier-

level fusion in the classification proposed by Guo et al. (GUO et al., 2019). This feature set

contains 240 radiomics features.

Image Fusion Approach

This approach consists of combining two modalities into a new image. For such, we

calculated the average pixel-wise intensity value through the scans (TIRUPAL; MOHAN;

KUMAR, 2020). This approach may be classified as feature-level fusion in the classification
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proposed by Guo et al. (GUO et al., 2019). To define the segmentation to be used for

feature extraction in the fused image, we calculated the intersection of the segmentations in

each modality, because this area is guaranteed to contain information of the nodule in both

modalities, as Figure 10 shows. In the end, this feature set contains 120 radiomic features.

(a) CT (b) MRI (c) Fused image

Figure 10 – Lung and its segmentation in each modality and fused image.

4.6 Classification

To evaluate the predictive performance of each set of radiomics features, we performed

an experiment consisting of a machine learning pipeline composed of hyperparameter op-

timization and classification for each dataset. Each experiment was performed 30 times to

obtain the mean and deviation in performance for each metric. Models’ parameters, metrics,

and outputs were tracked with the aid of MLFlow platform (ZAHARIA et al., 2018).

Classifier

To perform the nodules classification, we used the XGBoost classifier (CHEN;

GUESTRIN, 2016). XGBoost is a tree boosting system widely used to achieve state-of-

the-art results for many machine learning challenges. Although deep learning models, such

as convolutional neural networks and deep belief networks, are state of the art in lung nod-

ule classification, the size of our dataset is insufficient to take advantage of those models

(PAREKH; JACOBS, 2019). In this case, models such as XGBoost are more suitable for

addressing the problem of classification in the context of smaller tabular datasets, with the

advantage of allowing the radiologist to interpret the role of each feature in the classifier’s

output (GILLIES; KINAHAN; HRICAK, 2016).
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Hyperparameter Optimization

For this work, we performed hyperparameter optimization using a randomized search

approach using the area under the receiver AUC as the optimization metric and performing

50 iterations in each trial (CLAESEN; MOOR, 2015). The search space explored is shown

in Table 3.

Table 3 – Hyperparameter Optimization Search Spacee

Parameter Search Space

Number of estimators [200, 1000]
Learning rate [0.2, 0.6]
Max depth {3, 4, 5, 6, 7, 8, 9}
Subsample ratio of the training instances {0.6, 0.8, 1.0}
Subsample ratio of columns {0.6, 0.8, 1.0}

Metrics and Evaluation

As our pipeline includes hyperparameter optimization, it is necessary to perform a ro-

bust validation to ensure no data leakage occurs between our train and test folds, leading

to unreliable results due to overfitting. Thus, we performed validation using a stratified

5-fold nested cross-validation (CAWLEY; TALBOT, 2010), performing the optimizations

mentioned above only on the train folds. To assess model performance, we measured a set

of metrics well-established in CADx systems design: AUC, sensitivity (Equation 3), and

specificity (Equation 4), as well as accuracy (Equation 3) and precision (Equation 3), where

TP is the number of correctly classified positive instances; TN is the number of correctly

classified negative instances; FP is the number of incorrectly classified positive instances;

and FN is the number of incorrectly classified negative instances (FAWCETT, 2006). AUC

was chosen as optimization and is our main metric for comparing models.

sensitivity =
TP

TP + FN
(3)

specificity =
TP

TN + FP
(4)
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accuracy =
TP + TN

TP + FN + FP + FN
(5)

precision =
TP

TP + FP
(6)

To assess the statistical significance of the classifiers’ performance difference across dif-

ferent sets of data, we performed a Wilcoxon signed-rank test (W-test) at a significance level

of 5% (DEMŠAR, 2006).

Finally, to allow for interpretation of features’ contribution in the results, we recorded

the models’ feature importance and SHAP values for each trial, as well as its average results

across the experiments in each modality.



25

5 Results and Discussion

5.1 Classification performance

Table 4 summarizes the classification results, with the average performance and standard

deviation for each metric across the experiment trials. The best overall AUC performance

was obtained by the Image Fusion approach, with an average value of 0.794, against 0.755

obtained on the Computed Tomography, and 0.770 for both MRI and CT/MRI Concatena-

tion feature sets. The difference in AUC performance was significant against CT (p-value:

4.63e−4), MRI (1.79e−2), and CT/MRI Concatenation (6.40e−3).

Models based on the Image Fusion approach also have shown superior performance in

terms of sensitivity, with an average value of 0.741, versus 0.658 in CT, 0.722 in MRI,

and 0.706 in CT/MRI Concatenation. In this metric, the difference was verified significant

against CT (5.46e − 04) and CT/MRI Concatenation (9.16e − 03). However, we could not

reject the null hypothesis for MRI (7.46e − 02). Similarly, the advantage in accuracy, with

a value of 0.694, versus 0.668 in CT and CT/MRI Concatenation, and 0.684 in MRI, was

significant against CT (1.50e − 02), CT/MRI Concatenation (1.26e − 02), but not for MRI

(2.80e− 01).

Because AUC was our metric of choice, the Image Fusion approach has been shown as

the best alternative. In CADx research, a good sensitivity is often desirable, as it reflects the

positive prediction power, and this approach has also shown performant in regards to this

metric. Nevertheless, the performance of the MRI-based models is remarkable, as we could

not find significant differences against the Image Fusion-based models in some classification

metrics.

Table 4 – Average and standard deviation in performance for each feature set.

Feature set AUC Sensitivity Specificity Accuracy Precision

Computed Tomography 0.755±0.036 0.658±0.080 0.681±0.065 0.668±0.045 0.709±0.054
Magnetic Resonance Imaging 0.770±0.052 0.722±0.056 0.646±0.084 0.684±0.049 0.698±0.062

CT/MRI Concatenation 0.770±0.048 0.706±0.070 0.631±0.056 0.668±0.039 0.686±0.044
Image Fusion 0.794±0.036 0.741±0.073 0.648±0.061 0.694±0.044 0.707±0.051
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Our second multimodality approach, the CT/MRI Concatenation, has not presented im-

provement over the single modalities. In fact, the average AUC value of 0.770 was the same

as seen in MRI models, while every other metric value is slightly smaller than its MRI coun-

terparts. This is most likely a manifestation of the curse of dimensionality: as the number of

features increases, different issues with the data may emerge, requiring a more robust feature

selection strategy (ALTMAN; KRZYWINSKI, 2018). Furthermore, this is in accordance

with Wei et al., who argue that the direct combination of features extracted separately might

not make full use of the underlying biological correlation (WEI et al., 2019).

Finally, the single modalities feature sets contain an interesting finding, as MRI-based

models have shown a superior AUC of 0.770, when compared to CT, with 0.755, and this

difference was shown significant by our hypothesis test (p-value: 3.60e− 02). A similar fact

occurred with sensitivity, with 0.722 in MRI versus 0.658 in CT (6.06e− 03). However, the

difference in accuracy, with 0.684 for MRI and 0.668 for CT is not clear (6.53e−02); and CT

even has the advantage in specificity: with 0.681 versus 0.646 in CT and a significant differ-

ence (2.50e−02), although models can be fine-tuned to favor sensitivity or specificity. These

results are significant because CT is the standard modality for lung nodule classification and

throws the spotlight on MRI as a viable imaging modality for chest disease management.

5.2 Radiomic Features

Computed Tomography

Figure 11 shows the top 15 features in terms of average importance for the CT-based

models. The most important feature was Variance, a first-order feature that measures the

spread of gray level values about the mean. Other first-order features in relatively high

positions on the ranking are 10Percentile, Energy, and Mean.

Next, we have GLCM features, such as ClusterProminence and Maximal Correlation

Coefficient (MCC) figuring high in the list, as well as Autocorrelation, ClusterShade, and

MaximumProbability with a lesser importance. GLCM features characterize the texture of

an image, and those results are an indicative that the intratumoral environment in CT images

contains important information to define a nodules’ malignancy.
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Figure 11 – CT Radiomic Feature Importances

Shape-based features also appear frequently, reflecting nodules’ morphology, namely

Elongation, Maximum2DDiameterSlice, Sphericity, and LeastAxisLength; as well as its di-

mension with MeshVolume.

Figure 12 presents the average SHAP values for the 10 which had the most impact on

models’ output. Each point is a sample, and its color represents the feature value in a scale

from blue (lower values) to red (higher values). The x-axis is the SHAP value; higher positive

values contributed more to a positive outcome (malignant nodule), and higher negatives to a

negative outcome (benign).
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Figure 12 – CT Radiomic Features SHAP values

The features in this list roughly reflect the most important features in the previous anal-

ysis. First-order features such as Variance have a clear pattern, with lower variance val-
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ues contributing to positive outputs, while the opposite happens with Energy. Looking into

shape-based features, higher values of Elongation, which reflects less sphere-like nodules,

contributed to positive outputs; also, lower MeshVolume (smaller nodules) contributed to

negative outputs. Those characteristics are well-known indicatives of a lung nodules’ malig-

nancy and are contained in the Fleischner Society guidelines (MACMAHON et al., 2017).

Texture features such as GLCM, GLDM, and GLSZM also have a considerable impact on

models’ output. LargeAreaEmphasis (less coarse texture) contributed to positive outcomes,

and higher Inverse Difference (ID) (more uniform gray levels), also contributed to positive

outcomes. Those features may account for ground-glass or part-solid nodules, which are

more often malignant and have hazy textures in CT (MACMAHON et al., 2017).

Magnetic Resonance Imaging

Figure 13 presents the 15 most important features for MRI-based models.
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Figure 13 – MRI Radiomic Feature Importances

A noticeable difference to CT is the presence of a GLSZM feature, namely ZoneEntropy

figuring first in the ranking. This feature measures the uncertainty in the distribution of gray

level zones sizes within the ROI, with higher values indicating more heterogeneity in the tex-

ture patterns. Next, shape-based features figure in the ranking with considerable importance.

The most important seem to be related to the roundness of the nodule, for instance, Flatness,

Sphericity, Elongation and SurfaceVolumeRatio measures, among other aspects, if a nodule
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is more or less sphere-like. The remaining shape-based features account for nodules’ size

characteristics, such as Maximum3DDiameter, MajorAxisLength, and LeastAxisLength.

GLCM features also figure in the ranking, albeit in smaller degree when compared to

CT, accounting for the homogeneity (ID) and complexity (Imc2, MCC, Correlation) of the

nodule. Finally, another difference compared to CT is the relative absence of first-order

features in the ranking. An inherent limitation of MRI is that its images have arbitrary

intensity units, i.e., the images’ gray levels have no physiological meaning, as opposed to

the CT HU scale, making image quantification with histogram-based features ineffective.

Those features were likely left out by the models’ for this reason.

Figure 5b summarises the SHAP values for the MRI samples.
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Figure 14 – MRI Radiomic Feature SHAP Values

Here, most features are also figured in the importance list. Like in CT, shape-based fea-

tures that reflects on the nodules’ dimension, namely SurfaceVolumeRatio and MeshVolume

have significant contribution to the model output, as well as features that measure nodules’

roundness, such as Sphericity and Elongation. ZoneEntropy, which was the most impor-

tant in the previous analysis also figure here, with more complex textures contributing to

positive outputs, and vice versa. Other texture features, such as Imc2, Correlation, and Max-

imumProbability, have significant contributions to model output.

CT/MRI Feature Concatenation

Figure 15 shows the 15 most important features for the CT/MRI Concatenation-based

models, and the modality that each feature belongs.
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Figure 15 – CT/MRI Concatenation Radiomic Feature Importances

The list is a mixture of CT and MRI’s most important features. Roughly speaking, CT

contributed with first-order and GLCM features, while MRI contributed with a series of

shape-based features. However, as seen in Section 5.1, this combination was not enough to

leverage gains in performance.

Figure 16 summarises the average SHAP values for the CT/MRI Concatenation sam-

ples, also showing a mixture of CT and MRI’s individually most important features, and its

interpretation is mostly a throwback to the individual modalities.
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Figure 16 – CT/MRI Concatenation Radiomic Feature SHAP Values
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Image Fusion

Figure 17 shows the 15 most important features in terms of average importance for the

Image Fusion-based models.
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Figure 17 – CT/MRI Fusion Radiomic Feature Importances

The features that figure in the importance ranking are different from the ones seen pre-

viously. Correlation has not figured in CT and MRI importances, and measures whether the

intensity values are correlated with the voxels, reflecting intensity patterns in the perinodu-

lar and intranodular regions. Other texture features are Contrast and DifferenceVariance,

which are different measures of texture complexity. Lastly, two GLDM features also figure

in the list: DependenceNonUniformityNormalized and DependenceVariance, accounting for

texture homogeneity. This suggests that the fused image possesses texture characteristics

that are distinct from CT and MRI. First-order features also figure in high positions of the

list, namely 10Percentile and Minimum, which did not appear in the individual CT and MRI

modalities and likely emerged from the Image Fusion strategy.

Finally, some well-known shape-based features are also there, accounting for nodules’

size (Maximum2DDiameterSlice, Maximum3DDiameter, LeastAxisLength) and roundness

(Elongation and Sphericity), therefore, it is reasonable to think that the strategy for combin-

ing the distinct segmentations is still able to reflect those characteristics.

Figure 18 shows the average SHAP values for the CT/MRI Concatenation samples.

The SHAP values roughly mirror feature importances. Correlation figures first in the

list, with an apparent large separation between lower and higher values leading to negative
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Figure 18 – CT/MRI Fusion Radiomic Feature SHAP Values

and positive outputs, including a higher weight to the negative ones, as the absolute values

of negative SHAP values are larger than its positive counterparts. This also happens on some

level to the Minimum feature.

The behavior of shape-based features recall what was seen previously, with values in-

dicating rounder nodules’ (SurfaceVolumeRatio, Sphericity) leading to negative outputs, al-

though Elongation does not presents a clear pattern; and Maximum2DDiameterSlice linking

smaller nodules to negative outputs. Similarly, texture features related to nodules’ texture

homogeneity (SizeZoneNonUniformityNormalized and LargeAreaHighGrayLevelEmphasis)

and coarseness (DependenceEntropy and LongRunLowGrayLevelEmphasis) also have sig-

nificant contribution to positive and negative outputs.

Analyzing the importance of each individual feature in the construction of the models and

their contribution in classifying a sample as benign or malignant, some particularities were

noticed: CT-based models had a significant number of first-order features, which may be a

result of the physiological information measured in Hounsfield Units, while this category

of features barely appeared in the MRI lists. Furthermore, both modalities relied on texture

information, mainly related to texture complexity and/or homogeneity, in specific GLCM

features, suggesting that the intratumoral environment is a strong indicator of a nodules’

malignancy. Finally, shape-based features are also figured in both modalities, in accordance

with lung cancer management guidelines which use a nodules’ size and roundness as a pa-

rameter to deciding the next steps in patients’ treatment.

In regards to the multimodality approaches, we noticed that in the feature concatenation
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approach, CT and MRI features appeared mixed in the rankings, but as mentioned previously,

this combination was not enough to yield any gains in AUC performance, although it also

did not affect this metric negatively. On the image fusion approach, it was apparent that

from the image fusion, new metrics emerged as relevant to the models’ output, in first-order

and texture features, in addition to the always present shape-based features that measure a

nodules’ size and roundness.
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6 Conclusion

This study aimed to evaluate whether using radiomics features from combined CT and

MRI scans can increase classification performance when compared to the individual modal-

ities. Overall, we found that a simple pixel-wise average image fusion is enough to provide

significant gains in most classification metrics compared to the best performant single modal-

ities models. On the other hand, merely concatenating the features into a larger dataset has

shown to be a poor strategy for dealing with multimodality data, as we did not see an increase

in performance in comparison to the best single modality models. This observation may be

indicative of the importance of the strategy according to which features are combined.

As a secondary result, we noticed that MRI-based models exhibited an advantage over

CT-based ones. This improvement is exciting because using MRI for lung cancer man-

agement can mitigate issues such as radiation exposure and adverse reactions to contrast

materials commonly used in CT.

Finally, our research does not come without limitations. First, we recognize that our

data size is limited in size, thus, certain aspects of this single study may not be generalized,

although our observations are in line with similar research on the field. Second, we barely

scratched the surface of multimodality fusion, as the number of strategies to which those

modalities can be combined is virtually infinite. Third, a more in-depth analysis of features’

importance on model development could be conducted, in particular with the participation

of radiologists.

As future works, we intend to take this work further through the following roadmap:

1) increase the study population by retrieving more recent exams that are compatible with

our dataset; 2) adding other MRI sequences, such as T2; 3) evaluating more image fusion

strategies, such as wavelet and deep learning-based ones; 4) perform a more in-depth analysis

of the nodules’ relevant characteristics to the models’ output.
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APPENDIX A – Radiomic Features

First Order Features

1. Energy

2. Total Energy

3. Entropy

4. Minimum

5. 10th percentile

6. 90th percentile

7. Maximum

8. Mean

9. Median

10. Interquartile Range

11. Range

12. Mean Absolute Deviation (MAD)

13. Robust Mean Absolute Deviation (rMAD)

14. Root Mean Squared (RMS)

15. Standard Deviation

16. Skewness
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Shape-based (3D)

1. Mesh Volume

2. Voxel Volume

3. Surface Area

4. Surface Area to Volume Ratio

5. Sphericity

6. Compactness 1

7. Compactness 2

8. Spherical Disproportion

9. Maximum 3D diameter

10. Maximum 2D diameter (Slice)

11. Maximum 2D diameter (Column)

12. Maximum 2D diameter (Row)

13. Major Axis Length

14. Minor Axis Length

15. Least Axis Length

16. Elongation

17. Flatness

Shape-based (2D)

1. Mesh Surface

2. Pixel Surface
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3. Perimeter

4. Perimeter to Surface ratio

5. Sphericity

6. Spherical Disproportion

7. Maximum 2D diameter

8. Major Axis Length

9. Minor Axis Length

10. Elongation

Gray Level Cooccurence Matrix (GLCM) Features

1. Autocorrelation

2. Joint Average

3. Cluster Prominence

4. Cluster Shade

5. Cluster Tendency

6. Contrast

7. Correlation

8. Difference Average

9. Difference Entropy

10. Difference Variance

11. Joint Energy

12. Joint Entropy
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13. Informational Measure of Correlation (IMC) 1

14. Informational Measure of Correlation (IMC) 2

15. Inverse Difference Moment (IDM)

16. Maximal Correlation Coefficient (MCC)

17. Inverse Difference Moment Normalized (IDMN)

18. Inverse Difference (ID)

19. Inverse Difference Normalized (IDN)

20. Inverse Variance

21. Maximum Probability

22. Sum Average

23. Sum Entropy

24. Sum of Squares

Gray Level Size Zone Matrix (GLSZM) Features

1. Short Run Emphasis (SRE)

2. Long Run Emphasis (LRE)

3. Gray Level Non-Uniformity (GLN)

4. Gray Level Non-Uniformity Normalized (GLNN)

5. Run Length Non-Uniformity (RLN)

6. Run Length Non-Uniformity Normalized (RLNN)

7. Run Percentage (RP)

8. Gray Level Variance (GLV)
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9. Run Variance (RV)

10. Run Entropy (RE)

11. Low Gray Level Run Emphasis (LGLRE)

12. High Gray Level Run Emphasis (HGLRE)

13. Short Run Low Gray Level Emphasis (SRLGLE)

14. Short Run High Gray Level Emphasis (SRHGLE)

15. Long Run Low Gray Level Emphasis (LRLGLE)

16. Long Run High Gray Level Emphasis (LRHGLE)

Gray Level Run Length Matrix (GLRLM) Features

1. Short Run Emphasis (SRE)

2. Long Run Emphasis (LRE)

3. Gray Level Non-Uniformity (GLN)

4. Gray Level Non-Uniformity Normalized (GLNN)

5. Run Length Non-Uniformity (RLN)

6. Run Length Non-Uniformity Normalized (RLNN)

7. Run Percentage (RP)

8. Gray Level Variance (GLV)

9. Run Variance (RV)

10. Run Entropy (RE)

11. Low Gray Level Run Emphasis (LGLRE)

12. High Gray Level Run Emphasis (HGLRE)
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13. Short Run Low Gray Level Emphasis (SRLGLE)

14. Short Run High Gray Level Emphasis (SRHGLE)

15. Long Run Low Gray Level Emphasis (LRLGLE)

16. Long Run High Gray Level Emphasis (LRHGLE)

Neighbouring Gray Tone Difference Matrix (NGTDM) Fea-

tures

1. Coarseness

2. Contrast

3. Busyness

4. Complexity

5. Strength

Gray Level Dependence Matrix (GLDM) Features

1. Small Dependence Emphasis (SDE)

2. Large Dependence Emphasis (LDE)

3. Gray Level Non-Uniformity (GLN)

4. Dependence Non-Uniformity (DN)

5. Dependence Non-Uniformity Normalized (DNN)

6. Gray Level Variance (GLV)

7. Dependence Variance (DV)

8. Dependence Entropy (DE)
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9. Low Gray Level Emphasis (LGLE)

10. High Gray Level Emphasis (HGLE)

11. Small Dependence Low Gray Level Emphasis (SDLGLE)

12. Small Dependence High Gray Level Emphasis (SDHGLE)

13. Large Dependence Low Gray Level Emphasis (LDLGLE)

14. Large Dependence High Gray Level Emphasis (LDHGLE)


