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Resumo

O número crescente de dispositivos conectados à Internet tem exigido avanços em tecnologias

de comunicação sem fio. A rede 4G e suas antecessoras estão sendo gradativamente substi-

tuídas pela 5G, que promete maior velocidade, heterogeneidade e escalabilidade. A 5ª geração

oferece suporte amplo para aplicações de redes definidas por software, aumentando a flexi-

bilidade para modelagem de processos e protocolos que antes eram embarcados e de difícil

atualização.

Este trabalho tem como objetivo melhorar processos em redes móveis através de modelos

matemáticos, que podem impactar mobilidade, balanceamento de carga na rede e redução

de custos operacionais. Nossa proposta visa a alocação de usuários em torres ou estações

bases de redes de telecomunicação, minimizando handovers e melhorando a qualidade de

comunicação.

O trabalho oferece as seguintes contribuições: i) Um modelo matemático para alocação de

usuários em estações bases de redes de telefonia móvel, com a redução de transferências;

ii) Uma solução meta-heurística como alternativa a modelos exatos, visto que estes podem

se tornar inviáveis em condições de restrição de recursos de tempo e computacionais; iii) A

avaliação dos modelos em cenários simulados de mobilidade, avaliando o processo de handover

e a distribuição de usuários na rede em função de largura de banda disponível.

A modelagem, que considera a frequência média de handover de cada estação base e o

sinal indicador de qualidade de comunicação, foi avaliada com soluções exatas e heurísticas,

sendo estas o algoritmo de branch and bound, busca local iterativa, e solução gulosa. Através

dos métodos heurísticos o algoritmo de busca local iterativa obteve uma redução de aproxi-

madamente 82% do tempo de execução em comparação ao algoritmo exato branch and bound.

Com relação ao indicador de qualidade de conexão, a solução obteve um ganho médio de 1.45%

em comparação à solução da literatura, mantendo o número handovers. Apesar do ganho re-

duzido, o que torna nossa proposta estatisticamente equivalente, oferecemos a vantagem de

não computar todas possíveis e futuras rotas dos usuários, sendo suficiente a posição atual.

Adicionalmente, nossa solução considera a capacidade de largura de banda de cada estação

base, respeitando a capacidade de rede e mantendo o controle de alocação.

Palavras-chave: Redes Móveis, Alocação, Otimização, Handover.
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Abstract

The growing number of devices connected to the Internet has required advances in wireless

communication technologies. As a result, 5G networks gradually replace 4G and its predeces-

sors, offering more speed, heterogeneity, and scalability. The fifth-generation provides broad

support for software-defined networking (SDN) applications, increasing the programming flexi-

bility of processes and protocols previously embedded and difficult to update.

This work aims to improve processes in mobile networks through mathematical models. Our

work focuses on optimizing the allocation of users in base stations of telecommunication net-

works, minimizing the handover of users between base stations, and improving network commu-

nication quality.

The contributions of this work are: i) A mathematical model for allocating users of mobile

networks at base stations, also aiming handover reduction; ii) A metaheuristic solution as an al-

ternative to exact models since exact models can prove to be non-scalable and present unfeasi-

ble solving times under computationally restricted conditions; iii) A model evaluation in simulated

mobility scenarios considering the handover process and the network user distribution according

to available bandwidth.

Our allocation model considers the average handover frequency of each base station and

the Reference Signal Received Quality (RSRQ) indicator between users and base stations. The

model evaluation used exact and heuristic methods: the branch and bound algorithm, iterated

local search, and a greedy solution. On average, the iterated local search algorithm obtained

an execution time reduction of approximately 82% compared to the branch and bound exact al-

gorithm. Regarding the RSRQ indicator, the solution reached a 1.45% average gain, and the

number of performed handovers was maintained, compared to a similar literature model. De-

spite the modest improvement, which makes our proposal statistically equivalent to the literature

model, we offer the advantage of not predicting the users’ possible and future routes. Only the

current position is required. Furthermore, our solution also considers base stations’ bandwidth

capacity, controlling the allocation and network occupation limits.

Keywords: Mobile Networks, Allocation, Optimization, Handover.
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1
INTRODUCTION

The evolution of communication technologies has significantly impacted protocols and data

transfer solutions. With the arrival of the Internet of Things (IoT) (Al-Fuqaha et al., 2015)

paradigm, devices are becoming more integrated, and Wireless Networks (Akyildiz et al., 2002)

are showing to be essential resources. Through devices such as smartphones, users can com-

municate from practically anywhere, make use of location services, and exchange information

with technologies such as Wi-Fi, Bluetooth, 3G, 4G, and the most recent 5G (Panwar et al.,

2016). The fifth-generation promises more incredible speeds, ubiquitous connection, support to

denser, heterogeneous, and scalable networks. Among the fundamentals pillars of 5G networks,

we highlight:

• Uninterrupted and ubiquitous connection: Users will able to connect from anywhere at

any time;

• Zero-latency: Granted support to real-time applications, critical systems, and services

with low tolerance to network delay;

• High-speed connections: Support to applications that rely on virtually zero latency. The

connection speed will be in the order of Gigabit per second.

The new scenario offers the opportunity for innovation, improvement of existing solutions, and

the use of new computational paradigms, such as Software-Defined Networking (SDN) (Nunes

et al., 2014), which allows flexible programming and management of resources such as scala-

bility, privacy, security, traffic control, and allocation. In the current state of mobile wireless net-

works, the 5G technology will demand applications to be faster, more efficient, heterogeneous,

and scalable.

Existing solutions will require improvement or rethinking to a zero-latency context. The han-

dover process is one of the many problems that we can approach and propose several improve-

ments. Figure 1.1 shows a handover process (Yan et al., 2010). It occurs when a user con-

nected to some device (UE — User Equipment) changes its base station (here represented by

1



INTRODUCTION 2

the evolved Node B — eNB). This process can affect mobility, connection discontinuity percep-

tion, and commutation between different wireless communication technologies such as Wi-Fi,

4G, or Bluetooth. Therefore, handovers need to occur imperceptibly, within short time intervals,

and in areas that do not negatively affect mobility and connectivity experience.

MOVEMENT

eNB1

UE

Coverage Area 1 Coverage Area 2

eNB2

Figure 1.1: Handover of UE from eNB1 within coverage area 1 to eNB2 in the coverage area 2.

Our work is motivated by the current state of mobile networks, which is transitioning to a

technology (5G) with a growing adoption of optimization models run through SDN applications,

which consider a logically centralized controller to execute models that dynamically optimize,

manage, and improve network features such as mobility and load distribution.

Using mathematical models, we aim to optimize the handover and allocation of users in base

stations of telecommunication networks. As a starting point, our proposal extends a model that

minimizes both handovers between base stations and the communication cost between base

stations and data centers (Taleb et al., 2015). The authors did not consider the direct relation

user-base station, so we extended their model by proposing an optimization solution to allocate

users. We later compare our proposal to a similar literature model (Ahmadi et al., 2020). We do

not evaluate our solution in wireless SDN controllers, but it is appliable in this context.

The resulting allocation model first considered the average handover frequency of each base

station and their distance from users. However, since we deal with wireless communication, the

distance parameter can be non-responsive to noise and environment interference. We updated

the allocation model by replacing the distance parameter with the RSRQ (Reference Signal Re-

ceived Quality), which indicates the quality of communication between users and base stations.

We evaluate the allocation models in two simulated mobility scenarios. The first considers

a 13.7 km route at Maceió City, Brazil, with eNBs artificially placed. The distance-based model

computes the distance and allocates the user in base stations according to the latitude and

longitude of GPS (Global Positioning System) collected data. In the second scenario, we use

a heuristic approach to solve the model instead of an exact algorithm, and modify the model to

consider the RSRQ indicator instead of distance. We use a map region of the city of São Paulo,

Brazil. The map region has the real position of 26 eNBs from a local phone carrier, provided by
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Telebrasil (2021), and we simulate the user routes with the SUMO (Simulation of Urban MObility)

simulator (Krajzewicz et al., 2012).

In our final evaluations, on average, the iterated local search algorithm obtained an execution

time reduction of approximately 82% compared to the branch and bound exact algorithm. Com-

paring results with Ahmadi et al. (2020) in the second scenario, the RSRQ indicator reached a

1.45% average gain, and the models performed the same number of handovers.

We found in the literature several related works about the topic of this work. For instance,

Kuklinski et al. (2015) present a discussion on how to apply technologies such as SDN to in-

crease the efficiency of mobile networks. They consider the handover process according to 3

architectures: i) centralized : uses one controller; ii) semi-centralized : multiple controllers acting

on different domains or geographic regions; iii) hierarchical : multiple layers and a master con-

troller on the top of the hierarchy that communicates with other controllers on the lower levels.

Prados-Garzon et al. (2016) propose a handover implementation for a partially virtualized

LTE (Long Term Evolution) networks. The authors implemented the process’s message ex-

change, simulated the transmission delays, propagation, network processing, and handover fi-

nalization.

Lee and Yoo (2017) present a 5G handover scheme considering users’ mobility information.

The controller receives mobility data and base station information to select in which cell to allo-

cate the users. They observed that the proposal could select the cells that offer greater signal

strength and fit the user’s movement direction through simulation.

Qiang et al. (2016) discuss a solution to a handover multi-objective problem for hybrid 5G

environments. The authors consider maximizing the data receiving rate and minimizing the

probability of handover process failure. The probability is calculated based on other users of the

network and limited information (due to privacy restrictions). In a previous work (Qiang et al.,

2014), a controller executes this process using private information.

Duan and Wang (2015) proposal focuses on privacy and authentication tools for 5G SDN

heterogeneous networks handover processes. Authentication uses attributes such as location,

direction, and features of the physical network layer to generate unique identifiers. Cryptography

is not required, thus simplifying the authentication process.

This work will mainly contribute with the following aspects:

• Proposition of a mathematical allocation model to allocate users in base stations of mobile

networks;

• Proposition and evaluation of heuristic solving methods to the allocation model as an al-

ternative to exact solving approaches;

• Evaluation of allocation on different mobility simulations, one of which considers the real

position of base stations from a local mobile carrier;

• A evaluation and comparison of our model with existing literature work.
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Additionally, some results of our proposal have already been published and are available

(Ramos et al., 2019b,a).

The remainder of this work is structured as follows: Chapter 2 presents general concepts

on mobile networks, handover and optimization. Chapter 3 shows the proposal, which contains

description of our allocation models, mainly the distance-based model, the RSRQ allocation

model, and the heuristic solution. Next, Chapter 4 discusses the results. Finally, Chapter 5

presents the final considerations and future work.

This chapter briefly introduced relevant topics such as mobile networks and what is the

handover process. We also discussed objectives, related literature, and contributions

of this work.



2
TECHNOLOGIES AND CONCEPTS

This chapter presents the concepts and technologies related to our work. In Section 2.1, we

will discuss wireless technologies such as 5G and its predecessors. Section 2.2 presents an

overview of handover processes. We end the chapter with Section 2.3 discussing optimization,

mainly the algorithms and methods which contribute to the understanding of our proposal.

2.1 Mobile networks

The number of connected devices is increasing, and due to the aggressive volume of data, we

also observed the surging of new computational paradigms, such as Cloud Computing (Mell and

Grance, 2010) and Big Data (Chen et al., 2014), to redesign data storage and analysis. Wireless

communication technologies, which also should support applications in this new panorama, have

found themselves in a hostile scenario against dense, heterogeneous, and high connectivity

demands.

In such a scenario, the 5th-generation introduces itself to mobile communication. The 5G

networks will allow the deployment of computational paradigms that will help the expansion of

information and communication technologies, which are very important for Smart Cities (Mo-

hanty et al., 2016). If compared to the 4th-generation, we can list the following improvements:

100 times more connected devices; 1000 times more data volume from connected devices; 100

times faster; 1-millisecond latency; almost 100% coverage; information processing in real-time

and reduced energy consumption (GSMA Intelligence, 2014). In addition, the fifth generation is

coming to significantly reduce operational infrastructure costs by offering ubiquitous connection,

scalability, heterogeneity, and software solutions.

Table 2.1 shows a comparison of the five generations of mobile technologies. 1G mostly of-

fered voice communication support through analog signals. Handover solutions were precarious

and horizontal, which means transfers between access points did not happen between different

5



TECHNOLOGIES AND CONCEPTS 6

communication technologies (e.g., 1G and 2G). Besides slow speed, the first generation had se-

vere security problems because of the reproduction of conversations in the base stations, which

made them susceptible to external access (Vora, 2015). 2G technology surpassed the previ-

ous generation’s speed, adopted digital signals, images, and text messages. Its obsolescence

became apparent as the Internet and the dissemination of multimedia data gained popularity,

starting the 3G era.

Table 2.1: Comparative of the different generations of wireless communication technology.
Generation Features Speed Latency (ms) Handover Limitations

1G Analog signals, voice message < 2.4 Kbps - Horizontal Low security
2G Digital signal, voice messaging, text e images < 64 Kbps < 1000 Horizontal weak support to Internet service

3G
Voice message,

Access to home and mobile Internet,
Video calls

< 3.1 Mbps < 500
Horizontal

and Vertical
Slow speed

4G Greater speed connection < 300 Mbps < 100
Horizontal

and Vertical
Low scalability and connectivity,

support to dense networks

5G
Ubiquitous connection and high speed,

scalability, heterogeneous
> 1 Gbps < 1

Horizontal
and Vertical

-

In the 3G era, the connections’ speed reached the megabit per second order, and the Internet

gained access through cell phones. As a result, multimedia streaming services increased signifi-

cantly. Besides the horizontal approach, we found a new vertical architecture regarding handover

processes, which allowed transfers between different wireless communication technologies (e.

g. 3G to 2G). The following demands incurred on the network’s speed, which resulted in the de-

velopment of the 4G. Since then, the fourth generation became the main access option, reaching

theoretical speeds of 300 Mpbs.

According to CISCO’s annual internet report (CISCO, 2020) shown in Figure 2.1(a), the

number of 4G network users will surpass the previous generation after 2019. The projection

estimates that the fourth generation will correspond to 46.0% of connections by the year 2023.

The figure also includes LPWA connections (Low-Power Wide-Area), essential in M2M commu-

nication (Machine-to-Machine).

B
ill

io
ns

 o
f D

ev
ic

es
or

 C
on

ne
ct

io
ns

(a) Global mobile device and connection growth.

B
ill

io
ns

 o
f M

ob
ile

Su
bs

cr
ib

er
s

(b) Global mobile subscriber growth.

Figure 2.1: Global projection for the number of devices and connections according to network
type and for the global number of mobile subscribers. Adapted from (CISCO, 2020).

Figure 2.1(b) shows the growth and projection of mobile subscribers between 2018 and 2023
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with a 2% CAGR (Compound Annual Growth Rate). These increasing numbers put pressure on

the infrastructure of 4G networks, already being replaced by the upcoming technology, which is

5G.

Compared with its predecessor, the fifth generation is not simply a speed increase. It is

a redefinition in applications, efficient use of resources, models, and architectures to support

data loads and various devices with different radio communication technologies. It will support

heterogeneous frameworks with software-defined networks, D2D (Device-to-Device), and full-

duplex radio communication (Panwar et al., 2016). Figure 2.2 illustrates an example of the

plurality that 5G network architectures can achieve. This figure also represents a multi-layered

architecture.

Vehicular
Network

D2D
Communication

Mobile
Cell

Home
SBSMBS

Direct
Communication

Hospital
SBS

Industry
SBS

MACRO CELL

Figure 2.2: 5G network architecture composed of a macro cell, which contains stationary and
mobile small cells, direct and D2D communication.

In this architecture, a macro cell with an MBS (Macro Base Station) in the upper layer re-

ceives requests from the lower layers, divided into small cells containing SBS (Small Base Sta-

tions) for different application profiles. For example, in a small mobile cell, its occupants can

access the external network through an SBS attached to the bus, which communicates with the

MBS of the macrocell. In addition, mobile devices such as smartphones can communicate di-

rectly with the MBS or create small dynamic D2D communication cells, in which only some of

these devices connect to the MBS while the others transmit requests and responses.

SBS can be installed in diverse environments such as homes, hospitals, and industries,

constituting different natures of applications and small cells. Depending on the radius range and

number of users, cells can be distinguished as presented in Table 2.2.

The use of small cells increases macro cells range, and it also:

• Increases transfer rates: A local SBS, which communicates with an MBS, serves bet-

ter the indoor devices reducing the signal attenuation effects that would occur in direct

communication between MBS and devices;



TECHNOLOGIES AND CONCEPTS 8

Table 2.2: Range and total users capacity according to cell types. Adapted from Panwar et al.
(2016)

Femtocell Picocell Microcell Macrocell

Range 10 - 20 m 200 m 2 km 30 - 35 km
Users < 20 20 - 40 > 100 Many

• Improves the use of the radio communication spectrum: There are fewer devices in

direct communication with MBS;

• Increases energy efficiency: Communication intermediated by an SBS reduces the re-

quired range for data transmission, which significantly impacts the battery usage of the

devices;

• Reduces cost: An SBS has lower installation and operating costs if compared to an MBS.

We can mention the optimized use of computational and energy resources among the prob-

lems to be addressed by the fifth generation. Base stations operate at peak periods in the

existing mobile phone networks, and their processing power is only for connected users. En-

ergy consumption for peak or near-inactivity times is similar (Correia et al., 2010), increasing the

network’s operating costs.

Base stations in commercial areas get overloaded during the daytime, while residential areas

have little activity (Wu et al., 2015). The scenario reverses for different day times. Instead of be-

ing restricted to connected users, we can achieve better usage and load-balancing by distributing

idle computing resources.

Also, there are solutions for the redundant use of two channels (operating at different fre-

quencies) for communicating with base stations. The devices have a channel transferring data

(uplink) to the base station and another transfer channel in the opposite direction (downlink).

This practice is considered inefficient. 5G networks present full-duplex communication using a

single channel for sending and receiving data, with no co-interference.

Until now, mobile network architectures have not distinguished between indoor and outdoor

users. As a result, devices communicate directly with the base stations, regardless of location,

which implies severe attenuation and loss of signal quality if walls or obstacles surround the user.

The fifth-generation introduces the SBS as a bridge between users and MBS, allowing indoor

and outdoor distinction and improving transmission quality.

As for heterogeneous wireless networks (Damnjanovic et al., 2011), Bluetooth, 3G, and Wi-

Fi, 5G’s solution framework proposes significant contributions. 4G technology already provides

some support, but not as a primary purpose since a device can only connect the uplink and

downlink channels to the same base station.

The fifth-generation must implement decoupling, allowing users to have the channels as-

sociated with different base stations. According to Boccardi et al. (2016), decoupling reduces
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required transmission power, interference, achieves higher transmission rates, reduces costs,

and differentiates load balancing for uplink and downlink channels.

Mobility and handover processes also require attention because transfers between different

wireless technologies have become common nowadays. When moving between commercial

and residential areas, users’ connection must be sustained, with no perception of discontinuity

or drop in transfer rates. 5G solutions must guarantee user services, even in high mobility

scenarios with speeds of up to 500 km/h (Zhang et al., 2017).

It is noticeable that mobile wireless networks are converging for a highly connected ecosys-

tem, in which users seamlessly transit between environments and communication technologies.

We aim to contribute to this integrated ecosystem by improving the allocation and connection

transitioning processes, namely handovers. In our experiments, we will consider simulated sce-

narios of mobility in which users are transferred regularly between base stations. As long as

the technology can provide the input data, our model will calculate which base station offers the

best service. We do not distinguish wireless cell types (small or macro) or base stations, but our

solution ensures that each eNB has enough bandwidth for the requiring users.

2.2 Handover

The handover process is the transferring of a user connected to one access point to another.

In general, we divided the process into 3 phases: preparation, execution, and completion. The

preparation includes the analysis of a series of user information, such as position, services

consumed, possible future routes, neighboring access points, and provided services’ quality.

The information allows the best access points to be selected. Different solutions apply ma-

chine learning techniques as auxiliary selecting tools (Al et al., 2016). In the execution phase, the

solutions use messages for synchronization and recognition elements involved in the handover

process: users, access points, and upper-level entities that generally coordinate the process.

The types of handover can also vary. In 5G networks, it is possible to execute transfer

between two SBS belonging to the same macro cell, between different macrocells, and even to

another type of radio communication technology, as shown in Figure 2.3. If the base stations

are in the same macro cell, the handover is an intra-macro cell. This process is the case of a

transfer between SBS1 and SBS2. When transferring from SBS2 to SBS3, the device migrates

to another cell and performs an inter-macro cell handover. When the device disconnects from

the 5G network towers to another type of communication technology, such as 4G, we have the

multi-RAT (Radio Access Technology) handover.

Intra-macro cell transfers have a lower cost when compared to inter-macro cells because only

SBSs are involved in the process. However, at the inter-macro cell level, not only do SBSs need

to be analyzed, but MBSs are also involved, and this consequently increases the complexity of

handover, which can become even more costly for multi-RAT transfers.
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Intra macro-cell
handover

SBS1 SBS2 SBS3

BS (4G)

MBS1 (5G)

Inter macro-cell
handover

multi-RAT
handover

MACRO CELL 1 MACRO CELL 2

MBS2 (5G)

Figure 2.3: Intra macro-cell, inter macro-cell and multi-RAT handover.

Considering that we have the required data, such as user and base station location, the

list of allowed eNBs, RSRQ values, etc., our model determines the most suited or the best

allocation. There is no need to know eNBs technology types (multi-RAT handover) or handover

level (intra-cell or inter-cell). Knowing and handling different types of wireless technologies, the

management, preparation, and execution phases is a task of the network entity (such as an SDN

controller) which executes our allocation model.

2.3 Optimization

The urge to increase efficiency, or more specifically, optimize a process, seems only natural after

the discovery or creation stage. Our cognitive capacity and math domain has led us to maximize

gains and minimize costs, such that optimization became a whole study field. When proposing

an efficient solution to a problem, one must consider the most relevant variables, correlations,

and constraints.

Different classes of problems require distinct computational effort to solve. Figure 2.4 shows

a Venn diagram of the classes and their solving difficulty in regards to P . If we consider the

input size n of a given problem p ∈ P and some constant k, then p is solvable with a polynomial-

time complexity O(nk) (Cormen et al., 2009, chapter 34). There is no known efficient solution

for the problems in the N P -hard class, and P 6= N P or P = N P is an assumption yet to be

proven. Garey and Johnson (1979) provides a more detailed discussion of the problem classes

and NP-Completeness.

We can achieve optimization through exact or heuristic methods. Exact methods are guar-

anteed to find an optimal solution, while heuristic methods are more flexible, fine-tuned, and

specific to a given problem. It can find solutions that may not be global optima, but good enough

if we consider the available resources. Metaheuristics, similarly to heuristics, do not guarantee

a globally optimal solution but are more general solving problem frameworks.
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The following topics of this section discuss relevant algorithms to this work, such as the

simplex method, the generalized assignment algorithm, branch and bound, and iterated local

search.

P NP-CompleteNP NP-HARD

EASY MEDIUM HARD HARDEST

DIFFICULTY

Figure 2.4: The relation between problem classes and complexity.

2.3.1 Linear programming and simplex method

The Simplex Algorithm solves Linear Programming Problems (LPP), widely found in real-world

industry and business models. Linear optimization models play a major role in minimizing pro-

cesses’ expenses and maximizing gain. The general structure of an LPP contains three impor-

tant components:

1. Decision Variables: It is a set of controllable, continuous, and non-negative values. Such

variables guide the decisions and courses of action of an optimization model. For example,

the employees of a factory and their respective tasks can be considered decision variables

in an optimization model that aims to maximize the number of tasks per employee.

2. Objective function: It is a mathematical function containing a set of constants and the

decision variables. Depending on the problem, the optimal value of this function can rep-

resent the minimum cost, maximum profit, and best efficiency.

3. Constraints: It is a set of mathematical expressions that limits the number of valid solu-

tions. For example, a business analyst may create an objective function that models profit

according to available resources and produced products. As a constraint, the available

budget only allows the purchase of a limited number of resources. This process limits the

number of produced products and maximum profit.

Equation (2.1) (Sharma, 2017, chapter 2) defines the relationship between these three main

components. Z is the objective function that we aim to maximize or minimize, c j is the cost or

profit value associated with the decision variable x j. The input-output coefficient (or technological
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coefficients) of the constraints’ inequations are represented by ai j, and bi establishes lower or

upper bounds for each constraint inequation. All the decision variables must be greater than

zero (non-negativity condition).

Objective function (min or max) Z = c1x1 + c2x2 + ...+ cnxn (2.1)

subject to (2.2)

a11x1 +a12x2 + ...+a1nxn (≤,=,≥) b1 (2.3)

a21x1 +a22x2 + ...+a2nxn (≤,=,≥) b2 (2.4)
...

...
...

am1x1 +am2x2 + ...+amnxn (≤,=,≥) bm (2.5)

with x1, x2, ..., xn ≥ 0 (2.6)

Dantzig (1990) proposed the simplex method, used to solve general LP problems. Thus,

when we consider n decision variables, the simplex method has exponential performance and

visits O(2n) vertices in the worst-case scenario (Klee and Minty, 1972), but Spielman and Teng

(2004) showed that the algorithm had expected polynomial behavior for most of the real-world

linear problems.

In mathematics, a simplex is an object connecting n+1 points in an n-dimensional space, if

we consider the dimension D = 1, the simplex is a line segment connecting 2 points (Sharma,

2017, ch 4, p. 101). Considering the LP defined in (2.1)—(2.6), and its linear problem standard

form definition (2.7)—(2.9), the simplex method can find global optima by iterating between a

finite set of vertices, provided by the intersection of the problem’s constrains (2.8).

max Z = cT x (2.7)

subject to Ax = b (2.8)

x≥ 0 (2.9)

The gray area in Figure 2.5 represents the problem’s feasible region, and the intersection red

dots are the primary feasible solution vertices. In each iteration step, the algorithm evaluates the

objective function (2.7) according to the current vertex and then visits the next one until it finds

the optimal basic feasible solution.

Through Integer Linear Programming (ILP), we can model and solve integer linear problems,

which belong to the N P -hard problem class. A typical integer linear problem has the standard

form of Equation (2.10)–(2.13), and as established by (2.13), each of its variables have integer
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Figure 2.5: The simplex execution process.

values. There are classic and well-established algorithms to solve integer linear problems, such

as the branch and bound (Lawler and Wood, 1966), branch and cut (Padberg and Rinaldi, 1987),

and the cutting-plane method (Kelley, 1960).

max Z = cT x (2.10)

subject to Ax = b (2.11)

x≥ 0 (2.12)

x ∈ Z (2.13)

2.3.2 Branch and bound

The Branch and Bound algorithm is an exact method for solving integer problems, proposed by

Land and Doig (2010). It has application in many classic optimization problems, such as the

traveling salesman problem (Applegate et al., 2006), the generalized assignment problem (Ross

and Soland, 1975), and the knapsack problem (Kolesar, 1967). The branch and bound algorithm

organizes the search method as a tree. Thus, it creates a source node split into subproblems

connected to the source. As an example, we can consider the general linear problem (2.14)

(a simplified form of Equation (2.1)), in which x is a decision variable vector and the set of

constraints presented in Expression (2.15).
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max cT x (2.14)

subject to Ax≤ b (2.15)

x ∈ Z (2.16)

The method starts by solving the linear programming relaxation of an instance of the problem

defined in Equation (2.14)–(2.15), i.e., we remove the integrality constraint of each variable. We

test if the solution x∗ is composed of integer values. If x∗ contains any fractional value, it is not

a valid solution, and the algorithm selects a non-integer variable x∗j ∈ x∗ to generate two new

variables β
′
(floor, greatest integer less than x∗j ) and β

′′
(ceiling, the smallest integer greater than

x∗j ), as established by Equation (2.17). We use these values to create the new subproblem’s

branches, as defined by Equations (2.18)—(2.19).

(β
′
,β
′′
) = (bx∗jc,dx∗je) (2.17)

max cT x subject to Ax≤ β
′
, x in S (2.18)

max cT x subject to Ax≥ β
′′
, x in S (2.19)

Figure 2.6: The branch and bound tree (Applegate et al., 2006).
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In Figure 2.6, problem (2.14) represents the root node as initial state of the algorithm, fol-

lowed by the branching subproblems (2.18) and (2.19). Each branch and bound tree node has

a value for the objective function, according to its x variables. The algorithm decides if it is worth

expanding new nodes by evaluating the objective function value and checking if x∗ contains any

fractional value. We achieve a final solution if there is no feasible solution or if x∗ for a given tree

node is integer only and contains the best value for the objective function. We use the branch

and bound algorithm to find optimal solutions for the simulated mobility scenarios.

2.3.3 Iterated local search

The Iterated Local Search (ILS) is a sequence of solutions built iteratively by an embedded

heuristic. (Lourenço et al., 2019). In its history, it received many names and propositions (Bax-

ter, 1981; Martin et al., 1991; Martin and Otto, 1996), and the demand for new approaches

for different surging problems continues to push the efficiency boundaries through evolutionary

optimization (Cao et al., 2018).

Algorithm 2.1 describes the general framework of the iterated local search. The procedure is

simple and starts by generating the initial solution S0 from the starting instance I. In the following

step, the algorithm performs a local search to obtain a new solution S, stores it in S∗, which

is an improvement S0. Thus, the local search method aims to find better solutions by making

calculated adjustments in the current input instance.

Algorithm 2.1 General iterated local search
1: procedure ILS(I,maxIter)
2: S0←Initialize(I)
3: S←Local_Search(S0)
4: S∗← S
5: iter← 0
6: while iter < maxIter do
7: S′←Perturbate(S)
8: S′←Local_Search(S′)
9: Accept(S,S′)

10: Update_Best_Solution(S,S∗)
11: iter← iter+1
12: end while
13: return S∗

14: end procedure

The loop structure updates the number of performed iterations iter to avoid exceeding the

maximum limit maxIter. The iterations repeat a series of perturbations, local searches, and

cost checks to provide the best result as the final output. Since the iterative process is prone

to get trapped in local maximum or minimum values, the perturbation function Perturbate can

randomly change the current solution variables. As the expected result 2.7, the algorithm steers

the solution away from local optima. The acceptance function Accept(S,S
′
) compares S and S

′
,

allowing that the function Update_Best_Solution(S,S∗) update their current values to the new



TECHNOLOGIES AND CONCEPTS 16

best if cost(S
′
)< cost(S).

C
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t

Solution Space S

Perturbation

Figure 2.7: Expected ILS perturbation result.

2.3.4 Variable neighborhood descent

The Variable Neighborhood Descent (VND) (Mladenović and Hansen, 1997) is one of the most

used and efficient local search algorithms. In the context of our work, we implement the

Local_Search(S0) with the VND Algorithm 2.2, which seeks the best solution through a search

of sorted neighborhood sets. Considering V = {V 1, . . . ,V r} a set of neighborhoods of the graph

G, the VND starts V . Starting from k = 1 until a max of kmax iterations, the algorithm looks for

neighborhood sets that reduce a defined cost g∗ of the graph G. As long as it is possible to find

a neighborhood G′ with a lower cost, which we will consider as the solution S, the algorithm will

try to find better neighborhoods, and if not possible, we move on to the next neighborhood k+1.

We will use the VND as the local search of the ILS Algorithm 3.1, this combination presents

successful cases in the literature (Penna et al., 2011).

Algorithm 2.2 General variable neighborhood descent
1: procedure VND(G)
2: start V
3: k← 1
4: g∗←Cost(G)
5: repeat
6: G′←V k(G)
7: if Cost(G′)< g∗ then
8: S← G′

9: k← 1
10: else
11: k← k+1
12: end if
13: until k = kmax
14: return S
15: end procedure
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2.3.5 Generalized assignment problem

We will reserve some time to discuss the GAP (Generalized Assignment Problem) (Cattrysse

and Van Wassenhove, 1992), as shown in Figure 2.8, as our proposition can be defined as one

of its specific case. This problem is part of the N P -hard complexity class (Sahni and Gonzalez,

1976), and is generally defined according to Equation (2.20). The value of ci j represents the

cost of assigning a job j ∈ J to the agent i ∈ I. The variable xi j indicates if i receives the job

j, and in this case xi j = 1. If the job j is not assigned to the agent, then xi j = 0. In Figure

2.8, which is a complete bipartite graph, the jobs J = {1,2, ...,m} are assigned to the agents I =

{1,2, ...,n} according to the blue colored edges. Each job is assigned to at least one agent, and

there is a occurrence of one agent (i = 1) with more than one job.

(GAP) min ∑
i

∑
j

ci jxi j (2.20)

subject to ∑
j

ai jxi j ≤ bi ∀ i ∈ I (2.21)

∑
i

xi j = 1 ∀ j ∈ J (2.22)

xi j ∈ B ∀ i ∈ I, ∀ j ∈ J (2.23)

The assignments aim to minimize the overall costs of an objective function by performing

multiple combinations. The solution must satisfy conditions such as the Knapsack (Salkin and

De Kluyver, 1975) set of constraints (2.21), and the restriction that each job must be assigned

for at least one agent in this particular case (2.22). Each agent has an individual level of effort

or capacity ai j to offer, and if a job exceeds this effort level, we must assign it to another agent.

Considering the set of agents I, the sum of their capacity must not exceed the established max

capacity bi.

Agents

1 2

Jobs

1 2 . . .

. . .

3

c

c

c
c

Figure 2.8: Attribution of jobs to agents according to costs, a general assignment problem.
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In real-life scenarios, the GAP appears in different ways, such as creating efficient sched-

ules for workers or building timetables for teachers and classes. It also has variations such

as the multilevel, the nonlinear capacity constrained, and the bottleneck GAP (Öncan, 2007).

Literature has extensive documentation and solution, and the most classical approaches pro-

pose approximation methods (Shmoys and Tardos, 1993), and lower/upper bound manipulation

through the branch and bound algorithm (Ross and Soland, 1975). Modern approaches usually

propose minor changes to the classic algorithms, hybrid solutions, or genetic and evolutionary

based-solutions (Srivarapongse and Pijitbanjong, 2019; Jia et al., 2018).

We will see in Chapter 3 that our allocation models, defined in Equations (3.8) and (3.19),

have the same standard form of the GAP (2.20). Similarly to assigning jobs to agents, our model

allocates (assigns) users to base stations according to a set of constraints. Each user must

connect to at least one base station, and each base station can receive as many users as its

maximum bandwidth capacity allows.

This chapter introduced key concepts related to this work. In Section 2.1, we dis-

cussed the advances in mobile networks technologies, which are mainly transitioning

to the fifth-generation. By allocating users in base stations, our contribution impacts

mobile networks and their handover processes mentioned in Section 2.2. In regards

to optimization, our solution can be deployed by using some of the exact or heuristic

methods discussed in Section 2.3.



3
METHODOLOGY

In this chapter, we introduce Taleb et al. (2015) optimization model in Section 3.1. The authors

propose a multi-objective function to minimize handovers between eNBs, and the communication

cost between eNBs and data centers. Their work is a starting point for our proposal, which ex-

tends their model. In Section 3.2, we present our contribution by first showing a distance-based

allocation model, followed by the heuristic solution 3.2. We change to a heuristic approach as

an alternative to the exact method and consider the RSRQ (Reference Signal Received Qual-

ity) indicator instead of distance. The RSRQ informs the quality of the wireless communication

between UEs and eNBs.

3.1 Handover and communication cost optimization

Based on the Multi-Objective model of Taleb et al. (2015), our proposal aims to improve the

mobility and connection in wireless networks. The authors consider the EPS (Evolved Packet

System) architecture (Figure 3.1). The S-GW (Serving Gateway) is responsible for routing pack-

ages, mobility management, and handover processes. The HSS (Home Subscriber Server)

saves identification and location of UEs, and it also has authentication and authorization function-

alities. The PDN-GW (Packet Data Network Gateway) bridges networks (the Internet) containing

several data centers and entities such as the eNBs and UEs. The MME (Mobile Management

Entity) contains UE’s mobility management functionalities and location information, interacting

with the HSS entity to execute authentication. The eNBs connect UEs with the rest of the net-

work.

Taleb et al. (2015) work establishes a model to minimize the communication cost between

eNBs and data centers and a model that minimizes UE’s handover between coverage areas.

These two models compose a multi-objective optimization problem. The authors consider an

SDN context with virtual network infrastructure, in which the S-GW and the PDN-GW have virtual

19
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Figure 3.1: EPS architecture for LTE networks.

function sets allocated for distinct entities depending on the user’s demand and behavior. In the

communication cost minimization problem, a solution is to allocate the virtual functionalities of

the PDN in the data centers of the nearby eNBs. To minimize handovers, the authors place

virtual functions of S-GW in more distant regions, creating more significant coverage areas.

Considering a set of eNBs = {i1, i2, ..., iN−1, iN}, where N is the total base stations, and a

set of data centers = {s1,s2, ...,sDC−1,sDC} containing a total of DC data centers, Taleb et al.

(2015) complete model is defined as follows:

min ( f (hi j,xi j),g(cis,yis)) (3.1)

subject to yis + y js ≤ 1+ xi j ∀ i, j ∈ N, ∀ s ∈ DC (3.2)

yis− y js ≤ 1− xi j ∀ i, j ∈ N, ∀ s ∈ DC (3.3)

∑
s∈DC

yis = 1 ∀ i ∈ N (3.4)

yis,xi j ∈ B ∀ i, j ∈ N, ∀ s ∈ DC (3.5)

The y js variable is equal to 1 if eNB j is connected to the data center s, and 0 otherwise.

The multi-objective function (3.1) uses two criteria f and g. The constraints (3.2) states that

two eNBs must not connect to the same data center, which means (xi j = 0) =⇒ (yis = 0)∨
(y js = 0). Constraints (3.3) states that two connected eNBs must not be connected to different

data centers, which implies (xi j = 1) =⇒ (yis = y js). According to (3.4), every eNB must be

connected to only one data center, and the variables yis and xi j belong to the binary domain, as

we can see in (3.5).

The objective functions f e g are respectively defined by (3.6) for handover and (3.7) for

cost. The values of hi j represent the average handover frequency between eNBi and eNB j.

Base stations connected to the same data center belong to the same coverage area, and in such

cases, there is no handover between the eNBs. The values of cis represent the communication

cost between the eNBi and the data center s. The purpose of the objective function (3.7) is to

select an eNBsi near a data centers s of the set DC, assuring the smaller communication cost.
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f (hi j,xi j) = min ∑
i∈N

∑
j∈N

hi j(1− xi j) (3.6)

g(cis,yis) = min ∑
i∈N

∑
s∈DC

cisyis (3.7)

Since Taleb et al. (2015) model (3.1) did not consider the allocation of UEs in eNBs, our

proposal extends the current model by implementing it. The proposed model allocates users in

base stations by using distance, average handover frequency for each eNB, and the bandwidth

requirements of UEs and eNBs. It is worth mentioning that the handover and cost criteria f

and g have opposite natures since to decrease handover between coverage areas, we need to

increase the distance between eNBs and data centers to create more significant coverage areas.

On the other hand, we need to reduce this distance to reduce the communication cost between

eNBs and data centers. As a consequence, we need to find the ideal exchange between these

two objectives. We can use multi-objective optimization approaches (Marler and Arora, 2004).

3.2 Proposed model

We introduce the allocation of UEs in eNBs, which can occur according to available bandwidth,

distance, and each eNBs’ handover average. Figure 3.2 illustrates an example that is not covered

in Taleb et al. (2015). In this example scenario, composed of 5 eNBs, horizontally spaced by 50

units of distance, consider the max bandwidth capacity Li = 20 Mbps for each eNBi. Each user

UEk has a minimum bandwidth requirement lk = 3 Mbps. Therefore, each eNBs can not support

service to more than six users simultaneously. We recalculate the solution dynamically when the

UE moves between eNBs.

Figure 3.2: An example of an UE moving along a set of eNBs.

For such a scenario, we can apply the new objective function defined by (3.8). Notice that

our allocation model has the GAP (2.20) standard form. We will use this property to evaluate

the results of the heuristic method presented in Subsection 3.2. The variable bki, if its value

is equal to 1, maps a UEk that is connected to an eNBi, and if they are not connected, bki =

0. Equation (3.8) establishes that the users connect to nearby base stations with the smallest

handover average hi.
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min z(bki,dki,hi) = ∑
k∈U

∑
i∈N

bki(dki +hi) (3.8)

Equation (3.9) gives the formula for calculating hi, which can be found with the sum of the

average handover frequency hi j for each eNBs j ∈ N, connected to eNBi, divided by N−1 (we

remove eNBi from N). The value of dki represents the distance between UEk and eNBi.

hi = ∑
j∈N\{i}

hi j

(N−1)
∀ i ∈ N (3.9)

The model constraints are given by (3.10) — (3.12). We establish in (3.10) that every user

must be connected to only one base station. By constraints (3.11), the max bandwidth capacity

Li of a base station i must not exceed the sum of the bandwidth minimum requirements lk for

each user k ∈U . The binary domain of bki if defined in (3.12).

∑
i∈N

bki = 1 ∀ k ∈U (3.10)

∑
k∈U

lkbki ≤ Li ∀ i ∈ N (3.11)

bki ∈ B ∀ i ∈ N (3.12)

To find the value of dki in a Cartesian coordinate systems, we use Equation (3.13). Therefore,

dki = dcart is the Euclidean distance between UEk at position pk = (xk,yk,zk), and eNBi at posi-

tion pi = (xi,yi,zi). To geographic coordinate systems, dki = dharv, according to the Haversine

formula (3.14) to spherical surfaces (Sinnott, 1984). In this case, (ψi,βi) represents respectively

eNBi’s latitude and longitude. In the same way, (ψk,βk) is UEk’s latitude and longitude. The

Earth is our sphere, and R is its radius, which is approximately 6317 Km.

dcart =
√
(xi− xk)2 +(yi− yk)2 +(zi− zk)2 (3.13)

dharv = (2R)arcsin

(√
sin2

(
ψi−ψk

2

)
+ cos(ψk)cos(ψi)sin2

(
βi−βk

2

))
(3.14)

Equations of handover (3.6), cost (3.7), and user allocation (3.8) are used as criteria in a

Multi-Objective Function (COMP). We will use the weighted sum method described by Equation

(3.16) and (3.17). This approach provides a multi to mono-objective conversion for a set with m
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optimization criteria, in which each Fi criterion will be weighted by a value wi ∈ [0,1]. The sum

of all the criterion weights must be equal to 1. Varying the value of wi means assigning different

importance to a specific objective function. If w2 = 0.6, then g(cis,yis) has a greater contribution

for worsening the optimal solution of (COMP). As a consequence, smaller values of cis will be

required, which means that we are prioritizing communication cost minimization. The complete

proposed formulation is given by:

(COMP) : min ob j = w1× f (hi j,xi j)+w2×g(cis,yis)+w3× z(bki,dki,hi) (3.15)

subject to (3.2−3.5) and (3.10−3.12)

m

∑
i=1

wiFi(x) (3.16)

m

∑
i=1

wi = 1 (3.17)

We could execute the complete formulation (COMP) in network entities such as the mobile

manage entity presented in Figure 3.1. If we consider an SDN context, a controller executes the

model and distributes virtual network functions of PDN-GW and S-GW according to results. This

strategy should create coverage areas with reduced handovers, minimum communication cost

between eNBs and data centers, and the allocation of UEs in the best candidate eNB. We must

connect every user to one base station, keeping network bandwidth limits. When executed, the

model must run periodically, collecting and updating information about eNBs and UEs.

Read UE, eNB and
DC input data

Update UEs 
 position Execute Model

Create coverage
area with best
handover and

communication cost

Handover
required?

Allocate UE in new
eNB

Update UEs and
eNBs Data

Stop
Simulation?END

YES

No

No

YES

Figure 3.3: Simulation flowchart.

We can implement this model in the linear programming solver CPLEX (IBM, 2017), which

uses the branch and bound exact method. The simulation process follows Figure 3.3, starting by
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reading the eNBs’ handover average, position, and bandwidth requirements for UEs and eNBs.

It proceeds with reading updates of UEs’ position and execution of (COMP).

As a result, (COMP) provides a set of coverage areas connecting the eNBs with minimum

handover frequency. These eNBs connect to the data centers with lower communication costs.

If handover is required, the model allocates users to a new eNB and proceeds to update users’

and eNBs data. If the simulation does not end, we read UE’s position data to restart the process.

Heuristic approach

Our previous user allocation model defined in Equation (3.8) allocates UEs based on the dis-

tance and the eNB individual handover frequency average. However, due to noise and physical

environment interference, the distance may not be the best indicator for connection quality. We

can improve this model by considering indicators such as the Received Signal Strength Indica-

tion (RSSI), the Reference Signal Received Quality (RSRQ), or the Reference Signal Received

Power (RSRP).

The RSSI is an indicator of wireless signal strength. The RSRP presents the base station

average signal power perceived by the users. Finally, the RSRQ informs the received signals’

quality. It is a commonly used parameter in handover solutions since it contains information on

noise and interference levels. We will simulate the RSRQ value according to Equation (3.18), in

which the signal degrades with distance. For example, if we consider the RSRQ values in Table

3.1, the maximum transmission radius Ri of a given base station i, and the distance dki = Ri for

the user k, then Θki =−12 dB, which is a poor RSRQ value (dki = 0 =⇒ Θki =−5 dB).

Θki =−[
dki

Ri
(|Θmin|− |Θmax|)+ |Θmax|] (3.18)

Table 3.1 presents the signals’ quality classification according to their respective values. In

ideal conditions, users with poor signal reception are further away from the eNB or located at

cell edges. Excellent or good signal reception means that the user is closer to the base station.

Table 3.1: LTE signal quality indicators.

Signal Quality RSSI (dBm) RSRQ (dB) RSRP (dB)

Excellent -65 -5 -84
Good -65 to -75 -9 to -5 -85 to -102
Fair -75 to -85 -12 to -9 -103 to -111
Poor -85 -12 -111

We will reformulate the user allocation model (3.8) to consider the average handover fre-

quency hi of each eNB, and the RSRQ value Θki, which represents the communication quality
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between the user k and eNBi. The model p in Equation (3.19) allocates users in the eNBs with

the minor handover frequency average hi and with the best signal quality Θki.

min p(bki,hi,Θki) = ∑
k∈U

∑
i∈N

bki(hi +Θki) (3.19)

subject to (3.10−3.12)

We will not consider Taleb et al. (2015) models in the next evaluations, but similarly to

(COMP), we can use the solving constraints and weighted sum method to define (COMP2).

(COMP2) : min ob j = w1× f (hi j,xi j)+w2×g(cis,yis)+w3× p(bki,hi,Θki) (3.20)

subject to (3.2−3.5) and (3.10−3.12)

We will evaluate heuristic methods to solve our allocation model as an alternative to the

branch and bound exact algorithm. Heuristic approaches do not guarantee optimal results. How-

ever, there are scenarios in which the optimal solution exceeds the time limit or computational

resources are limited, so we have to use a solution sufficiently good that does not exceed hard-

ware, software, or time limitations.

Our heuristic method uses the iterated local search (ILS) metaheuristic (Lourenço et al.,

2019) coupled with the variable neighborhood descent (VND) (Hansen et al., 2018) in the local

search phase. Also, to complement the search algorithms, two neighborhood structures are

defined to execute swap and insertion operations: swap_ue(UEui, UEv j), and insert_ue(UEui,

eNB j). These structures can only be executed if the model constraints are obeyed.

• swap_ue(UEui, UEv j): This neighborhood structure swaps a user UEu, allocated in eNBi,

with a user UEv, allocated in eNB j, as shown in Figure 3.4(a). This procedure stops

the local search at the first swap that improves the current solution. It has a worst case

complexity O(n2) for a instance with n users.

• insert_ue(UEui, eNB j): This neighborhood structure removes a user UEu, allocated in

eNBi, and inserts (or allocates) it in eNB j. Figure 3.4(b) illustrates an example of a insert

operation between two eNBs. This procedure stops the local search at the first insertion

that improves the current solution. It has a worst case complexity O(nm) for a instance

with n UEs and m eNBs .

The cost improvement evaluations of the insertion and swap neighborhood structures take

O(1) complexity. Algorithm 3.1 presents the iterated local search. Starting from a graph G that

will represent our network, an initial solution S0 is generated with a greedy algorithm (Cormen
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SWAP

eNBi eNBj eNBi eNBj

UEu UEvUEu UEv

(a) User swap neighborhood structure.

INSERT

eNBi eNBj

UEu

eNBi eNBj

UEu

(b) User insert neighborhood structure.

Figure 3.4: The two neighborhood structures for swap and insertion operations.

et al., 2009, chapter 16), implemented in the function GenerateInitialSolution(G). This function

randomly selects UEs and allocates them in the eNB with minimum cost. The initial solution S0

represents users connected to eNBs. Upon S0, we use the VND based local search Algorithm

3.2 to find a new solution, denoted by S.

Algorithm 3.1 Iterated local search
1: procedure ILS(G)
2: S0← GenerateInitialSolution(G)
3: S← LocalSearch(S0)
4: counter← 0
5: while !(stop condition) do
6: S′← Perturbation(S)
7: S′← LocalSearch(S′)
8: counter← counter+1
9: if Cost(S′)≤Cost(S) then

10: S← S′

11: else if counter ≥ n then
12: counter← 0
13: S′← GenerateInitialSolution(G)
14: end if
15: end while
16: return S
17: end procedure

The VND starts by setting the improvement index k and its maximum value kmax. There is

an improvement variable to indicate if any of the neighborhood structures found improvement

(returning true) at the current iteration and a flag that resets the k value in this situation. To pre-
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vent the algorithm from running indefinitely, we increment k each time a neighborhood structure

improvement fails (returning false). If the two neighborhood improvements fail, then k = 3, and

the VND algorithm ends.

Algorithm 3.2 Variable neighborhood descent
1: procedure VND
2: k← 1
3: kmax← 3
4: improvement← f alse
5: f lag← f alse
6: repeat /*eNBs and UEs randomly chosen*/
7: if k = 1 then
8: f lag = insert_ue(UEui,UEv j)
9: end if

10: if k = 2 then
11: f lag = swap_ue(UEui,eNB j)
12: end if
13: if (flag) then /*Reset k if any neighborhood structure returns true (improvement found)*/
14: k← 1
15: else
16: k← k+1
17: end if
18: until k = kmax
19: return improvement
20: end procedure

The local search generates different solutions by performing the insert and swap operations

with the mentioned neighborhood structures. Subsequently, we enter the loop of the iterated

local search, which contains a perturbation function to avoid local minimums. Finally, from the

disturbed solution S′, we execute a local search again. Considering that the global costs of the

networks S and S′, if the condition Cost(S′)≤Cost(S) is satisfied, then S′ is assigned to S as a

new solution. The final result is a minimized cost in the relationships between users and base

stations.

In terms of allocation and handover, we can compare our proposed model of Equation (3.19)

with the solution proposed by Ahmadi et al. (2020). To allocate users, their model builds a base

station score rank, in which each eNB receives a score according to Equation (3.21). From

(3.22), if a user is approaching a given eNB and simultaneously the RSRQ value is improving,

then f actordirection = 1, and 0 otherwise. The f actordistratio depends on the user’s current

position and all possible future routes. The eNBs which cover most future routes receive the

highest scores. As for the RSRQ parameter, the better the signal, the better the score. All values

are normalized (0 to 1).

score = RSRQ+Factorprediction (3.21)

Factorprediction = f actordirection + f actordistratio (3.22)
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This chapter mainly discussed this work’s mathematical models. Taleb et al. (2015)

propose a handover and communication cost minimization model, which we discussed

in Section 3.1. As a contribution, we proposed an allocation model to address the

relation between users and base stations in Section 3.2. We refined our model by

considering parameters such as the RSRQ signal indicator and providing a heuristic

approach.



4
RESULTS AND DISCUSSION

This chapter presents the computational experiments conducted to evaluate the effectiveness

of our proposed approaches. The experiments are divided into three sections. First, in Section

4.1, we analyze the performance of the new ILP formulation applied in the simulation process

described in Figure 3.3. Second, in Section 4.2 we evaluate the quality of the solutions found by

the ILS metaheuristic. Finally, in Section 4.3, we conduct an extensive simulation, and compare

our proposal with Ahmadi et al. (2020) approach, considering allocation (RSRQ impact) and

handover.

4.1 Performance of ILP formulation

This experiment evaluates the proposed distance-based model (COMP), implemented with the

IBM ILOG CPLEX Optimization Studio v12.5.0 solver and executed on Intel Core i5-6200U

(2.30GHz and 4 cores) with 4GB of RAM, Ubuntu 16.04 LTS operating system.

Execution time

Table 4.1 shows the average execution time for different combinations of the weights w1, w2

and w3. For this test case, we considered 10 data centers and a sample of 60 base stations

in the city of Maceió, Alagoas, available in Telebrasil (2021) database, which has latitude and

longitude data of several base stations of different mobile carriers in Brazil. Ten users are ran-

domly placed and maintained in positions near eNBs so that the model can calculate distances.

Since handover data and communication costs between data centers and eNBs are not avail-

able, we considered a random uniform distribution to generated 30 instances of these values for

each eNB. We compute the execution time for every instance, and in the end, we calculate the

average execution time for the different weight combinations.

29
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Table 4.1: Average execution time for different weights combinations. Total number of instances
= 30, eNBs = 60, data centers = 10, UEs = 10.

w1 w2 w3 Average execution time (seconds)
1 0 0 0.75
0 1 0 1.09
0 0 1 1.13

0.8 0.1 0.1 2.04
0.1 0.8 0.1 4.44
0.1 0.1 0.8 2.42
0.4 0.3 0.3 2.69
0.3 0.4 0.3 2.70
0.3 0.3 0.4 2.42
0.9 0.1 0 1.69
0.1 0.9 0 4.17

In the the formulation (COMP), the weight configurations (1,0,0), (0,1,0) and (0,0,1) ver-

ify the execution time in an isolated manner for f (xi j,hi j), g(cis,yis) and z(bki,dki,hi), since

only one of the three criteria is considered. In a case of assigning higher priority to a specific

criterion, it is observable that the execution time increases considerably for the weights combina-

tion (0.1,0.8,0.1), which is when the costs of communication between eNBs and data centers

need to be strictly optimized. If an approximately uniform combination such as (0.4,0.3,0.3),
(0.3,0.4,0.3) or (0.3,0.3,0.4) is to be taken, the average execution times are similar. We can

verify Taleb et al. (2015) base model average execution time by making z(bki,dki,hi) = 0, which

results in Equation (3.1). Configuration (0.1,0.9,0) shows that it takes longer to find an opti-

mized solution to minimized communication costs with high priority, and low priority for reduced

number of handover between coverage areas. In the opposite case, (0.9,0.1,0), a considerable

smaller average execution time is required.

User allocation

We collected latitude and longitude data from the Google Maps location history of a moving UE.

Figure 4.1(a) shows the starting point of a 13.7 km displacement, traversed in a time interval of

42 minutes. The user followed the path from the starting point to the highest-numbered base

station (21 in total), some of them illustrated by Figure 4.1(b). In addition, we found several base

station locations in the database provided by Telebrasil (2021). In this study case, for every new

UE’s location, the model must evaluate if it is worth keeping it allocated in the same eNB or if it

is better to transfer it to another one. Haversine Equation (3.14) gives the distance between user

and base station in this scenario.

Figure 4.2 shows the eNBs where the system allocates the UE over the 13.7 km path. Ac-

cording to its GPS information, the initial UE position was nearby eNB1 and eNB2, with respective

distances of 0.08 km and 0.45 km. The average handover of these base stations is 5.3 for the
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STARTING
POINT

(a) eNBs placement along the path traveled by UE. (b) eNBs in which the UE was allocated over the
path.

Figure 4.1: Path traveled by UE over time, moving forward from the starting point to the highest-
numbered eNB.

first and 3.75 for the second. The formulation (COMP) allocates UEs in eNBs with the smallest

sum of distance and handover average. Thus, it is observable in Figure 4.2 the correct allocation

in eNB2. During the last 10 minutes of the traveled path, eNB19, eNB20 and eNB21 are closer, at

a respective distance of 0.78, 0.91, and 0.53 kilometers. Their handover averages are 3.8, 6.25,

5.5, which causes the permanence of UE in eNB19.

Figure 4.2: eNB in which the UE was allocated over the travel time.
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Bandwidth management

To evaluate the model (COMP) bandwidth management, we simulated a second mobility sce-

nario with 20 UEs and 5 eNBs. The bandwidth restrictions for eNBs and UEs are respectively

Li = 20 Mbps and lk = 3 Mbps (hypothetical values). The model does not have time as a direct

parameter, but the position (which influences the value of dki) changes over time. In this test

case, UE’s position x is given by the function x = t, and t represents a time instant. As previ-

ously illustrated in the flowchart of Figure 3.3, the model is executed periodically, at an instant

t. Figure 4.3 shows the base station that the model allocates a user (namely UE1). From the

moment it becomes very costly to remain connected to a base station (because of distance or

eNB handover average), e. g., eNB1, the system will transfer the user to another eNB, Fig 4.3.

The transition from eNB1 to eNB2 is performed near position x = 30.

Figure 4.3: eNBi in which UE1 is allocated according to its position.

The process repeats as UE1 moves towards other base stations. The remaining 19 UEs are

not moving so we can easily see the behavior of the network. The graphs in Figure 4.4 and 4.5

show respectively the number of UEs allocated and the available bandwidth in each eNB, which

changes as UE1 is transferred between eNBs. We can see in Figure 4.4 that eNB1 initially has

2 connected UEs. It is also known that UE1 has its position determined by x = t. Therefore, at

t = 0, UE1 is at x = 0 and allocated in eNB1. Observing the bandwidth availability of eNB1 in

Figure 4.5 at t = 0, for 2 connected users with minimum requirements of 3 Mbps, it is verifiable

that the base station has only 14 Mbps, from a total L1 = 20 Mbps.

We can verify the rearrangement of the network as UE1 moves. As previously shown, the

transfer of eNB1 to eNB2 occurs approximately at x = 30. We can see the change in the number

of UEs in eNB1 (from 2 to 1) and eNB2 (from 3 to 4) in Figure 4.4 at t ≈ 30. The gain or loss of
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Figure 4.4: Number of connected UEs in each eNB over time.

Figure 4.5: Available bandwidth in each eNB at instant t.

available bandwidth is observable in Figure 4.5 at the same instant t. Since eNB4 and eNB5 are

always operating with 6 users, their bandwidth availability is low and insufficient to serve another

UE. However, when approaching these base stations, UE1 will certainly connect to them, as is

observable in Figure 4.4. This behavior is possible because even if operating in full capacity, the

network will rearrange UEs in different eNBs, ensuring a base station connection.
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4.2 Heuristic performance

In this section, we present the results for the allocation model (3.19) considering RSRQ and

the average handover frequency of each eNB. We will compare the results of the iterated local

search, and a GRASP algorithm. To validate the results, we executed an exact model with the

IBM ILOG CPLEX Optimization Studio V12.10, which provides the optimal solution through the

branch-and-bound algorithm.

We created the problem’s instances according to the standard GAP generation scheme (Chu

and Beasley, 1997). They are divided per difficulty and number of variables, being A the easy

instances, B moderate, and C presents the same difficulty as B, but with more variables. Table

4.2 presents the total number of UEs and eNBs in each instance.

Table 4.2: The number of UEs and eNBs according to the instance type.

Instance Type UEs Quantity eNBs Quantity

1

A/B

100 5
2 100 10
3 100 20
4 200 5
5 200 10
6 200 20
1

C

1200 5
2 1200 10
3 1200 20
4 1500 5
5 1500 10
6 1500 20

Execution time

The algorithms were executed 30 times per instance on a computer with an Intel Core i7 @2.7

GHz x 4 processor, 16 GB of RAM, and the Ubuntu 18.04 LTS operating system. Table 4.3

summarizes the overall average execution time of the algorithms. The results presented in Table

4.4 contains the instances’ optimal value provided by the branch and bound exact model, the

average execution time of each solution, the best value achieved by the heuristic methods, the

number of times that the best value was found Nbests, and the average solution result.

The worst performing was the GRASP algorithm with a 3.38 s overall average execution time.

The ILS heuristic achieves the best performance, with an 11.09 ms overall average execution

time.

If we compare the average execution time of the exact model, 61.43 ms, with the ILS algo-

rithm, there is a reduction in the average execution time by approximately 82%. Table 4.4 also
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Table 4.3: Overall execution time results.
Exact MD GRASP ILS

Overall Average Time (ms) 61.43 3381.76 11.09

shows that the ILS algorithm found the optimal solution for every instance. Column Nbest indi-

cates the number of times the instance evaluation and the algorithm found the optimal solution.

The GRASP solution presented the worst results, with an overall longer execution time when

compared to the ILS and exact model solution. Also, it barely found the instances’ optimal results.

Briefly discussing The GRASP algorithm, its general structure contains a greedy function that

starts by shuffling a list of users and base stations. We look for the base station that offers the

minimum allocation cost for each user, generating a solution.

We apply the local search algorithm to improve the results, store it to a temporary best

variable, and start the process again, looping until the algorithm reaches its time limit. The two

key aspects that impact the algorithm’s performance are the repeated generation of solutions per

iteration, and the susceptibility to local minimum, since there is no diversification of perturbation

mechanisms.

Table 4.4: The results for the exact, GRASP, and the ILS model.
Instance Type

Exact MD GRASP ILS
Optimal AVG Time (ms) Best Average AVG Time (ms) Nbests Best Average AVG Time (ms) Nbests

1

A

101.77 5.80 101.77 101.80 3.04 13/30 101.77 - 0.18 30/30
2 94.82 9.65 94.87 95.02 4.14 0 94.82 - 0.21 30/30
3 89.17 16.34 89.21 89.32 4.30 0 89.17 - 0.24 30/30
4 209.67 8.36 209.67 209.87 31.48 5/30 209.67 - 0.72 30/30
5 179.97 17.46 180.04 180.18 33.00 0 179.97 - 0.67 30/30
6 169.15 31.09 169.24 169.39 36.52 0 169.15 - 1.02 30/30
1

B

102.64 5.35 102.64 102.71 2.44 15/30 102.64 - 0.19 30/30
2 91.96 8.68 91.96 92.06 3.07 4/30 91.96 - 0.22 30/30
3 88.38 19.37 88.40 88.54 4.15 0 88.38 - 0.26 30/30
4 235.75 7.91 235.75 235.77 26.90 23/30 235.75 - 0.88 30/30
5 197.79 19.53 197.87 198.03 32.23 0 197.79 - 0.77 30/30
6 158.65 34.29 158.74 158.86 35.20 0 158.65 - 1.00 30/30
1

C

1221.85 47.87 1221.85 1221.88 5880.62 22 1221.85 - 23.57 30/30
2 1057.96 109.02 1057.96 1058.10 7320.85 4 1057.96 - 25.15 30/30
3 1020.05 237.66 1020.22 1020.41 7638.71 0 1020.05 - 26.88 30/30
4 1636.13 76.29 1636.13 - 11998.06 30/30 1636.13 - 37.10 30/30
5 1397.8 143.22 1397.84 1398.15 13146.96 0 1397.8 - 38.28 30/30
6 1248.36 307.77 1248.59 1248.78 14670.06 0 1248.36 - 42.25 30/30
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Bandwidth distribution evaluation

Evaluating new bandwidth management results, Figure 4.6 shows that as long as there is enough

network bandwidth 4.6(a), we can freely allocate the users to the eNB which provides the best

service. The network occupation rates are somewhat irregular. By decreasing the network avail-

able bandwidth per eNB while maintaining the same number of users and network requirements,

we can see the occupation levels tend to have a more uniform distribution, which is more explicit

in Figure 4.6(c). Under bandwidth restrained scenarios, the model will prioritize serving all the

network users as best as possible at the sacrifice of service quality since we will allocate the

users to secondary or tertiary transmission sources.
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(c) 3.3 Gbps bandwidth maximum limit.

Figure 4.6: Network occupation levels for different max capacity limits per eNB.
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4.3 Simulation of the proposed model

User allocation

In this section, we evaluate the user allocation provided by the ILS metaheuristic. The simula-

tion process is similar to the flowchart presented in Figure 3.3, but this time we do not have the

coverage area creation and data center communication cost step. The evaluation of the allo-

cation process considers the region of São Paulo city, Brazil, shown in Figure 4.7. This region

can be obtained through the OpenStreetMap (OSMF, 2021) website by informing the coordi-

nates: latitudemin = -23.558, latitudemax = -23.5426, longitudemin = -46.642, longitudemax =

-46.6249. We can use this region’s perimeter data to extract a set of real eNBs positions from

the Telebrasil (2021) base station dataset. The simulation region has a 1947.65 m x 1878.95

m area and contains 26 eNBs from a local phone carrier. For our experiment, we will consider

a 300 meters transmission range, and the base stations are labeled from 0 to 25. We use the

SUMO (Simulation of Urban MObility) simulator to generate the route shown in Figure 4.8, which

has 432 positions. The UE starts at the bottom left and proceeds to the final destination at the

top right.

eNB1

eNB20 eNB0 eNB18

eNB8

eNB17 eNB5 eNB2 eNB9

eNB13

eNB25

eNB19

eNB3

eNB12
eNB6

eNB10

eNB24

eNB21

eNB16

eNB23

eNB11

eNB15

eNB22

eNB7eNB14

eNB4

Figure 4.7: Experiment’s eNBs positions at the city of São Paulo, Brazil.
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Figure 4.8: UE simulated route generate with SUMO.

Figure 4.9 shows the eNBs in which we allocate the user throughout the route (highlighted

in green). We can see that the allocations are very similar, differing for a moment around the

time-step 200. Our model kept the UE connected for a longer time in eNB5, but the number of

handovers had not changed as the final result. Each model performed 7 handovers if we discard

the initial allocation at eNB20 (the route starts at the bottom left).

The mobility simulation process reads one position per iteration until the final destination (top

right). The models receive the positions to compute the best candidate eNB. Both Ahmadi et al.

(2020) and our solution are affected by the RSRQ. The farther away, the worst the RSRQ value.

The eNB’s average handover frequency hi and the RSRQ value Θki (which is a function of the

distance that we compute with the UE’s current position) are enough for our allocation model to

compute the best candidate eNB, as established in Equation (3.19).

On the other hand, Ahmadi et al. (2020) proposal requires all the possible routes connect-

ing a user’s current position and final destination to perform the allocation. For simplification

purposes, this simulation only considered the route of Figure 4.8 as the possible path, which is

a best-case scenario where we can calculate the ideal point as the route’s middle point, which

changes every time the current position is updated.

Figures 4.10(a) and 4.10(b) show respectively the allocation sequence for Ahmadi et al.

(2020) and our proposal, with the period of each allocation. As previously stated, our solution

maintained the user in eNB5 for a longer period. Each model performed 7 handovers, starting
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Figure 4.9: User allocation through the route.

from eNB20, proceeding to eNB8 and continuing until eNB19.
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(b) Our proposal.

Figure 4.10: UE’s allocation eNBs for each model.

On the evaluation of other metrics besides the allocation and handover behavior, Figure 4.11

shows the user’s RSRQ status through the route. The closer to zero, the better. It is in our

interest to always choose the best RSRQ eNB to maintain the users’ connection quality. The

models’ results are mostly overlapped through the route, with short periods when our proposal

is better. We can now understand why we kept the user allocated in eNB5 for a more extended
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period around the 200 time-step mark since this eNB provides a better RSRQ.
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Figure 4.11: User’s RSRQ connection value through the route.

According to Figure 4.11, achieved better RSRQ results for short periods, but to investigate

further and reduce the influence of the eNBs position, we generated 100 instances with different

random eNBs placement. We consider the São Paulo map region of Figure 4.7, 26 eNBs, and

the same user’s travel route 4.8. For each instance, we save travel’s RSRQ time series and

calculate its average value.
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Figure 4.12: Boxplot of the average RSRQ value for 100 random instances of eNB placement.
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Figure 4.12 presents the boxplot of the RSRQ averages for each placement instance. The

overall RSRQ average for Ahmadi’s and our proposal are -11.03 dB, and -10.87 dB, which gives

a 1.45% gain to our allocation model. The boxplot shows that the models produce very similar

solutions, and the two-sided Kolmogorov-Smirnov test considering a 5% significance provides p-

value = 0.3667 (> 0.05), which reinforces that the models are statistically equal. The advantage

of our solution is that our allocation considers the network’s bandwidth limits, and also, we do not

need to know or predict the users’ future routes. Instead, we require only the current position.

Ahmadi et al. (2020) rely on third-party applications to compute, for every network user, all

possible routes to reach the final destination. These routes are the inputs to calculate an ideal

point that aims to cover most paths, and the eNBs closer to the ideal point receive higher scores

than distant ones.

Realistically, this approach may face severe time response overhead due to third-party ap-

plications network delay. Furthermore, finding all the possible paths between two points is a

N P -hard problem (Chatterjee and Banerjee, 2014). Performing this operation for each user is

an expensive task.

This chapter presented the results of the allocation model. In Section 4.1, we evalu-

ated the average execution time, user allocation, and bandwidth management for the

distance-based model solved with the branch and bound algorithm. In Section 4.2, we

discussed the results of our heuristic approach considering the RSRQ parameter. Sim-

ilar to the previous evaluation, we observed the heuristic approach average execution

time, bandwidth management according to base station’s bandwidth occupation, and

allocation results were discussed in Section 4.3.



5
FINAL CONSIDERATIONS

5.1 Conclusion

The transition to the 5G generation brings new possibilities for improving application and models.

In this work, we presented a mathematical model to improve allocation and handover processes

considering users (UEs) and base stations (eNBs) of mobile networks. Our first proposal con-

sidered the shortest distance between base stations and users, the handover average, and

the bandwidth requirements. Since distance does not consider wireless communication factors

such as noise and environment interference, we replaced the distance parameter with the RSRQ

(Reference Signal Received Quality) indicator, which measures communication quality between

users and base stations.

As the main mobility simulation scenarios, we considered a 13.7 Km route at Maceió City,

Brazil. A user provides its current location at the route with GPS collected data. In the second

mobility scenario, we use a map region of the city of São Paulo, Brazil. The map region has the

real position of 26 eNBs from a local phone carrier, and we simulate the user routes with the

SUMO simulator.

We implemented the allocation models with a heuristic method and the CPLEX optimization

solver, which solves linear integer problems with the branch and bound algorithm, an exact

solution. In resource-constrained scenarios, exact algorithms might exceed the limits of available

resources. Heuristic approaches are better for these situations, and at the sacrifice of optimal

values for good enough solutions, we can obtain better resource management and faster-solving

methods.

On average, the iterated local search obtained an execution time reduction of approximately

82% compared to the branch and bound exact algorithm. The GRASP-based algorithm showed

the worst results due to its recurrent solution construction and lack of mechanisms to avoid local

minimum. Regarding the RSRQ indicator, the solution reached a 1.45% average gain, and the
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number of performed handovers was maintained, compared to a similar literature model. De-

spite the modest improvement, which makes our proposal statistically equivalent to the literature

model, we offer the advantage of not predicting the users’ possible and future routes. Only the

current position is required. Furthermore, our solution also considers base stations’ bandwidth

capacity, controlling the allocation and network occupation limits.

We conclude by stating the following contributions: i) A mathematical model to allocate users

in base stations of mobile wireless networks; ii) Proposition and evaluation of a heuristic method

as an alternative to exact solving approach; iii) Evaluation of allocation on different mobility

simulations, one of which considers the real position of base stations from a local mobile carrier;

iv) A evaluation and comparison of our model with existing literature work. Also, some of our

work results have already been published (Ramos et al., 2019b,a).

5.2 Future work

Designing allocation models to wireless networks, we can consider characteristics such as pre-

diction factors, user’s traveling speed, and estimation of failure probability. Future work includes

the study of new characteristics and their impacts on the mathematical formulation. We con-

sider the development of a hybrid approach combining the advantages of ILS-VND with an

exact method. Heuristic approaches can provide satisfactory results, but it is susceptible to

non-optimal values. We can improve our proposal by generating initial solutions with heuristic

methods and using the result as an input to exact methods. This approach would impact the

average execution time of the exact method and provide an optimal solution. As for new mobility

scenarios, we consider integration and real-time simulation with the SUMO mobility simulator.
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