

Universidade Federal de Alagoas Instituto de Computação Coordenação de Pós-Graduação em Informática

LUCIANO JÚLIO DOS SANTOS

Monitoramento do Desequilíbrio de Tensão e da Corrente Reversa na Rede de Distribuição de Baixa Tensão: Uma Proposta de Sistema Computacional que Utiliza a Infraestrutura de Iluminação Pública

Maceió 2023

LUCIANO JÚLIO DOS SANTOS

Monitoramento do Desequilíbrio de Tensão e da Corrente Reversa na Rede de Distribuição de Baixa Tensão: Uma Proposta de Sistema Computacional que Utiliza a Infraestrutura de Iluminação Pública

Dissertação apresentada ao Programa de Pós-Graduação em Informática da Universidade Federal de Alagoas como requisito parcial para obtenção do título de Mestre em Informática.

Área de Concentração: Engenharia de Sistemas Computacionais.

Orientador: Prof.º Dr.º Erick de Andrade Barboza

Coorientador: Prof.º Dr.º Igor Cavalcante Torres

Maceió-AL 2023

Catalogação na Fonte Universidade Federal de Alagoas Biblioteca Central Divisão de Tratamento Técnico

Bibliotecário: Marcelino de Carvalho Freitas Neto - CRB-4 - 1767

S237m Santos, Luciano Júlio dos. Monitoramento do desequilíbrio de tensão e da corrente reversa na rede de distribuição de baixa tensão : uma proposta de sistema computacional que utiliza a infraestrutura de iluminação pública / Luciano Júlio dos Santos. - 2023. 164 f. : il. Orientador: Erick de Andrade Barboza. Dissertação (mestrado em informática) - Universidade Federal de Alagoas. Instituto de Computação. Maceió, 2023. Bibliografia: f. 101-109. Apêndices: f. 110-156. Anexos: f. 157-164. 1. Engenharia de sistemas de computação. 2. Sistema de monitoramento. 3. Iluminação pública. 4. Distribuição de baixa tensão. 5. Energia elétrica -Distribuição. 6. Direção da Correntes elétricas - Distribuição. 7. Sistemas fotovoltaicos integrados em edifícios. I. Título.

CDU: 004:621.3

UNIVERSIDADE FEDERAL DE ALAGOAS/UFAL **Programa de Pós-Graduação em Informática – PPGI Instituto de Computação/UFAL** Campus A. C. Simões BR 104-Norte Km 14 BL 12 Tabuleiro do Martins Maceió/AL - Brasil CEP: 57.072-970 | Telefone: (082) 3214-1401

Folha de Aprovação

LUCIANO JULIO DOS SANTOS

MONITORAMENTO DO DESEQUILÍBRIO DE TENSÃO E DA CORRENTE REVERSA NA REDE DE DISTRIBUIÇÃO DE BAIXA TENSÃO: UMA PROPOSTA DE SISTEMA COMPUTACIONAL QUE UTILIZA A INFRAESTRUTURA DE ILUMINAÇÃO PÚBLICA

Dissertação submetida ao corpo docente do Programa de Pós-Graduação em Informática da Universidade Federal de Alagoas e aprovada em 23 de maio de 2023.

Banca Examinadora:

 Documento assinado digitalmente

 E RICK DE ANDRADE BARBOZA

 Data: 07/06/2023 10:54:20-0300

 Verifique em https://validar.iti.gov.br

 Prof. Dr. ERICK DE ANDRADE BARBOZA

 UFAL – Instituto de Computação

 Orientador

 ANDRE LUIZ LINS DE

 AQUINO:032350154

 00

 Prof. Dr. ANDRE LUIZ LINS DE AQUINO:03235015400

 Dados: 2023.06.07

 13:08:45 - 03'00'

UFAL – Instituto de Computação Examinador Interno

Igor Cavalcante Torres Assinado de forma digital por Igor Cavalcante Torres

Prof. Dr. IGOR CAVALCANTE TORRES UFAL – Centro de Ciências Agrárias - CECA **Coorientador**

gov.br

Documento assinado digitalmente RONALDO RIBEIRO BARBOSA DE AQUINO Data: 07/06/2023 11:26:06-0300 Verifique em https://validar.iti.gov.br

Prof. Dr. RONALDO RIBEIRO BARBOSA DE AQUINO UFPE- Universidade Federal de Pernambuco Examinador Externo

Agradecimentos

Agradeço,

A Deus, pelo dom da vida, por todas as oportunidades concedidas ao longo de toda minha caminhada pessoal e profissional que com sua misericórdia, apesar de minhas imperfeições, me ajudou a chegar aqui e me proporcionou todos os momentos.

Ao meu pai, Audálio Júlio e minha mãe, Maria José pelo carinho, sábios conselhos, pela educação que me deram, por todos os ensinamentos que carrego comigo e pelo incentivo de buscar sempre mais conhecimento, mas manter-se humilde acima de tudo. À minha esposa, Iraneide Ferreira que esteve sempre ao meu lado, que me auxilia a todo momento, pelos incentivos de buscar sempre mais conhecimento e sendo um porto seguro em tempos tempestuosos. À minha filha Nathália Mirelle por ser a maior bênção que um pai poderia ter pedido a Deus e por ter me incentivado e ajudado nesta caminhada! E a minha querida Pet Penelope da raça pug que deixa saudades, lembrança de suas brincadeiras que sempre me fizerem rir durante a escrita deste trabalho, e do seu jeito especial no olhar. Todos vocês são e foram essenciais em minha vida! Amo vocês!

Aos meus amigos e colegas de graduação e trabalho que continuam ao meu lado, pelas conversas e incentivos diários sempre dispostos a me ajudar e me animar, não importando a situação. Aos amigos Engenheiro Eletricista Bemielison Gletson da Universidade Federal Rural do Semi-Árido (UFERSA), ao Professor Dr.º Igor Cavalcante, ao Engenheiro Eletricista Erlandson Lemos Diretor Técnico da SEMIP. Aos professores Dr.º André Luiz Lins de Aquino, Dr.º Leandro Dias da Silva, Dr.º Rafael de Amorim Silva, e Dr.º Ranilson Oscar Araújo Paiva, do Programa de Pós Graduação em Informática da UFAL pelas orientações e aulas ofertadas, aos colegas de curso pelo apoio, e ao Instituto de Ciências Computação (IC) da UFAL, sob comando do professor Dr.º Davi Bibiano Brito.

Aos moradores Audálio Júlio, Benedito Rodrigues, Ednaldo Almeida, José Lessa, José Rodrigues, Paulo Assunção, José Ronaldo, Walkiria Barros da cidade de Marechal Deodoro que contribuíram para a pesquisa por meio do termo de cooperação técnica, a Guilherme Matos da Industria IMS Soluções em Energia Ltda pela licença de 30 dias do Software PowerMANAGER desktop, a Stemáquinas Engenharia Ltda sob a direção do amigo Engenheiro Eletricista Marcos Antonio, por ceder o analisador de energia modelo Power-NET P-600 G4 do fabricante IMS, a Superintendência Municipal de Energia e Iluminação Pública de Maceió (SIMA) pela doação dos materiais usados da iluminação pública e a Secretaria Municipal de Iluminação Pública de Marechal Deodoro (SEMIP) pelo apoio técnico e operacional.

Ao professor e orientador Dr.º Erick de Andrade Barboza, pelas aulas, paciência e guia no processo de desenvolvimento e escrita desse trabalho, contribuições estas fundamentais na produção científica, bem como pelo compartilhamento de seu conhecimento e, especialmente, pela motivação.

Dedicatória

Este trabalho é dedicado a Deus, e àqueles que fundamentaram todo o meu conhecimento até aqui. "A ciência é muito mais que um corpo de conhecimentos. É uma maneira de pensar." Carl Sagan.

Resumo

As matrizes energéticas do Brasil e do mundo estão num processo de descentralização da produção de energia devido à expansão da Geração Distribuída (DG) resultado da energia gerada por meio dos Painéis Fotovoltaicos (PV) instalados nos telhados das residências em áreas urbanas. Esta descentralização fez do monitoramento da qualidade da energia das Redes de Distribuição de Baixa Tensão (RDBT) um dos maiores desafios para os Operadores de Sistemas de Distribuição (OSDs) que só estão conscientes dos níveis de qualidade energética por intermédio das queixas dos clientes às distribuidoras. Existem poucos projetos de implementação de sistemas para este fim, possivelmente devido ao elevado investimento necessário para esta tecnologia. Por conseguinte, este trabalho propõe um sistema de monitoramento do sentido do fluxo da corrente elétrica e do Desequilíbrio de Tensão (DT) em uma RDBT, utilizando a Infraestrutura da Iluminação Pública (IIPu). O sistema proposto fornecerá aos OSDs informações em tempo real da qualidade da energia na RDBT por meio de um modelo de aquisição de dados de baixo custo, utilizando a IIPu por meio dos Relés de Telegestão (RT). O sistema foi validado empiricamente por meio do monitoramento de uma rua onde os sistemas de geração fotovoltaica ligados a RDBT injetam energia. Os resultados mostram que o sistema proposto pode identificar a direção da corrente na RDBT e estimar o DT com um erro médio absoluto de 0,096% em comparação com o analisador de energia profissional. Os resultados deste projeto podem trazer contribuições relevantes para o desafio no monitoramento da qualidade da energia; por exemplo, os OSDs podem utilizar o sistema proposto para acessar a informação em tempo real relativa à RDBT por meio de um modelo de aquisição de dados de baixo custo. Espera-se que os resultados deste projeto tragam contribuições relevantes para o desafio no monitoramento dos níveis da qualidade da energia, colaborando assim para uma expansão mais ordenada da distribuição da produção de energia no Brasil.

Palavras-chave Engenharia de Sistemas Computacionais, Sistema de Monitoramento, Sistema de Iluminação Pública, Sistema de Distribuição de Baixa Tensão, Desequilíbrio da Tensão, Direção da Corrente Elétrica, Painéis Fotovoltaicos.

Abstract

Brazil's and the world's energy matrices are in an energy generation decentralization process due to the Distributed Generation (DG) expansion resulting in the energy generated through Photovoltaic Panels (PP) installed on the roofs of residences in urban areas. This change has made the energy quality monitoring for the Low Voltage Distribution Networks (LVDN) one of the Distribution System Operators (DSO) biggest challenges, who are only aware of the energy quality levels through the customers' complaints to the distributors. There are few projects implementing systems for this purpose, possibly due to the high investment required for this technology. Therefore, this research proposes a cyber-physical system for monitoring the direction of electric current flow and voltage imbalances in an RDBT using the street lighting infrastructure. The proposed system will provide the DSO's with real-time information on the power quality in the RDBT through a low-cost data acquisition model using the street lighting infrastructure through Telemanagement Relays (TR). The system was empirically validated by monitoring a street where photovoltaic generation systems stochastically connected to RDBT inject power. The results show that the proposed system can identify the direction of the current in the RDBT and estimate the voltage unbalance with an average absolute error of 0.096% compared to the professional power analyzer. The results of this project can make relevant contributions to the challenge in power quality monitoring; for example, DSO's can use the proposed system to access real-time information relative to the RDBT through a low-cost data acquisition model. It is expected that the results of this project would bring relevant contributions to the challenge of monitoring the levels of power quality, thus collaborating for a more orderly expansion of the distribution of energy production in Brazil.

Keywords: Voltage Unbalance, Voltage Profiles, Electric Current Direction, Monitoring System, Low Voltage Distribution System, Photovoltaic Panels, Public Lighting System.

Lista de Figuras

1	Matriz elétrica do Brasil em 2001. Dados obtidos da (EPE, 2021a)	3
2	Matriz elétrica do Brasil em abril de 2023. Dados obtidos do Infográfico da	
	ABSOLAR (ABSOLAR, 2023)	3
3	Evolução da fonte solar fotovoltaica no Brasil. Fonte: Adaptado de (ABSO-	
	LAR, 2023)	5
4	Conceito básico do sistema de geração até a distribuição. Fonte: Adaptado	
	de (TRISUL, 2021)	12
5	Conceito básico do sistema de telegestão e comunicação com servidor.	
	Fonte: Adaptado de (INTELI, 2022)	13
6	Conceito básico da geração de energia através dos painéis fotovoltaicos e sua	
	injeção a uma rede de distribuição. Fonte: Adaptado de (SENERGAM, 2022)	15
7	Conceito básico do desequilíbrio de tensão identificado na amplitude em um	
	sistema trifásico. Fonte: Adaptado de (OLESKOVICZ, 2018)	16
8	Fluxograma de seleção de estudos. Fonte: Adaptado de (SILVA; BRAGA,	
	2020)	22
9	Diagrama de fluxo de materiais e métodos do estudo realizado. Fonte: O autor.	41
10	Fluxograma de coleta dos dados quando utilizado o analisador de energia e	
	aplicação nos Métodos da IEEE 1159 (IEEE 1159, 2019). Fonte: O autor.	46
11	Fluxograma de coleta dos dados que manuseia três voltímetros, em seguida	
	utiliza as equações polifásica e por fim aplica o Método Cigré (IEEE 1159,	
	2019). Fonte: Elaborado pelo autor.	47
12	Fluxograma de coleta dos dados, realizada por meio da infraestrutura ilu-	
	minação pública que utiliza os relés de telegestão, cujos dados seguem para	
	processamento e inserção no método de cálculo, a ser aplicado nas equações	
	polifásicas e, por fim, inseridos no Método Cigré. Fonte: Elaborado pelo autor.	51
13	Visão geral do sistema proposto. Fonte: Elaborado pelo autor.	57
14	Mapa dos logradouros. Fonte: Adaptado do Google Earth Pro e dados da	

15	Foto do Padrão I1 do modelo das luminárias que foram retiradas. Fonte:	
	Elaborado pelo autor.	62
16	Foto do Padrão I2 do modelo das luminárias que foram instaladas e um dos	
	protótipos dos relés desenvolvidos por este autor instalado acima da luminá-	
	ria. Fonte: Elaborado pelo autor.	63
17	Foto com detalhe da ligação dos cabos da luminária na rede de distribuição	
	e identificação do estudo no braço da luminária. Fonte: Elaborado pelo autor.	63
18	Detalhe do procedimento de instalação e montagem de um ponto do sistema	
	de Iluminação Pública (IPu) do Padrão I2. Fonte: Elaborado pelo autor	64
19	Fluxograma de coleta dos dados, incluindo a parte física da infraestrutura	
	de iluminação pública através dos relés de telegestão, que seguem para pro-	
	cessamento da informações por meio do método de cálculo, em seguida são	
	aplicados nas equações polifásica, para, por fim, serem aplicados no Método	
	Cigré. Fonte: Elaborado pelo autor.	66
20	Plataforma City Lights Maps desenvolvida pelo autor e utilizada como prova	
	de conceito. Fonte: Elaborado pelo autor.	71
21	Plataforma WEB City Lights Maps desenvolvida e utilizada como prova de	
	conceito - Gráfico dos níveis da tensão do ponto de iluminação MD000006	
	(Relé 6C) por período. Fonte: Elaborado pelo autor e extraído de sua plata-	
	forma WEB	72
22	Analisador de energia, modelo PowerNET PQ 600 G4 do fabricante IMS.	
	Fonte: IMS (IMS, 2020)	74
23	PowerMANAGER desktop - Software para análise de grandezas elétricas.	
	Fonte: Programa da IMS (IMS, 2020) e dados extraídos do analisador de	
	energia PowerNET P-600 G4 para o formato CSV e utilizados pelo autor.	75
24	Diagrama de procedimentos descritos na Seção 4.7 referentes às atividades	
	desenvolvidas para obtenção dos resultados.	79
25	Os valores de tensão entre a fase B e o neutro foram obtidos a partir dos seis	
	relés e do analisador de energia ligados ao mesmo ponto elétrico durante 5	
	horas	81

26	Valores de tensão entre a fase B e o neutro obtidos a partir dos seis relés, após	
	aplicação do fator de correção, e o analisador de energia ligado no mesmo	
	ponto elétrico durante 5 horas.	81
27	Os Boxplots representam a distribuição absoluta de erros entre as leituras de	
	tensão do relé e as leituras de tensão do analisador de potência	82
28	Correlação entre as variáveis dos valores da tensão, obtidos através dos seis	
	relés e do analisador de energia (a) sem utilizar o Fator de Correção (FC) e	
	(b) utilizando o Fator de Correção (FC)	83
29	Leituras dos níveis de tensão do relé 1A e do relé 4A, e os resultados da fase	
	A calculada usando a Equação 24, durante um período de 24 horas com	
	intervalo de 5 minutos entre as leituras.	85
30	Leituras dos níveis de tensão do relé 2B e do relé 5B, e os resultados da	
	fase B calculada usando a Equação 24, durante um período de 24 horas com	
	intervalo de 5 minutos entre as leituras	85
31	Leituras dos níveis de tensão do relé 3C e do relé 6C, e os resultados da fase	
	C calculada usando a Equação 24, durante um período de 24 horas com	
	intervalo de 5 minutos entre as leituras	86
32	Corrente estimada para cada fase calculada usando Equação 22 considerando	
	um período de 24 horas com intervalo de 5 minutos entre leituras	86
33	Leituras do analisador de energia para a fase A e do perfil da tensão da fase A	
	calculado pelo sistema proposto, utilizando dados do relé 4A, considerando	
	24 horas com um intervalo de 5 minutos entre as leituras	89
34	Leituras do analisador de energia para a fase B e do perfil da tensão da fase	
	B calculado pelo sistema proposto, utilizando dados dos relés 2B e 5B, con-	
	siderando 24 horas com um intervalo de 5 minutos entre as leituras	89
35	Leituras do analisador de energia para a fase C e o nível do perfil da tensão	
	da fase C calculado pelo sistema proposto, utilizando dados dos relés 3C e	
	6C, considerando 24 horas com um intervalo de 5 minutos entre as leituras.	90

36	Correlação entre a tensão medida pelo analisador de energia e a tensão cal-	
	culada pelo sistema proposto para as fases A, B, e C no poste 7 (ponto de	
	referência), considerando 24 horas com um intervalo de 5 minutos entre lei-	
	turas	90
37	Desequilíbrio da tensão calculado pelo sistema proposto e medido pelo ana-	
	lisador de energia considerando 24 horas com um intervalo de 5 minutos	
	entre leituras.	92
38	Histograma do Mean Absolute Error (MAE) considerando o desequilíbrio	
	de tensão calculado pelo sistema proposto e medido pelo analisador de energia.	92
39	Gráfico das leituras realizadas por meio da IIPu dos níveis de tensão das	
	fases A, B e C em relação ao neutro no poste 7 da rede de distribuição em	
	baixa tensão. A região verde delimita o intervalo no qual o valor da tensão é	
	adequado segundo a PRODIST através do Módulo 8 (ANEEL, 2022)	94
40	Gráfico de dispersão do Desequilíbrio da Tensão (DT) na rede de distribuição	
	em baixa tensão.	95

Lista de Tabelas

1	Critérios de qualidade para avaliar os estudos selecionados na revisão siste-	
	mática da literatura.	21
2	Lista de artigos incluídos na revisão e suas pontuações de qualidade. A linha	
	vermelha ilustra o ponto de corte considerando um limiar de 70% para o	
	fator de qualidade.	24
3	Resumo técnico da revisão sistemática da literatura entre os modelos de si-	
	mulação, estudos empírico e análises das literaturas	25
4	Fatores de correção aplicados aos níveis de tensão dos 6 relés para corrigir	
	os erros de leitura em relação aos do analisador de energia, bem como o erro	
	médio absoluto (MAE) antes e depois da aplicação do fator em cada um dos	
	relés	82
5	Erro médio absoluto (Mean Absolute Error) dos valores estimados (sistema	
	proposto) em relação aos observados (analisador de energia) da tensão para	
	cada uma das fases.	91
6	Leituras dos níveis de tensão fora da faixa adequada (Volts) das 2016 amos-	
	tras válidas coletadas por fase	95
7	Limites definidos para Desequilíbrio da Tensão (DT) por normas técnicas,	
	Technical Report (TR) e Review Panel identificando os países e membros da	
	<i>European Union</i> (EU)	96
8	Quantidade de amostras e seus percentuais acima dos limites	96
9	Valores das tensões coletadas pelos seis relés e pelo analisador de energia	
	durante 5 horas - Para o cálculo do fator de correção	158
10	Valores das tensões coletadas pelos seis relés após 24h de funcionamento.	
	Os dados contidos na tabela correspondem a 32 dos 288 válidos	160
11	Valores das tensões correspondente aos dados coletadas pelo analisador de	
	energia destinados a validação da métrica. Os dados contidos na tabela cor-	
	respondem a 32 dos 288 válidos	162

12 Monitoramento dos níveis das tensões utilizando a Infraestrutura da Iluminação Pública (IIPu) durante o período de 7 dias ou até adquirir 2016 leituras válidas. Os dados contidos na tabela corresponde a 32 dos 2016 válidos. . . 164

Lista de Abreviaturas

A/D Analog to Digital Converter em português, Conversor analógico-digital. ABNT Associação Brasileira de Normas Técnicas. AE Analisador de Energia. ANEEL Agência Nacional de Energia Elétrica. ANSI American National Standards Institute. CA Tensão e Corrente Alternada. CC Tensão e Corrente Contínua. CEP Circle of Error Probable, em português Provável Erro Circular. Congrès Internationale des Grand Réseaux Électriques a Haute Tension, Cigré em português Congresso Internacional de Grandes Redes Elétricas de Alta Tensão. CM Control Module, em português Módulo de Controle. CPS Cyber-Physical System, em português Sistema Ciber-Físico. CSS Cascading Style Sheets, em português Folhas de estilo em cascata, é um mecanismo para adicionar estilo a um documento web. CSV Comma-separated values, em português Valores Separados Por Virgula, também conhecido como CSV, são arquivos de texto de formato regulamentado pelo RFC 4180, que faz uma ordenação de bytes ou um formato terminado em linha, que separa os valores com vírgulas. DDP É a diferença de potencial elétrico entre dois pontos ou a diferença em energia potencial elétrica por unidade de carga elétrica entre dois pontos.

Sua unidade de medida é o (v) volt.

- **DT** Desequilíbrio de Tensão.
- **EPE** Empresa de Pesquisa Energética. É uma empresa pública vinculada ao Ministério de Minas e Energia, que por finalidade prestar serviços na área de estudos e pesquisas destinadas a subsidiar o planejamento do setor energético.
- FC Fator de Correção é o valor aplicado para corrigir os erros nas leituras do relés de telegestão, em relação as leituras do analisador de energia.

FERs Fontes de Energias Renováveis.

- **FP** Fator de potência.
- GC Geração Centralizada.
- **GD** Geração Distribuída.
- **GPRS** *General Packet Radio Service*, em português Serviço de Rádio de Pacote Geral.
- **GPS** *Global Positioning System*, em português Sistema de Posicionamento Global.
- **GSM** *Global System for Mobile Communications 2G*, em português Sistema Global para Comunicações Móveis é uma tecnologia móvel para telefones celulares.
- **GW** Unidade de medida de potência em Gigawatt.
- HTML A tecnologia é fruto da junção entre os padrões *HyTime* e *SGML*. *HyTime* é um padrão para a representação estruturada de hipermídia e conteúdo baseado em tempo.
- **HTTP** *Hypertext Transfer Protocol*, em português Protocolo de Transferência de Hipertexto.
- **IEA** *International Energy Agency*, em português Agência Internacional de Energia.

IEC	International Electrotechnical Commission, em português Comissão Ele-		
	trotécnica Internacional.		
IEEE	Instituto de Engenheiros Eletrônicos e Eletricistas.		
IIPu	Infraestrutura da Iluminação Pública.		
IPu	Iluminação Pública.		
kV	Unidade de medida da tensão em kilovolts.		
kVA	Unidade de medida voltampere ou volt-ampère é a unidade utilizada na		
	medida de potência aparente em sistemas elétricos de corrente alternada.		
	Sendo 1000 VA = 1 kVA.		
kW	Unidade de medida de potência em kilowatt. Sendo 1000 W = 1 kW.		
kWh	Unidade de consumo de potência em kilowatt hora.		
kWp	Unidade de medida de potência, normalmente associada a células fotovol-		
	taicas (kiloWatt-pico).		
LC	É uma expressão dada ao conjunto que constitui a composição de um		
	ponto de iluminação, exemplo utilizado no estudo: luminária com base		
	(tomada), relé fotoelétrico, lâmpada de descarga, reator, braço, cabos de		
	ligação e parafusos.		
M2M	Machine-to-Machine, em português Máquina a Máquina.		
ms	Unidade de medida de tempo em milissegundo.		
MW	Unidade de potência em Megawatt.		
MySQL	Sistema de gerenciamento de banco de dados (SGBD), que utiliza a lin-		

- guagem SQL (Linguagem de Consulta Estruturada, do inglês *Structured Query Language*).
- **NEMA** *National Equipment Manufacturer's Association*, em português Associação Nacional de Fabricantes de Equipamentos.

- Ohm Ohm é a unidade de medida de resistência elétrica que representa a relação entre a tensão (medida em volts) e a corrente elétrica (medida em amperes) de um elemento.
- ONS Operador Nacional do Sistema Elétrico. É uma entidade brasileira de direito privado sem fins lucrativos que é responsável pela coordenação e controle da operação das instalações de geração e transmissão de energia elétrica do Sistema Interligado Nacional (SIN), sob a fiscalização e regulação da Agência Nacional de Energia Elétrica (Aneel) do Brasil.
- **ONU** Organização das Nações Unidas.
- **OSD** Operador do Sistema de Distribuição.
- Padrão I1 Tipo de estrutura de um ponto de iluminação com braço que possui uma projeção de até 1 metro para a luminária, e que os equipamentos auxiliares (reator, tomada para relé, capacitores, ignitores e o relé fotoelétrico) estão instalados na sapata do braço da luminária, sendo a lâmpada o único material instalado na luminária.
- Padrão I2 Tipo de estrutura de um ponto de iluminação com braço que possui uma projeção de 1,5 até 2 metros para a luminária, e que os equipamentos auxiliares estão embutidos dentro da luminária (lâmpada, *led*, reator, *driver*, tomada para relé, capacitores, ignitores e outros), sendo o relé fotoelétrico instalado sobre a luminária.

PHP *PHP: Hypertext Preprocessor*, originalmente *Personal Home Page*.

PR Ponto de Referência, local definido para calcular e identificar os perfis e o desequilíbrio da tensão na rede de distribuição de baixa tensão.

PRODIST Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional.

pu Sistema por unidade.

PV Painéis Fotovoltaicos ou Placas Fotovoltaicas.

- **RD** Rede de Distribuição.
- **RDBT** Rede(s) de Distribuição em Baixa Tensão.
- **RMS** *Root Mean Square*, em português valor quadrático médio ou valor eficaz.
- **RSL** Revisão Sistemática da Literatura.
- **RT** Relés de telegestão.
- **RTC** *Real Time Clock*, em português é um relógio de tempo real.
- **SD** Sistema de Distribuição.
- SM Smart Module, em português Módulo Inteligente.
- **SSL** *Secure Sockets Layer*, em português camada de soquete seguro, é um protocolo de segurança que cria um link criptografado entre um servidor Web e um navegador Web.
- StArt Estado da Arte Ferramenta utilizada para revisões sistemáticas.
- **TW** Unidade de medida de potência em Terawatt.
- VA O volt-ampère, representado pelo símbolo (VA), é uma unidade de medida de potência aparente utilizada nos sistemas elétricos de corrente alternada.
 É um produto da tensão aplicada ao equipamento multiplicada pela corrente consumida por ele.
- **VAR** Unidade de medida de potência volt-ampere reativo.
- WEB A World Wide Web, em português rede mundial de computadores, designa um sistema de documentos em hipermídia que são interligados e executados na Internet. Os documentos podem estar na forma de vídeos, sons, hipertextos e imagens.

Wp Unidade de medida de potência, normalmente associada a células fotovoltaicas (Watt-pico).

Lista de Símbolos

- *A* Unidade de medida da corrente elétrica no Sistema Internacional de Unidades.
- I Deslocamento de cargas dentro de um condutor. Unidade de medida é (A)Ampere.
- *K* Desequilíbrio de Tensão (%), é um índice para a quantificação do desequi líbrio de tensão em porcentagem.
- *L* Comprimento do cabo ou condutor elétrico. Unidade de medida é (m) Metro.
- *R* Resistência elétrica do material. Unidade de medida é (Ω) Ohm.
- S Seção transversal do condutor. Unidade de medida é (mm^2) .
- V_+ Componente de sequência positiva de tensão.
- *V*₋ Componente de sequência negativa de tensão.
- V_{ab} Tensão entre as fase A e B.
- V_{an} Tensão entre a fase A e Neutro.
- V_{bc} Tensão entre as fase B e C.
- V_{bn} Tensão entre a fase B e Neutro.
- V_{ca} Tensão entre as fase C e A.
- V_{cn} Tensão entre a fase C e Neutro.
- V_m Valor médio entre os módulos de tensão das fases A, B e C.
- *V_{rms}* Tensão *Root Mean Square* (RMS) ou tensão eficaz.
- V Tensão elétrica (ou diferença de potencial elétrico). Unidade de medida é(V) Volts.
- W O watt é a unidade de potência ou fluxo radiante no Sistema Internacional de Unidades, igual a 1 joule por segundo. É usado para quantificar a taxa de transferência de energia).

- Δ É a diferença de potencial elétrico entre dois pontos. Unidade de medida é (*V*) Volts.
- Φ Símbolo que sucede o número de condutores por fase para apresentar os tipos de Desequilíbrio de Tensão (DT).
- β Grandeza adimensional que relaciona tensões de fase para cálculo de DT% ou K%.
- δ É o percentual de queda de tensão dado pela diferença de potencial elétrico entre dois pontos. Unidade de medida é (%) percentual.
- ρ Constante do material condutor. Para o cobre o valor é 0,0178, e alumínio o valor é 0,0292.
- k Constante cujo valor para os circuitos com rede monofásica é igual a 2 e trifásico com neutro é igual a $\sqrt{3}$.

Sumário

1	Intr	odução	1				
	1.1	Motivação do Trabalho	1				
	1.2	Objetivo Geral e Específico	7				
		1.2.1 Objetivo Geral	7				
		1.2.2 Objetivos Específicos	7				
	1.3	Relevância da Proposta	8				
	1.4	Contribuições	9				
	1.5	Estrutura do trabalho	10				
2	Fun	damentação Teórica	11				
	2.1	Do sistema de geração até a distribuição de energia	11				
	2.2	O conceito do sistema de telegestão na iluminação pública	12				
	2.3	A geração de energia através dos painéis fotovoltaicos e sua injeção na rede	14				
	2.4	O desequilíbrio de tensão e o sentido da corrente no sistema de distribuição	15				
3	Tral	Trabalhos Relacionados					
	3.1	Pesquisa bibliográfica	18				
		3.1.1 Planejamento	18				
		3.1.2 Seleção	21				
		3.1.3 Relatório	23				
		3.1.4 Resumo dos estudos através das suas técnicas aplicadas	23				
	3.2	Estudos dos sistemas de monitoramento da qualidade da energia	26				
		3.2.1 Analogia entre o estudo proposto e literatura apresentada	29				
	3.3	Estudos sobre desbalanceamento do sistema elétrico nas redes de distribuição	29				
		3.3.1 Analogia entre o estudo proposto e literatura apresentada	34				
	3.4	Estudos sobre os impactos da injeção de energia fotovoltaica	35				
		3.4.1 Analogia entre o estudo proposto e literatura apresentada	38				
4	Mat	eriais e métodos	40				
	4.1	Métodos para mensurar o desequilíbrio da tensão	42				
	4.2	Equações de circuitos polifásico	44				

	4.3	Diagramas para coleta dos dados utilizados no cálculo do desequilíbrio da			
		tensão		45	
	4.4 Método de cálculo que utiliza a Infraestrutura da Iluminação Pública (IIF			47	
		4.4.1	Conceito de queda de tensão	47	
		4.4.2	Desenvolvimento do método de cálculo a partir do conceito de queda		
			de tensão	49	
	4.5	.5 Processo sincronização e cálculo do fator de correção			
		4.5.1	Processo de sincronização dos relés de telegestão e do analisador de		
			energia	54	
		4.5.2	Cálculo do fator de correção dos 6 relés em relação ao analisador de		
			energia	54	
4.6 Infraestrutura da iluminação pública, comunicação e geração		trutura da iluminação pública, comunicação e geração	56		
		4.6.1	Geradores de energia através de Painéis Fotovoltaicos e sua injeção		
			na rede de distribuição	56	
		4.6.2	Procedimentos para substituição das luminárias e da instalação dos		
			relés de telegestão	61	
		4.6.3	Sistema de sensores e comunicação	67	
		4.6.4	Armazenamento de dados e comunicação - Protocolos cliente/servidor	69	
		4.6.5	Analisador de energia	73	
	4.7	Síntese	do sistema para aplicação do Método de Cálculo e do Método Cigré	76	
5	Resu	ltados e	e discussão	80	
	5.1	Aplica	ção de fatores de correção	80	
	5.2	Validaç	ao do sistema proposto	84	
	5.3	Validaç	ao do sistema proposto - Cálculo do Desequilíbrio de Tensão	91	
	5.4	Discuss	são sobre os valores do desequilíbrio da tensão na rede de distribuição		
		com fo	ntes de geração de energia fotovoltaica	93	
6	Cons	sideraçõ	ões finais	97	
Referências Bibliográficas 101				101	

Lista de Apêndices

Apêndice A Processo requisitando doação de luminárias usadas	110
Apêndice B Termos de cooperação técnica realizado com os moradores	127
Apêndice C Cooperação técnica com P.M. de Marechal Deodoro	130
Apêndice D Contrato firmado com a Hostinger	135
Apêndice E Contrato firmado com a Meta Telecom	138
Apêndice F Resumo do desenvolvimento dos relés de telegestão	145
Apêndice G Relatório fotográfico simples das atividades	150
Lista de Anexos	
Anexo A Tabela 9	157
Anexo B Tabela 10	159
Anexo C Tabela 11	161
Anexo D Tabela 12	163

1 Introdução

Neste capítulo são descritos os motivadores para o desenvolvimento do estudo para criar um modelo de engenharia sistema computacional por intermédio de um método de cálculo para realizar o monitoramento do sentido da corrente, dos níveis e do Desequilíbrio da Tensão (DT) nas redes de distribuição de energia em baixa tensão.

1.1 Motivação do Trabalho

A diversificação da matriz de energia elétrica acompanha o conceito de cidades inteligentes, e as demandas energéticas do futuro impõem uma reorganização nas estruturas das cidades em relação à produção, distribuição e consumo de energia, de modo a gerenciar de forma mais eficiente este recurso por meio de soluções tecnológicas inteligentes. Diante das projeções da ONU (SILVA, 2019), as metrópoles estão cada vez mais populosas e a injeção de energias renováveis na Rede de Distribuição (RD), a exemplo da geração de energia por Painéis Fotovoltaicos (PV), podem trazer benefícios que vêm junto com a responsabilidade de criar dispositivos para o monitoramento da qualidade da tensão.

Atualmente, segundo (LEITE, 2010), as cidades densamente povoadas consomem 2/3 da energia mundial e são responsáveis pela mesma proporção em emissão de carbono, o que as coloca como uma das principais causadoras das mudanças climáticas. Assim, com o objetivo de ter um crescimento econômico sustentável, a demanda por energias renováveis vem crescendo a cada ano.

De acordo com ONU *News* (GUEVANE, 2017), em 2017 a população mundial atingiu 7,6 bilhões de habitantes, aumentará para 8,5 bilhões em 2030 e passará para 11,2 bilhões em 2050, quando 41 megacidades terão mais de 12% da população urbana do mundo. Além disso, segundo a ONU *News* (SILVA, 2019), atualmente 55% da população mundial vive em áreas urbanas e a expectativa é de que esta proporção aumente para 70% até 2050, de modo que as cidades deverão se tornar mais "inteligentes" para garantir a sua viabilidade econômica e conforto (CASSANDRAS, 2016).

Nesse contexto de desenvolvimento sustentável, o setor global de geração de energia solar cresceu 138,2 GW de instalações em 2020, isso representa um crescimento de 18%, sendo um recorde global de instalação anual para o setor, segundo (EUROPE, 2021), (POR-

TALsolar, 2021) e (RENEWS.BIZ, 2021). Uma em cada três unidades de plantas de energia instaladas em 2020 foi de energia solar, confirmando seu domínio entre todas as tecnologias de geração de energia recém-instaladas, atingindo uma participação global de 39%. Os 5 principais mercados solares em 2020 foram a China com 48,2 GW de novas instalações, os EUA com 19,2 GW, o Vietnã com 11,6 GW, o Japão com 8,2 GW e a Austrália com 5,1 GW. Estes estudos ainda mostram que a energia solar está a caminho de aumentar 163 GW em 2021, 203 GW em 2022, 225 GW em 2023, 239 GW em 2024 e 266 GW em 2025. Neste cenário, espera-se que a capacidade solar global total ultrapasse os seguintes marcos nos próximos 4 anos: 1,1 TW em 2022, 1,3 TW em 2023, 1,6 TW em 2024 e 1,8 TW em 2025. Segundo relatório da (EUROPE, 2022) no mês de maio de 2022, a energia solar fotovoltaica se tornou a segunda fonte de energia mais utilizada do mundo, atrás apenas da hidreletricidade¹.

Nos últimos anos, a pandemia da COVID-19 causou um impacto drástico nos mercados de energia, com a energia primária e as emissões de carbono reduzindo as suas taxas mais rapidamente desde a Segunda Guerra Mundial, segundo a Análise Estatística de Energia Mundial de 2021 (LOONEY, 2021), que também destacam que a energia renovável continuou a crescer, sendo a energia solar a que registrou o maior aumento da sua história.

No Brasil, o cenário de crescimento da participação das energias renováveis na matriz energética não é tão diferente. No início do século 20, a energia fluía em um único sentido, das subestações abaixadoras de alta, média e baixa tensão para os consumidores. As grandes fontes geradoras eram as únicas responsáveis pela alimentação das cidades e ficavam distantes dos grandes centros urbanos de forma que percorriam-se longos caminhos de transmissão até chegar ao consumidor final. Segundo (GOMES, 2007), foi no início do século 21 que no Brasil ocorreram alguns apagões devido à crescente demanda por energia, agravados pela crise hídrica que o país atravessava. Nessa época, em 2001, o Brasil possuía uma matriz elétrica para distribuição de energia cuja geração estava disposta da seguinte maneira: 62.409 MW (83,3487%) correspondia à hidráulica; 10.481 MW (13,9976%) à térmica que inclui biomassa, gás natural e carvão mineral; 1.966 MW (2,6256%) à térmica nuclear; e 21 MW (0,028%) à eólica, como é mostrado no gráfico da Figura 1 (EPE, 2021a).

¹Hidreletricidade é uma fonte renovável de energia que usa a energia da água corrente, sem reduzir sua quantidade, para produzir eletricidade

Figura 1: Matriz elétrica do Brasil em 2001. Dados obtidos da (EPE, 2021a)

Figura 2: Matriz elétrica do Brasil em abril de 2023. Dados obtidos do Infográfico da AB-SOLAR (ABSOLAR, 2023)

Nesse cenário, o Brasil estava extremamente dependente de uma matriz hidráulica, situação que motivou os governos e as indústrias a investirem mais na geração de energia e na diversificação da matriz energética, dando continuidade nos investimentos em energia renováveis com baixa ou zero emissão de carbono. Vinte e dois anos depois, a matriz elétrica do Brasil possui um novo cenário, no qual foram adicionadas novas fontes geradoras, de forma que atualmente, 109.779 MW (49,9%) correspondem à hidráulica; 27.837MW (12,6%) à energia solar fotovoltaica somados os tipos geração centralizada e distribuída; 26.244 MW (11,9%) à eólica; 17.457 MW (7,9%) à térmica a gás natural; 16,514 MW (7,5%) à térmica

à biomassa, 8.623 MW (3,9%) à energia gerada por petróleo e outros fósseis; 3.466 MW (1,6%) a carvão mineral; 1.990 MW (1,0%) à nuclear e, por fim, 8.170 MW (3,7%) correspondem à importação de energia, como é mostrado no gráfico da Figura 2 (ABSOLAR, 2023; ANEEL, 2023).

No cenário da transição energética e ao se considerar toda a matriz energética brasileira (não apenas a elétrica), a participação de fontes renováveis passou de 42,4% em 2012 para 43,2% em 2017 e alcançou em 2020 o valor de 48,3% ultrapassando os valores fixados para o ano de 2030 que era de 45% — cumprindo o compromisso assumido pelo Brasil no Acordo de Paris (EPE, 2022; MORAIS, 2019; EPE, 2021b).

Destaque-se que no gráfico da Figura 3 (ANEEL, 2023; ABSOLAR, 2023), até abril de 2023 a potência instalada corresponde a 27.837 MW, destes à geração fotovoltaica referente à Geração **Centralizada** (GC)², possui o valor de 8.367 MW (30,0%) os quais podem ser submetidos ao monitoramento de operação do sistema da rede transmissão e distribuição, já a potência referente a Geração **Distribuída** (GD)³, cujo valor corresponde a 19.740 MW (70,0%), não possui o monitoramento da qualidade da tensão, sendo este um dos desafios para as cidades inteligentes.

A geração de energia fotovoltaica ganhou rápido acesso às áreas urbanas, devido a possibilidade de ser instalada nas coberturas (telhados) das residências, edifícios e estabelecimentos comerciais, sendo também a que ganhou mais importância recentemente, uma vez que se trata de um método eficiente para a redução das emissões de gases de efeito estufa. Além disso, os recentes aumentos na tarifa de energia durante o ano de 2021 e 2022, provocado pela nova crise hídrica no Brasil, e no mundo pelos aumentos no valor do petróleo e gás devido ao reaquecimento da economia mundial durante o segundo semestre de 2021 (EIA, 2021) e em virtude da guerra entre a Rússia e a Ucrânia (EIA, 2022).

À medida que novas fontes de energias renováveis, em especial a fotovoltaica, são injetadas na rede de forma distribuída e não mais centralizada, torna-se mais difícil para o Operador do Sistema de Distribuição (OSD) realizar o controle eficiente dos níveis de tensão

²A Geração Centralizada (GC), são grandes centrais de produção de energia elétrica — no Brasil, em sua maior parte usinas hidrelétricas, termoelétricas, seguidas por Centrais Geradora Eólica, **Geradora Fotovoltaica** com capacidades instaladas de potência superior a 5.000 kW.

³Geração Distribuída (GD) é o termo dado à energia elétrica gerada no local de consumo ou próximo a ele, sendo válida para diversas fontes de energia renováveis, como a energia solar, eólica e hídrica, trazendo inúmeros benefícios aos consumidores.

Figura 3: Evolução da fonte solar fotovoltaica no Brasil. Fonte: Adaptado de (ABSOLAR, 2023)

a serem entregues aos consumidores atendidos na rede de baixa tensão. Segundo relatório da *International Energy Agency* (IEA) (IEA, 2021), só no ano de 2021 foram acrescentados 290 GW de energia renováveis à matriz mundial, um crescimento de 3% em relação ao ano de 2020, dos quais 160 GW, cerca de 60%, é de energia solar fotovoltaica, que se somam a uma capacidade renovável e operacional de quase 1.100 GW (1.1 TW) de energia solar no mundo. Segundo (ABSOLAR, 2022) e (FORBES, 2022), em 13 de janeiro de 2022, o Brasil ultrapassou 1 milhão de unidades consumidoras atendidas com geração distribuída do tipo solar fotovoltaica, gerando um total de 8,6 GW, dos quais 76,6% estão concentrados

em residências, sendo a previsão de até o final de 2022 chegar à capacidade de 17,2 GW. Além disso, segundo a (ABSOLAR, 2022), "Dos mais de 89 milhões de consumidores de eletricidade do país, apenas 1,1% já faz uso do sol para produzir energia limpa, renovável e competitiva".

Um dos maiores desafios relacionados à geração da energia fotovoltaica é a intermitência da fonte de energia, que varia com as condições ambientais (LISERRE *et al.*, 2010), o que interfere na variação da potência injetada, assim como na qualidade da tensão. Por exemplo, a produção de energia através de sistemas com PV pode mudar em até 80% em questão de segundos devido à passagem de uma nuvem (RAHIMI *et al.*, 2018). Essa fonte de energia normalmente possui o sinal de geração da Tensão e Corrente de forma Continua (CC), sendo necessário utilizar inversores de frequência para entregar à Rede de Distribuição (RD) a Tensão e Corrente de modo Alternada (CA) em paralelo e sincronizado com a frequência de fase da rede distribuição (RODRIGUES *et al.*, 2003).

Comumente são utilizados nas residências inversores de frequência do tipo monofásico, o que se constitui em uma outra causa do comprometimento da qualidade dos níveis entre as tensões das fases. Anteriormente, o Desequilíbrio de Tensão (DT) era principalmente causada por cargas monofásicas nas redes de distribuição (PAULILO, 2013). Contudo, hoje em dia, a Geração Distribuída (GD) de energia a partir de fontes renováveis monofásicas é outra fonte significativa de DT. Uma vez que as cidades estão cada vez mais povoadas, a injeção de energias renováveis na rede de distribuição traz benefícios, mas também traz a responsabilidade de criar dispositivos de monitoramento na qualidade da tensão (BAYER *et al.*, 2018).

Esse conjunto de fatores provoca flutuação de tensão, oscilação, harmônicos, fluxo de potência desequilibrada e sobrecarga nas redes de distribuição segundo (KHODAYAR *et al.*, 2019) e (AZIZ *et al.*, 2017). Entre os desafios emergentes relacionados à integração em larga escala da geração fotovoltaica nas redes de distribuição está o monitoramento da qualidade da energia. No Brasil, até o ano de 2015, a PRODIST⁴, Módulo 8, revisão 7 (ANEEL, 2016), da ANEEL, não havia regulamentado os limites de Desequilíbrio de Tensão (DT)

⁴Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional (PRODIST) são documentos elaborados pela ANEEL e normatizam e padronizam as atividades técnicas relacionadas ao funcionamento e desempenho dos sistemas de distribuição de energia elétrica. Disponível em: https://www.aneel.gov. br/informacoes-tecnicas/-/asset_publisher/CegkWaVJWF5E/content/id/14706207, Acessado em: 01 de janeiro de 2022.

para as redes de baixas tensão com valor menor ou igual a 1,0 kV, só depois desse ano, através da PRODIST, Módulo 8, revisão 8 (ANEEL, 2017) foi definido o limite de 3,0% para o Desequilíbrio da Tensão (DT) nas RDBT. Assim, manter a tensão dentro da faixa adequada para as redes de baixa tensão com valores inferiores a 1 kV (ANEEL, 2022), será um desafio para as distribuidoras, quanto para os processos de fiscalização da ANEEL.

Durante a Revisão Sistemática da Literatura (RSL) apresentada no Capítulo 3, não foram observados estudos que realizaram de forma conjunta o processo de monitoramento dos perfis da tensão, dos desequilíbrios da tensão e do sentido da corrente em uma Rede de Distribuição em Baixa Tensão (RDBT) quando injetado ou não, a energia por meio da geração distribuída através dos painéis fotovoltaicos, que utiliza a Infraestrutura da Iluminação Pública (IIPu) para o sensoreamento e coleta dos dados. Portanto, este estudo pretende validar um sistema computacional, por intermédio de um método de cálculo proposto descrito na Seção 4.4, que possibilite a realização do monitoramento em tempo real aos Operadores do Sistema de Distribuição (OSDs) das distribuidoras de energia do Brasil e de outros países do mundo que utilizam o mesmo modelo de RDBT.

1.2 Objetivo Geral e Específico

1.2.1 Objetivo Geral

Propor um sistema que utiliza a infraestrutura da iluminação pública para realizar o monitoramento da qualidade da energia nas Rede de Distribuição em Baixa Tensão (RDBT).

1.2.2 Objetivos Específicos

- Utilizar a infraestrutura da Iluminação Pública (IIPu) para sensoriamento e coleta dos dados;
- Analisar a qualidade da energia, o fluxo e o sentido da corrente por meio de um método de cálculo a ser aplicado em um método que mede o desequilíbrio de tensão, e;
- 3. Aplicar o método de cálculo proposto para avaliar o fluxo e o sentido da corrente, e o desbalanceamento da tensão em um logradouro da cidade de Marechal Deodoro AL.

1.3 Relevância da Proposta

Embora existam alguns trabalhos na literatura tratando do monitoramento da tensão (ZAMBENEDETTI et al., 2013; PINTO et al., 2014; PINTO et al., 2015; PINTO et al., 2016; KANDIL et al., 2015; CHIDURALA et al., 2015), do cálculo do Desequilíbrio da Tensão (DT) (RODRIGUES et al., 2003; PUNYACHAI et al., 2014) e do impacto da inserção de energia de através dos Painéis Fotovoltaicos (PV) na Rede de Distribuição em Baixa Tensão (RDBT) (AZIZ et al., 2017; IBRAHEM et al., 2019; VARGAS et al., 2018; AL-SHETWI et al., 2020; THOMAS et al., 2018; PUNYACHAI et al., 2014; BAYER et al., 2018), até o momento, este autor desconhece a existência de um trabalho que proponha utilizar a Infraestrutura da Iluminação Pública (IIPu), para calcular o DT, entre as fases na Rede de Distribuição em Baixa Tensão (RDBT) provocado pela injeção de energia através dos PV, incluindo identificar o sentido do fluxo da corrente. Uma abordagem como essa proporcionaria a integração do Operador do Sistema de Distribuição (OSD) no monitoramento do DT através de um Cyber-Physical System (CPS). Por consequência, auxiliaria nos estudos de dispositivo que integra no planejamento do armazenamento de energia elétrica escalonado em grupos de potência distinto (TORRES et al., 2021). Além disso, poderá auxiliar na criação de políticas públicas direcionadas a regulamentações e normas técnicas no setor elétrico, bem como auxiliar na futura aquisição de dados para os trabalhos acadêmicos ao utilizar-se desse método de cálculo.

Ressalta-se que atualmente o único método utilizado para identificar o DT no Brasil em rede de distribuição de baixa tensão é através da reclamação acerca da qualidade da energia por um cliente da distribuidora, que é obrigada a instalar um analisador de energia na rede de entrada do empreendimento, ou quando a distribuidora é obrigada a realizar a análise por amostragem em sua rede de distribuição. Ambos os procedimentos estão regulamentados pela (ANEEL, 2022) e as distribuidoras de energia têm a obrigação de manter os índices nos parâmetros determinados pelas normas regulamentadoras. Contudo, dessa forma, não é possível que o Operador do Sistema de Distribuição (OSD) realize a análise da qualidade da tensão em tempo real e de modo eficiente, segundo o estabelecido nas normas de regulação (ANEEL, 2022; IEC, 2011). A ausência de um monitoramento eficaz da rede de baixa tensão impossibilita um diagnóstico preciso do sistema e, consequentemente, o desenvolvimento de soluções técnicas que viabilizem a entrega da energia com o atendimento adequado aos indicadores, podendo estes, serem revisados devido a um nova forma de aquisição dos dados, uma vez que o método de cálculo auxiliar na analise da qualidade da tensão, assim como possibilita identifica o sentido do fluxo da corrente ao longo da Rede de Distribuição em Baixa Tensão (RDBT).

1.4 Contribuições

De acordo com as *strings* de busca apresentadas na Seção 3.1 e aplicadas nas bases de dados pesquisadas na literatura atual da mesma seção, há um grande número de relatos sobre trabalhos envolvendo o conteúdo do impacto causado por sistema de geração de energia constituídos por Painéis Fotovoltaicas (PV), que por sua vez injetam a energia nas redes de distribuição das áreas urbanas em média e baixa tensão.

Entretanto, constatou-se a ausência de informações referentes à qualidade da tensão e do sentido do fluxo da corrente em tempo real nas redes de distribuição para os Operadores do Sistema de Distribuição e também em relação a estudos mais específicos sobre o tema proposto. Este estudo evidência um método de cálculo para auxiliar na medição do Desequilíbrio da Tensão (DT) e no sentido do fluxo da corrente ao longo da rede de distribuição para as empresas distribuidora de energia, para os municípios gestores do parque de iluminação pública e com efeito maior para as agências reguladoras de energia que possuirão acesso aos indicadores independente da distribuidora de energia. Além disso, serão criadas bases de dados com a capacidade de observar o perfil da tensão, acrescentando-se através do método de cálculo a possibilidade de medição do Desequilíbrio da Tensão (DT) e do sentido da corrente em pontos específicos na Rede de Distribuição em Baixa Tensão (RDBT).

A infraestrutura para o desenvolvimento do processo de monitoramento da qualidade da energia é fornecida pela Iluminação Pública (IPu), pois é uma área da indústria 4.0 que está em processo de modernização através da integração com diversas outras tecnologias, como internet das coisas e *Cyber-Physical System* (CPS), que visam aumentar a eficiência, automatizar sistemas e customizar os processos industriais. Nos últimos anos, essa evolução continuada dessas tecnologias tem proporcionado um melhor acesso aos serviços e uma melhoria na qualidade de vida das pessoas (LECCISI *et al.*, 2020).

Portanto, esse estudo pretende implementar mais uma funcionalidade às diversas já existentes no ponto de IPu, com o objetivo de incentivar e viabilizar economicamente o sis-

tema de telegestão, e assim, permitir uma análise da qualidade da energia elétrica na RDBT, através da aplicação do método de cálculo nos dados recebidos por meio do monitoramento da tensão —- única grandeza elétrica fornecida pelas distribuidoras de energia.

1.5 Estrutura do trabalho

O restante deste trabalho está organizado da seguinte forma, o Capítulo 2 descreve a fundamentação teórica para compreensão do sistema de geração, da distribuição de energia, da telegestão da iluminação pública e do desequilíbrio de tensão entre as fases em uma sistema de distribuição. O Capítulo 3 apresentam três grupos de trabalhos relacionados através de uma pesquisa bibliográfica e faz analogias de relevância da proposta. O Capítulo 4 apresenta os métodos que mensuram o desequilíbrio da tensão; as equações de circuitos polifásicos; o método de cálculo a ser aplicado no tratamento dos dados coletados através da Infraestrutura da Iluminação Pública (IIPu) — Sistemas, sensores e comunicação; e por fim, armazenamento de dados e comunicação — Protocolos cliente/servidor. O Capítulo 5 traz os resultados e discussões através da extração dos dados coletados pelos sensores da IIPu, aplicação do método de cálculo e em paralelo faz a comparação com os dados obtido através de um analisador de energia em um determinado ponto da rede, sendo o mesmo escolhido para aplicação do cálculo. E por fim o Capítulo 6 apresenta a conclusão.
2 Fundamentação Teórica

Nesta capítulo será abordado o referencial teórico para uma melhor compreensão do problema em análise. Serão abordados o funcionamento do sistema de energia até a distribuição, o conceito do sistema de telegestão no monitoramento dos pontos de iluminação pública, a geração de energia fotovoltaica integrada a uma rede de distribuição e, por fim, o Desequilíbrio de Tensão (DT) entre as fases de um sistema de distribuição com e sem a injeção de energia através da geração fotovoltaica.

2.1 Do sistema de geração até a distribuição de energia

A rede elétrica é composta pelo conjunto de instalações e equipamentos elétricos que operam em níveis de extra alta tensão (superior a 230 kV e inferior a 750 kV), de alta tensão (superior a 69 kV e inferior a 230 kV), média tensão (superior a 1 kV e inferior a 69 kV) e baixa tensão (igual ou inferior a 1 kV) (ANEEL, 2018b). O sistema elétrico constitui-se de uma rede complexa de elementos que tem por finalidade conduzir a energia desde o local de sua produção até o lugar onde será consumida. Mas, nem sempre os grandes centros consumidores estão próximos das **fontes geradoras de energia** em média tensão, sendo necessário **transmitir** esta energia por uma rede que a eleva para uma alta tensão para percorrer longas distâncias, e que chegando aos grandes centros consumidores as concessionarias locais tem a função de **distribuir** esta energia em tensões de média e baixa, e que por sua vez as concessionarias tem a finalidade de **medir** a energia entregue aos seus consumidores, conforme conceito básico da apresentado na Figura 4.

O sistema de distribuição é formado por conjunto de instalações e equipamentos elétricos existentes na área de atuação de uma distribuidora de energia elétrica. Para efeitos do PRODIST (ANEEL, 2018a), o sistema de distribuição compreende apenas as instalações de propriedade de distribuidora (ANEEL, 2018a). Os operadores de instalações das distribuidoras possuem apenas o monitoramento contínuo dos níveis de tensão nas rede de distribuição em média tensão, já o monitoramento na rede de baixa tensão não existe de forma continua, o que dificulta acompanhar o Desequilíbrio da Tensão (DT) provocado pelas cargas monofásicas nas redes de distribuição (PAULILO, 2013). Sendo um dos motivo o alto investimento que a distribuidora deverá ter para aquisição de tecnologias no mapeamento das redes de Barragem Saída do gerador em média tensão Linha de transmissão em alta tensão Linha de distribuição em média tensão Torre de linha

distribuição em baixa tensão.

Figura 4: Conceito básico do sistema de geração até a distribuição. Fonte: Adaptado de (TRISUL, 2021)

2.2 O conceito do sistema de telegestão na iluminação pública

A iluminação pública atualmente é constituída por lâmpadas de descargas do tipo Vapor de Sódio de Alta Pressão (VSAP), Vapor de Mercúrio (VM), Multivapores Metálicos (MVM), Lâmpadas Mistas (LM), Lâmpadas Incandescentes (LI), *Light-Emitting Diode* (*LED*) e outras de pequeno uso. A do tipo *LED* é a que está em ascensão devido a algumas características técnicas, entre as quais podemos destacar a possibilidade de dimerizar o fluxo luminoso, através do driver de controle de tensão a ser aplicado nas placas, o que reflete na energia consumida pela luminária.

A evolução dos sistemas de telecomunicação e a eletroeletrônica iniciam uma nova revolução industrial, chamada Industria 4.0. Para (STEVAN *et al.*, 2018), essa revolução conecta o mundo físico ao digital e para (SCHWAB, 2019) acrescenta a convergência do mundo biológico nesse meio. Assim, em sintonia com esse processo, a modernização da Iluminação Pública (IPu) se encaminha para mudança de paradigmas e de conceitos de gerenciamento, em razão da criação de sistemas e de equipamentos que possibilitem o aciona-

mento, controle, monitoramento e supervisão dos pontos de IPu visando a sustentabilidade, urbanização, revoluções tecnológicas e responsabilidade nos investimentos.

O processo de comunicação e acesso ao servidor, local ou hospedado na nuvem, pode ser realizado por diversos tipos de infraestrutura de comunicação, sejam elas pública ou privada, que utilizem o padrão de tecnologia de rádio de rede de longa distância. A Figura 5 apresenta uma descrição do processo de comunicação, que inicia pelos controladores instalados nas luminárias, os quais podem se comunicar diretamente com a infraestrutura de comunicação ou por meio das unidades de controle e monitoração. A infraestrutura poderá realizar o processo de comunicação através das tecnologias LoraWAN⁵, NB-IoT⁶, LTE-M⁷, sigfox⁸, LonWorks⁹, Wi-SUN¹⁰ e GSM¹¹; por fim, todas a informações coletas podem se acessadas por navegadores WEB.

Figura 5: Conceito básico do sistema de telegestão e comunicação com servidor. Fonte: Adaptado de (INTELI, 2022)

⁵LoRaWAN é um protocolo de comunicação e a arquitetura do sistema para a rede enquanto a camada física LoRa permite o link de comunicação de longo alcance

⁶Narrow Band - Internet of Things (NB-IoT), em português Banda Estreita para internet das coisas. Trata-se de um rede de grande alcance com baixo consumo de energia

⁷LTE-M é um padrão de tecnologia de rádio de rede de área ampla de baixa potência, *Low Power Wide Area* (LPWAN) desenvolvido pela 3GPP

⁸Sigfox é uma rede de comunicação focada em internet das coisas (IoT). É uma das tecnologias *Low Power Wide Area* (LPWA) oferecidas pela SmartCore

⁹LonWorks é um padrão de protocolo aberto de rede especificamente dirigida ao desempenho, confiabilidade de aplicações de controle, sendo caracterizado por sua topologia flexível e funções entre sistemas

¹⁰Wi-SUN é uma Tecnologia aberta baseada nos padrões do IEEE, IETF e ANSI/TIA. Foi desenvolvida para ser uma rede FAN (Field Area Network) de baixa potência, com topologia em malha, endereçamento IPv6 nos nós e suporte a serviços de transporte de dados via UDP/TCP

¹¹GSM é *Global System for Mobile Communications*, em português Sistema Global para Comunicações Móveis é uma tecnologia móvel para telefones celulares, sendo a 2G primeira tecnologia móvel GSM utilizada.

2.3 A geração de energia através dos painéis fotovoltaicos e sua injeção na rede

A energia solar é gerada por intermédio da energia proveniente da luz e do calor emitidos pelo Sol na forma de fótons, os quais são coletados pelas células das placas solares para colidirem com os átomos de silício ou outro semicondutor contidos nelas e, assim, gerarem um deslocamento de elétrons, criando uma corrente elétrica — fenômeno descrito como "efeito fotovoltaico". Esse tipo de fonte de energia pode ser aproveitada de forma fotovoltaica e/ou térmica, gerando energia elétrica e/ou térmica, respectivamente e, por ser considerada uma fonte de energia limpa, é uma das fontes alternativas mais promissoras para obtenção energética.

A Figura 6 apresenta um conceito básico de geração de energia através dos Painéis Fotovoltaicos (PV), os quais geram a tensão e a Corrente com a forma de onda Contínua (CC) que alimenta o inversor solar, que poderá ser do tipo monofásico ou trifásico, cuja função é converter a tensão e a Corrente para a forma de onda Alternada (CA) em sincronismo com a frequência angular da Rede de Distribuição de Baixa Tensão (RDBT). Todo este processo de geração envolve a instalação de dispositivos e equipamentos de proteção elétrica com objetivo de isolar falhas elétricas que provêm da rede de distribuição e/ou da geração dos Painéis Fotovoltaicos.

A implantação desse tipo de fonte de energia tem como objetivo alimentar os equipamentos elétricos dos empreendimentos, residenciais e comerciais, e o excedente é injetado na rede de distribuição das concessionárias de energia, conforme apresentado na Figura 6, em que essa injeção ocorre em uma RDBT, sendo esse tipo de procedimento um dos objetivos deste estudo para a aplicação de um método de cálculo. Por fim, é instalado pela distribuidora um medidor de energia bidirecional para registrar o excedente produzido e o consumo quando a geração é insuficiente para manter os equipamentos elétricos independentemente da energia da concessionária.

Figura 6: Conceito básico da geração de energia através dos painéis fotovoltaicos e sua injeção a uma rede de distribuição. Fonte: Adaptado de (SENERGAM, 2022)

2.4 O desequilíbrio de tensão e o sentido da corrente no sistema de distribuição

Segundo a (ANEEL, 2022), o Desequilíbrio de Tensão (DT) está relacionado às mudanças dos padrões trifásicos do sistema de geração, sejam estes relacionados aos módulos de amplitude ou aos ângulos de fases, uma vez que as três tensões deveriam possuir o mesmo valor em amplitude e defasagem elétrica de 120° entre as tensões de fase do mesmo sistema. Esses desequilíbrios entre as tensões de fases são mensurados através dos métodos (IEEE 1159, 2019), Cigre (IEEE 1159, 2019) e NEMA (NEMA, 2016); e são expressos em porcentagem. A Figura 7 apresenta os níveis de amplitude das tensões de fase, que estão em equilíbrio de defasagem angular de 120° entre si no sistema trifásico. Sendo realçado na Figura 7 que os níveis da amplitude da tensão das três fases não possuem os mesmos indicadores, caracterizando Desequilíbrio de Tensão (DT) —- sendo essa anomalia a base do estudo a ser realizado, acompanhado da identificação do sentido do fluxo da corrente por intermédio da aplicação de um método de cálculo que utiliza a Infraestrutura da Iluminação Pública (IIPu) para a coleta dos dados a serem mensurados e aplicados em um dos Método para medir o DT.

Segundo (TEODORO, 2005; TORREZAN *et al.*, 2018) é na Rede de Distribuição (RD) que se encontra a maior causa dos Desequilíbrios de Tensão (DT) devido à distribuição irregular de cargas por fase, que variam constantemente em razão da inserção e/ou retirada de cargas. O autor (TEODORO, 2005) ressalta que as anomalias encontradas no sistema, tais

Figura 7: Conceito básico do desequilíbrio de tensão identificado na amplitude em um sistema trifásico. Fonte: Adaptado de (OLESKOVICZ, 2018)

como as falhas na isolação dos equipamentos, a abertura de condutores ou folga nas conexões e a abertura de fusíveis em uma das fases de um banco de capacitores, representam até 5% das ocorrências do DT. Segundo (TEODORO, 2005), mesmo os equipamentos trifásicos podem apresentar algum grau de desequilíbrio individual, o que pode contribuir para o aumento do desequilíbrio global de uma rede ou sistema elétrico. Um exemplo de equipamento desequilibrado é um motor com a impedância desbalanceada, ocasionada pelo aumento do aquecimento não homogêneo do estator. Em (CONZATTI, 2020), o desequilíbrio de tensão afeta o funcionamento de equipamentos eletrônicos, geradores, motores, reguladores de tensão (RTs) e transformadores conectados à rede desequilibrada. Além disso, reduz a potência útil (em Watts) na rede distribuição devido ao aumento das perdas elétricas.

Segundo (TEODORO, 2005) as consequências da alimentação trifásica desequilibrada podem se manifestar principalmente como degradação da potência útil disponibilizada nos processos de conversão eletromecânica e operação inadequada de equipamentos e sistemas. Desequilíbrios acentuados podem comprometer drasticamente o desempenho operacional de muitos equipamentos levando-os ao desmantelamento. Gerando, portanto, reflexos imediatos nos custos operacionais dos equipamentos e sistemas elétricos podendo ocasionar grandes prejuízos financeiros relacionados com o aumento das perdas, interrupções de processos e queima de equipamentos. Os autores (TEODORO, 2005; TORREZAN *et al.*, 2018) apontam que motores elétricos trifásicos, por serem sensíveis a componente de sequência negativa, são os equipamentos que mais encurtam a sua vida útil drasticamente. Ao aplicarmos uma tensão trifásica desequilibrada aos terminais de um motor trifásico, tem-se como resultado o aparecimento de correntes de sequência negativa adicionais circulando no motor, aumentando as perdas no rotor devido ao aumento da temperatura.

Existem poucos projetos de implementação de sistemas para este fim, e este autor desconhece na literatura até o presente momento um método de cálculo para monitorar o módulo de amplitude da tensão e identificar o sentido do fluxo da corrente em uma rede de distribuição de baixa tensão utilizando a Infraestrutura da Iluminação Pública (IIPu) de modo que possibilite o acompanhamento dos percentuais de Desequilíbrio de Tensão (DT) e do fluxo de corrente em tempo real, e a observação desses indicadores, pelo operador do sistema de distribuição, quando em uma RDBT é injetada a energia através dos painéis fotovoltaicos instalados nos telhados dos empreendimentos.

Ressalta-se que atualmente o único método utilizado para identificar o DT em rede de distribuição de baixa tensão é através da reclamação acerca da qualidade da energia por um cliente da distribuidora, que é obrigada a instalar um analisador de energia na rede de entrada do empreendimento, ou quando a distribuidora é obrigada a realizar a análise por amostragem em sua rede de distribuição. Ambos os procedimentos estão regulamentados pela (ANEEL, 2022) e as distribuidoras de energia têm a obrigação de manter os índices nos parâmetros determinados pelas normas regulamentadoras. Desta forma, antes tinha-se apenas o Desequilíbrio de Tensão (DT) provocado pelas cargas monofásicas nas redes de distribuição (PAULILO, 2013), hoje soma-se a esse desequilíbrio o ocasionado pela Geração Distribuída (GD) de energia por fontes renováveis do tipo monofásica. Além disso, a GD pode produzir o fluxo inverso de corrente para o transformador, que ao depender da sua capacidade pode provocar sobrecarga neste equipamento, e, em uma rede de distribuição de baixa tensão que possui a redução escalona, ou sub dimensionada da seção transversal dos cabos pode elevar as perdas de distribuição de modo que faz-se necessário identificar o sentido do fluxo da corrente na RDBT. Essas condições apresentadas são as bases da construção dos objetivos desta pesquisa.

3 Trabalhos Relacionados

Neste capítulo serão apresentados os trabalhos constantes na literatura científica que se relacionam diretamente com os objetivos do presente estudo. A pesquisa bibliográfica foi organizada em quatro seções. Na primeira Seção 3.1 são apresentados a pesquisa bibliográfica, o planejamento, a seleção, o relatório do processo de seleção dos estudos e um resumo dos estudos através das suas técnicas aplicadas. Na segunda Seção 3.2 são denotados os estudos com as propostas referentes aos sistemas de monitoramento da qualidade da energia. Na terceira Seção 3.3 são apresentados os estudos sobre desbalanceamento do sistema elétrico nas redes de distribuição. Por fim, na quarta Seção 3.4 são apresentados os estudos sobre os impactos da injeção de energia gerada através dos painéis fotovoltaicos na rede de distribuição.

3.1 Pesquisa bibliográfica

O objetivo desta Revisão Sistemática da Literatura (RSL) é compreender melhor as ontologias utilizadas para classificar, categorizar ou agrupar as informações em classes de modo que seja possível identificar, selecionar, avaliar e sintetizar evidências sobre as questões pesquisadas. Segundo (KITCHENHAM, 2004), esse método é composto por um protocolo dividido em três etapas: 1) planejamento; 2) seleção; 3) relatório, às quais será acrescida a seguinte etapa, 4) Resumo dos estudos através das suas técnicas aplicadas.

3.1.1 Planejamento

A etapa de planejamento será dividida nos seguintes tópicos: (a) definições dos estudos a serem pesquisados; (b) definição de palavras-chave; (c) seleção das fontes e definição dos termos de busca; (d) elaboração de critérios de inclusão e exclusão, e; (e) estratégia de busca.

 (a) Essa pesquisa utilizou a ferramenta de software StArt¹² para relacionar diversos estudos recentes que trazem contribuições gerais e independentes de tecnologia, as quais

¹²State of the Art through Systematic Review (StArt), em português estado da arte através de revisões sistemáticas. Desenvolvedor: LaPES UFSCar. Disponível em: http://lapes.dc.ufscar.br/tools/start_tool, Acessado em: 12 de dezembro de 2021.

são essenciais para identificar com precisão o processo de construção das *strings* de busca. Os estudos relacionados aplicam modelos baseados em agentes para simular diferentes domínios, de forma que se realizou uma revisão sistemática para responder como esses modelos devem ser aplicados para simular aspectos relacionados à engenharia de *Cyber-Physical System* (CPS);

- (b) Segundo (SILVA; BRAGA, 2020), o desenvolvimento da temática exige experiência em várias áreas do conhecimento e na escolha de fontes de pesquisa que englobem esse campo multidisciplinar. Neste trabalho, optou-se pelas seguintes fontes relacionadas às áreas de ciência da computação, engenharia elétrica e *cyber-physical system*: IEEE e ScienceDirect. A estratégia de busca incluiu apenas bases de dados eletrônicas que foram validadas por especialistas das áreas através da RSL e as definições das palavas chaves consideraram como base o objetivo geral e os específicos do estudo. Complementando-se o estudo com sites oficiais de códigos de rede para diferentes países, padrões como *International Electrotechnical Commissio* (IEC), padrões *Institute of Electrical and Electronics Engineers* (IEEE), padrões da *American National Standards Institute* (ANSI), padrões da *National Electrical Manufacturers Association* (NEMA), padrões da Associação Brasileira de Normas Técnicas (ABNT), e normas regulamentadoras da Agência Nacional de Energia Elétrica (ANEEL) do Brasil.
- (c) Para realizar a pesquisa, ainda com a ferramenta de software StArt, utilizou-se bancos de dados eletrônicos com motores de busca na web. Para identificar os estudosalvo desta RSL, consideramos os seguintes termos de pesquisa, conforme descrição enumerada:

1. analysis;	2. benefits;	3. between;	4. communication;
5. comparative;	6. cyber physical system;	7. <i>cps</i> ;	8. developing;
9. distribution;	10. distributed;	11. generation;	12. grid;
13. impact;	14. integration;	15. implementing;	16. lighting;
17. Low-voltage;	18 measurements;	19. network;	20. networks;
21. operation;	22. panels;	23. penetration;	24. photovoltaic;
25. power quality;	26. <i>pv</i> ;	27. remote;	28. smart;

29. smart city;	30. smart grid;	31. software;	32. <i>system</i> ;
33. systems;	34. solar;	35. solution;	36. swing;
37. unbalance;	38. voltage, e;	39. variation.	

As combinações desses termos strings são realizadas das seguintes formas:

- I analysis AND voltage AND unbalance AND distribution system AND software;
- II comparative AND analysis AND between AND voltage AND unbalance;
- III communication AND solution AND implementing AND smart grid AND distribution AND network;
- IV distributed AND generation AND voltage AND swing AND distributed AND systems;
- V power quality AND developing AND smart city;
- VI power quality AND measurements AND smart AND lighting AND systems;
- VII photovoltaic AND panels AND voltage AND variation AND distribution AND network;
- VIII *pv* AND penetration AND distribution AND voltage AND photovoltaic AND impact AND distribution AND networks AND system AND power;
 - IX pv AND voltage AND distribution AND network AND cps;
 - X remote AND monitoring AND power quality AND distribution system;
 - XI solar photovoltaic AND benefits AND operation AND distribution AND networks;
- XII voltage AND pv penetration AND power quality AND distribution AND (systems OR system), e;
- XIII Photovoltaic systems AND Distribution grid AND Low-voltage grid AND integration.
- (d) Durante o procedimento de recuperação das informações serão consideradas as *strings* encontradas preferencialmente em títulos, resumos e palavras-chave de cada base de dados. Após a leitura dos resumos, e verificando-se a relevância do traba-lho, ele será selecionado para leitura em sua totalidade. Para avaliar a qualidade da pesquisa, os seguintes critérios foram definidos para manter excelente nível de qualidade: de inclusão; de exclusão; e de qualidade.

Nos critérios de qualidade, os estudos selecionados são pontuados por meio de um conjunto de onze critérios definidos na Tabela 1 para avaliar a redação e a estrutura desses estudos. Os dez primeiros deles foram adaptados da qualidade do estudo de (SILVA; BRAGA, 2020) e aplicados nesta revisão sistemática da literatura, sendo o último proposto de acordo com o escopo desta pesquisa. Cada critério é uma questão que deve ser respondida de acordo com a avaliação do autor deste trabalho.

Tabela 1: Critérios de qualidade para avaliar os estudos selecionados na revisão sistemática da literatura.

Itens	Questões	Possíveis Respostas
1	O artigo é estruturado (organização e escrita)?	S = 1, N = 0, P = 0.5
2	Em que nível o artigo está relacionado com o tema proposto?	S = 1, N = 0, P = 0.5
3	A literatura é bem apresentada e relevante?	S = 1, N = 0, P = 0.5
4	As questões da pesquisa estão bem formuladas?	S = 1, N = 0, P = 0.5
5	A técnica proposta está claramente descrita?	S = 1, N = 0, P = 0.5
6	O experimento é reproduzível e bem definido?	S = 1, N = 0, P = 0.5
7	A análise estatística é bem elaborada?	S = 1, N = 0, P = 0.5
8	O estudo foi avaliado empiricamente?	S = 1, N = 0, P = 0.5
9	Há discussão sobre os resultados do estudo?	S = 1, N = 0, P = 0.5
10	A pesquisa é aplicável em outros contextos?	S = 1, N = 0, P = 0.5
11	As limitações deste estudo são discutidas explicitamente indi-	S = 1 $N = 0$ $D = 0.5$
11	cando uma pesquisa futura?	S = 1, IV = 0, P = 0.5

Legenda de conceito dos estudos: S = Sim, nota = 1; N = Não, nota = 0 e P = Parcial, nota = 0.5 Fonte: Adaptado de (SILVA; BRAGA, 2020)

(e) Por fim, o estudo utilizou os buscadores das associações científicas escolhidas como estratégia para realizar a coleta desses artigos utilizando a pesquisa no modo avançado para filtrar o tipo de trabalho publicado, ou seja, artigos, conferências e revistas.

3.1.2 Seleção

Esta etapa é a responsável por executar o protocolo elaborado no planejamento por meio de um conjunto de critérios que filtram os trabalhos mais relevantes para responder às questões de pesquisa. A Figura 8 apresenta o conjunto de seis etapas para a escolha de estudos relevantes sobre o estudo e quantos artigos foram selecionados em cada uma delas. Executou-se o protocolo da RSL em 12 de dezembro de 2021 por meio da coleta, análise, síntese e organização dos estudos das fontes científicas escolhidas.

Figura 8: Fluxograma de seleção de estudos. Fonte: Adaptado de (SILVA; BRAGA, 2020)

A etapa 1 recupera estudos de fontes, utilizando a *string* de pesquisa definida neste protocolo. A etapa 2 utiliza um filtro disponível em cada fonte para selecionar apenas os estudos publicados em anais ou periódicos. Este filtro exclui estudos que sejam enciclopédias, normas, cursos, resenhas, livros, entre outros. O passo 3 exclui todos os artigos duplicados ou aqueles trabalhos com alto nível de similaridade através do uso da ferramenta StArt. A etapa 4 é a responsável por revisar títulos, palavras-chave, local de publicação e resumo para excluir aqueles artigos que não correspondem aos critérios de inclusão predefinidos. A etapa 5 recupera os estudos incluídos na etapa 4 e baixar os respectivos artigos para leitura. A etapa 6 é responsável por definir um índice de qualidade para cada artigo selecionado, conforme Tabela 1.

A Tabela 2 relaciona os estudos selecionados através do título do estudo e da referência. Estas etapas foram definidas considerando a RSL do estudo dos autores (SILVA; BRAGA, 2020). Aqueles estudos que não atingem o limiar de 70% não foram incluídos como trabalho relevante. Um total de 27 estudos foram analisados e 22 foram selecionados como estudos relevantes, sendo 5 estudos rejeitados por não atingirem o limite mínimo de qualidade.

3.1.3 Relatório

Na Tabela 2 os estudos acima da linha vermelha relacionam os trabalhos candidatos após realizar a busca e seleção, logo após foram extraídos os dados dos 22 estudos incluídos nesta RSL para obter informações mais precisas sobre as suas contribuições. Foram coletadas informações sobre os tipos de sistemas investigados, quais recursos foram empregados, em quais domínios de aplicação as técnicas de monitoramento da qualidade da energia (tensão) foram utilizadas nas Redes de Distribuição (RD), quais foram os principais problemas investigados e em que contexto de aplicação foram utilizados.

3.1.4 Resumo dos estudos através das suas técnicas aplicadas

A Tabela 3 apresenta um resumo referente aos estudos relacionados com o objetivo de mostrar algumas das características técnicas e tecnologias dos sistemas disponíveis na literatura que possam aprimorar a técnica de monitoramento do Desequilíbrio da Tensão (DT) em uma RDBT.

Tabela 2:	Lista	de arti	gos i	incluídos	na	revisão	e	suas	pontua	ıções	de	qualidade.	А	linha
vermelha i	ilustra	o ponto	o de	corte cons	side	erando u	m	limia	r de 70)% pa	ra c	o fator de qu	ialio	dade.

Trabalho	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Total	Qual.(%)
(ZAMBENEDETTI et al., 2013)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	10.5	95.45%
(RICCIARDI et al., 2018)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	10.5	95.45%
(CHIDURALA et al., 2015)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	10.5	95.45%
(PINTO et al., 2014)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	10.0	95.45%
(THOMAS et al., 2018)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	10.0	90.91%
(LU et al., 2015)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	1.0	1.0	0.5	10.0	90.91%
(RODRIGUEZ et al., 2015)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	10.0	90.91%
(PINTO et al., 2015)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	1.0	1.0	0.5	10.0	90.91%
(PINTO et al., 2016)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	1.0	0.5	0.5	9.5	86.36%
(TORREZAN et al., 2018)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	1.0	1.0	0.5	9.5	86.36%
(KHARRAZI et al., 2017)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	1.0	1.0	0.0	9.0	81.82%
(KANDIL et al., 2015)	1.0	1.0	1.0	1.0	1.0	0.5	0.5	0.5	1.0	1.0	0.5	9.0	81.82%
(IBRAHEM et al., 2019)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	1.0	1.0	0.0	9.0	81.82%
(BAYER et al., 2018)	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.0	1.0	1.0	0.0	8.5	81.82%
(PUNYACHAI et al., 2014)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	1.0	0.5	0.0	8.5	77.27%
(VARGAS et al., 2018)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	1.0	0.5	0.0	8.5	77.27%
(ALBOAOUH et al., 2018a)	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.0	1.0	0.5	0.5	8.5	77.27%
(ALBOAOUH et al., 2018b)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.5	0.5	0,5	8.5	77.27%
(SINGH et al., 2019)	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.0	1.0	0.5	0.0	8.5	77.27%
(SAHA et al., 2014)	1.0	1.0	1.0	1.0	1.0	0.5	0.5	0.5	0.5	1.0	0.5	8.5	77.27%
(AZIZ et al., 2017)	1.0	1.0	1.0	1.0	1.0	0.5	0.5	0.0	1.0	0.5	0.5	8.0	72.73%
(AL-SHETWI et al., 2020)	1.0	1.0	1.0	1.0	1.0	0.5	1.0	0.0	0.5	1.0	0.0	8.0	72.73%
(SHAMMARI et al., 2019)	1.0	1.0	1.0	0.5	1.0	1.0	1.0	0.0	0.5	0.5	0.0	7.5	68.18%
(MAKASHEVA et al., 2020)	1.0	1.0	1.0	1.0	0.5	0.5	0.5	0.0	1.0	1.0	0.0	7.5	68.18%
(TONKOSKI et al., 2012)	1.0	1.0	1.0	1.0	1.0	0.5	0.5	0.0	1.0	0.5	0.0	7.5	68.18%
(JINTAKA et al., 2019)	1.0	1.0	1.0	1.0	0.5	0.5	1.0	0.0	0.5	0.5	0.0	7.0	63.64%
(DHLAMINI et al., 2018)	1.0	1.0	1.0	0.5	1.0	0.5	0.5	0.0	0.5	1.0	0.0	7.0	63.64%

Fonte: Elaborado pelo autor

Trabalho	Tipo de estudo	Parâmetros monitorados na BT e/ou MT	Monitora os ní-	Utiliza o Método de DT	Monitora I(A)	Utiliza
			veis de tensão		na RDBT	a IIPu
(ZAMBENEDETTI et al., 2013)	Empírico	Na BT: Vfn, Inc, LDR, Ta	Sim	Não	Não	Sim
(RICCIARDI et al., 2018)	Empírico	Na BT: Vab, Vbc, Vca, I(a,b,c,n), THD	Sim	IEEE 1159	Sim	Não
(CHIDURALA et al., 2015)	Empírico	Na BT: Vab, Vbc, Vca, I(a,b,c,n)	Sim	Não	Não	Não
(PINTO et al., 2014)	Empírico	Na BT: Vfn, Inc e GPS	Sim	Não	Não	Não
(THOMAS et al., 2018)	Simulação	Na BT: Van, Vbn, Vcn	Sim	Não	Não	Não
(LU et al., 2015)	Empírico	Na BT: Van, Vbn, Vcn, I(a,b,c,n), THD	Sim	Não	Sim	Não
(RODRIGUEZ et al., 2015)	Métodos	Na MT e BT: Vab, Vbc, Vca	Não	IEEE 1159, NEMA, IEEE 141 e IEC (TD)	Não	Não
(PINTO et al., 2015)	Empírico	Na BT: Vfn, Inc e GPS	Sim	Não	Não	Não
(PINTO et al., 2016)	Empírico	Na BT: Vfn, Inc e GPS	Sim	Não	Não	Sim
(TORREZAN et al., 2018)	Métodos	Na MT: Vab, Vbc, Vca	Não	IEEE 1159, CIGRÉ, NEMA e IEC (TD)	Não	Não
(KHARRAZI et al., 2017)	Simulação	Na MT e BT: Vab, Vbc, Vca	Sim	IEC (TD)	Não	Não
(KANDIL et al., 2015)	Empírico	Na BT: Vab, Vbc, Vca, I(a,b,c,n), THD	Sim	Não	Não	Não
(IBRAHEM et al., 2019)	Simulação	Na MT: Vab, Vbc, Vca, THD	Sim	Não	Não	Não
(BAYER et al., 2018)	Análises das RSL	Na BT e MT: Vab, Vbc, Vca	Sim	Não	Sim	Não
(PUNYACHAI et al., 2014)	Simulação	Na MT e BT: Vab, Vbc, Vca, Za, Zb, Zc	Sim	Não	Não	Não
(VARGAS et al., 2018)	Simulação	Na MT: Vab, Vbc, Vca e FP	Sim	Não	Não	Não
(ALBOAOUH et al., 2018a)	Simulação	Na MT: Vab, Vbc, Vca	Sim	Não	Não	Não
(ALBOAOUH et al., 2018b)	Simulação	Na MT: Vab, Vbc, Vca	Sim	Não	Não	Não
(SINGH et al., 2019)	Simulação	Na MT: Vab, Vbc, Vca	Sim	Não	Não	Não
(SAHA et al., 2014)	Simulação	Na BT: Van, Vbn, Vcn, I(a,b,c,n)	Sim	Não	Não	Não
(AZIZ et al., 2017)	Análises das RSL	Na MT e BT: Vab, Vbc, Vca	Sim	Não	Não	Não
(AL-SHETWI et al., 2020)	Análises das RSL	Na MT e BT: Vab, Vbc, Vca, THD	Sim	IEC (TD), IEEE 519	Não	Não

Tabela 3: Resumo técnico da revisão sistemática da literatura entre os modelos de simulação, estudos empírico e análises das literaturas.

LEGENDA: Rede Distribuição de Baixa Tensão (RDBT); Infraestrutura de Iluminação Pública (IIPu); Desequilíbrio da Tensão (DT); Rede de Média Tensão (MT); Rede de Baixa Tensão (BT); Tensão de fase e neutro (Vfn) ou (Van), (Vbn), (Vcn); Tensão de fase e fase (Vab), (Vbc) e (Vca); Corrente I (A) por fase (a,b,c), neutro (n) e nominal da carga (nc) [Luminária]; Sensor Luminosidade (LDR); Sensor de Temperatura (Ta); *total harmonic distortion* (THD); *Remote Terminal Units* (RTU); e *Global Positioning System* (GPS). Fonte: Elaborado pelo autor.

3.2 Estudos dos sistemas de monitoramento da qualidade da energia

O sistema apresentado por (ZAMBENEDETTI et al., 2013) possui um processo de comunicação por uma rede Mesh real e um gateway que se comunica com um servidor, cujas aplicações possibilitam incluir: leitura automática de medidores, monitoramento e comando de chaves, religadores, reguladores de tensão, supervisão e controle dos pontos de Iluminação Pública (IPu), medição de qualidade de energia, supervisão de transformadores, etc. Segundo os autores, o objetivo principal foi desenvolver um projeto para implementar e validar uma rede Mesh real. Para validar suas funções, três aplicações foram avaliadas: (1) leitura de medição automática de grandes consumidores (por exemplo, shoppings, fábricas, supermercados, etc) utilizando o protocolo ABNT¹³ (ABNT, NBR 14522, 2008), (2) monitor / comando de religador utilizando padrão protocolo DNP 3.0 e (3) supervisão, medição e controle dos pontos de IPu. Este último sistema desenvolvido permitiu acender as luzes da rua à distância, registrando o tempo preciso de acendimento e desligamento automático delas pela luz solar, o consumo real de energia e registro de amostras de tensão em tempo real em cada ponto de uma região urbana tipicamente de baixa tensão, predominantemente comercial. Além disso, os autores descrevem que o sistema de comunicação dos relés de telegestão possui a especificação PRO, padronizada pelo consórcio Zigbee para as camadas superiores, sendo o protocolo escolhido o padrão IEEE 802.15.4, que permite a construção de redes de comunicação com topologia Mesh, que se comunicam entre si sem passar as informações por um servidor, direcionando as informações ao dispositivo mais próximo do concentrador de dados, o gateway de comunicação com o servidor.

Em (PINTO *et al.*, 2014), os autores propõem a construção de um equipamento, denominado *Smart Module (SM)*, o qual é capaz de gerir e operar uma luminária utilizada para a IPu, bem como fornecer informações sobre o sistema de potência da rede eléctrica, que inclui a tensão do ponto de iluminação instalado na Rede de Distribuição (RD). O *Smart Module (SM)* contém um relógio de tempo real, sensores, fonte auxiliar, interface de controle com a função de gerenciar a luminária e enviar os dados para um *Control Module* (CM) que contém uma interface ethernet que permite a troca de dados com o sistema supervisório,

¹³A Associação Brasileira de Normas Técnicas (ABNT) é responsável pela elaboração das Normas Brasileiras (ABNT NBR), elaboradas por seus Comitês Brasileiros (ABNT/CB), Organismos de Normalização Setorial (ABNT/ONS) e Comissões de Estudo Especiais (ABNT/CEE). Disponível em: https://www.abnt. ⊃ org.br/institucional/sobre, Acessado em: 31 de dezembro de 2021.

diversos sensores para coletar informações locais sobre o meio ambiente e o clima, um cartão de memória para armazenar dados das múltiplas luminárias, uma interface *ZigBee*¹⁴ para se comunicar com múltiplos sistemas *SM* e um bateria para fornecer serviço contínuo apesar das falhas na rede elétrica. Por fim, todas as informações do *CM* são encaminhadas para um servidor, no qual foi desenvolvido um software para gerenciar e processar as informações através da linguagem C *Sharp* (C #) (C SHARP, 2000), que apresenta três abas principais: *start, luminaire control, energy quality parameters.* Portanto, os autores desenvolveram um conjunto de equipamentos para gerenciar a IPu e que também possibilita ao sistema realizar o monitoramento da qualidade da energia com a detecção correta dos eventos de afundamento e aumento de tensão na rede elétrica.

Ademais, esses estudos foram continuados pelos autores em (PINTO *et al.*, 2015), realizando o aprimoramento do *Smart Module (SM)* para atender a *IEC*¹⁵ 61000-4-30 (IEC, 2021b), com o objetivo de adequar o equipamento para a classe "A", a qual possibilita medir até o harmônico 50 da frequência fundamental de 60 Hz, resultando em uma resolução de 12 ciclos de uma frequência fundamental de 60 Hz ou 10 ciclos de 50 Hz com resolução de 5 Hz no algoritmo da Transformada Discreta de Fourier (TDF). O dispositivo aprimorado por (PINTO *et al.*, 2015) possui a capacidade de executar 12 ciclos amostrados a 10240 amostras por segundo, sendo utilizado para executar o algoritmo da Transformada Rápida de Fourier (TRF). Além disso, foi desenvolvido um outro algoritmo para calcular o *Root Mean Square (RMS)*, ou valor quadrático médio, para um ciclo completo que atualiza a cada meio ciclo. Os autores estabeleceram os limites superior e inferior da tensão com base na norma *IEC* 61000-4-30 (IEC, 2021b) como 1,1 e 0,9 do valor nominal, respectivamente. Se o *RMS* for maior do que o limite superior, um evento de aumento é detectado e, caso seja menor do que o limite inferior, um declínio é detectado. Assim, a contagem do tempo é iniciada para especificar a duração do evento em que a tensão permanece com anomalia.

Acrescenta-se que os autores em (PINTO et al., 2016) realizaram o aprimoramento

¹⁴*Zigbee* é um sistema de comunicação de rede sem fio projetado em malha, permitindo que dispositivos se comuniquem entre si e com uma ou várias centrais espalhadas. Estes dispositivos possuem uma baixa potência de operação, uma baixa taxa de transmissão de dados e um baixo custo de implementação, sendo utilizado em dispositivos *IoT* (*Internet of Things*.

¹⁵A IEC (International Electrotechnical Commission) é a organização mundial líder que prepara e publica Normas Internacionais para as áreas elétrica, eletrônica e tecnologias relacionadas, além de disciplinas como terminologia, compatibilidade eletromagnética, performance, segurança e meio ambiente, incluindo trabalhos na otimização da eficiência energética e desenvolvimento de normas para energias renováveis. Disponível em: https://www.cb26.org.br/iec, Acessado em: 31 de dezembro de 2021.

dos protótipos *SM* e *CM* experimental e suas aplicações na IPu e na RD. Foram instalados alguns sensores, dentre eles: sensores de luminosidade, de controle de intensidade do ponto de iluminação, de umidade e de temperatura, este dois últimos com o objetivo de melhorar a confiabilidade dos dados de qualidade de energia adquiridos, uma vez que chuvas e tempestades podem afetar bastante algumas medições. Além disso, segundo os autores, os aparelhos foram equipados com um *RTC* para que as informações pudessem ter um *timestamp* para melhor avaliação entre os dados e foi utilizado um sensor de corrente para medir a corrente que circula na luminária para fins de monitoramento, em que se possibilitou detectar os eventos eletromagnéticos mais comuns que afetam a rede elétrica de distribuição, como ocorrências de afundamentos, sobretensão e distorção harmônica de tensão.

Em (KANDIL *et al.*, 2015), foi apresentado um sistema de monitoramento de qualidade de energia com o objetivo de fornecer dados quantitativos (alta resolução de longo prazo) sobre eventos transitórios que podem ocorrer nos ambientes CA e CC do inversor e determinar como estas condições afetam a rede. Os dados foram monitorados continuamente por um analisador de qualidade de energia que realizava leituras com intervalos de 200 ms por quatro meses. Os dados destas leituras foram armazenados em um servidor local para análise. Com este intervalo de leitura embora seja possível analisar os harmônicos e os transitórios que ocorrem na Rede de Distribuição (RD), um grande volume de dados é gerado para ser enviado ao servidor.

Segundo (CHIDURALA *et al.*, 2015), o estudo realizado no campus da Universidade de *Queensland* (UQ), em St. Lucia, Australia, identificou que a integração de sistemas fotovoltaicos e suas características operacionais provocam pequenas oscilações que afetam a qualidade da tensão na Rede de Distribuição (RD) em função das flutuações nas irradiações solares. Os resultados, segundo os autores, mostram que as magnitudes de tensão da rede foram aumentadas em relação à injeção de energia através do sistema fotovoltaico. Diferente de (KANDIL *et al.*, 2015), o presente estudo seguiu os parâmetros do padrão ANSI 61000.3.100:2011 (ANSI, 2011), que fixa os limites operacionais da rede e verificou o limite para flutuações de tensão e cintilação produzida por dispositivos (inversores solares) com base no padrão ANSI 61000.3.7:2011 (IEC, 2008a) que representa os níveis de compatibilidade para oscilação em sistemas de baixa e média tensão. O processo de leitura dos dados foi realizado em vários nós da rede através de medidores digitais e analisadores de qualidade de energia instalados na baixa tensão dos campos da universidade com interface com a Internet para monitoramento.

3.2.1 Analogia entre o estudo proposto e literatura apresentada

No entanto, em (ZAMBENEDETTI et al., 2013) o projeto não foi aplicado para o monitoramento da qualidade da tensão ao longo da Rede de Distribuição (RD) utilizando a Infraestrutura da Iluminação Pública (IIPu) de modo a identificar de forma setorial os locais em que o nível da tensão está em desconformidade. Ademais, em (PINTO et al., 2014), (PINTO et al., 2015) e (PINTO et al., 2016) os estudos não trabalharam a hipótese de medir o Desequilíbrio da Tensão (DT) e identificar o fluxo de corrente inversa provocado pela injeção de energia gerada através dos PV instalados nos telhados das residências das áreas urbanas utilizando a IIPu, e, embora tenham realizado medições dos níveis de tensão dos pontos de iluminação, não o fizeram naqueles localizados próximos ao transformador da RDBT comparando-os com os pontos de Iluminação Pública (IPu) próximos as fontes geradoras de energia através dos PV. Sendo necessário a aplicação de um método de cálculo que possibilite utilizar a IIPu para obtenção dos dados a serem aplicados em um dos métodos que mensura o Desequilíbrio da Tensão (DT) e identifica o sentido do fluxo da corrente. Por fim, nos estudos de (KANDIL et al., 2015) e (CHIDURALA et al., 2015), esse tipo de aplicação em uma Rede de Distribuição (RD) demanda investimentos consideráveis para a aplicação de um projeto, enquanto esta pesquisa, reduz os custos de aplicação ao propor utilizar a infraestrutura já existente da rede de IPu e sugerir um método de cálculo para identificar o sentido da corrente, e realizar a análise da qualidade da energia, a ser aplicada em um dos métodos que mensura o Desequilíbrio da Tensão (DT).

3.3 Estudos sobre desbalanceamento do sistema elétrico nas redes de distribuição

O trabalho apresentado por (SAHA *et al.*, 2014) foca no monitoramento remoto centralizado, em que os dados são coletados a partir da saída dos transformadores de distribuição. Essa técnica foi aplicada apenas para monitorar as qualidades das potências de saída dos

____30

transformadores de distribuição utilizando um sistema microcontrolado por comunicação serial *half duplex* se comunicando com a central através do protocolo RS 485¹⁶. Aprimorando este conceito de monitoramento da qualidade da energia para o cliente de geração distribuída, tem-se o estudo realizado pelos autores (LU *et al.*, 2015), os quais o desenvolveram através de uma série de simulações que foram conduzidas em laboratório do RTDS¹⁷ para medir as grandeza elétricas, tais como tensão (*V*), corrente (*A*), consumo (kWh) e outras com precisão para o monitoramento da rede de baixa tensão influenciada pela rede de média. O estudo realizou a instalação de medidores inteligentes nos secundários dos transformadores da rede de distribuição e nos clientes em baixa tensão. A coleta de dados dos sensores dos medidores é realizada por meio de conexões com fio utilizando a rede de baixa tensão ou sem fio para o *Remote Terminal Unit* (RTU) e os envia para o gateway do protocolo da RTU, usando o protocolo Modbus¹⁸, no qual esses dados são organizados no formato IEC 61850 com base na configuração personalizada. O RTU e o seu gateway de protocolo são produtos comerciais da Schneider Electric¹⁹.

O trabalho demostrado por (RICCIARDI *et al.*, 2018) propõe soluções para mitigar problemas técnicos relacionados à conexão massiva de sistemas fotovoltaicos em redes de distribuição, identificando e discutindo os impactos dos PV na qualidade da tensão nas redes de distribuição em baixa e média tensão, e nas distorções harmônicas. A CPFL Energia²⁰ instalou 231 geradores fotovoltaicos de pequena escala em 68 diferentes redes de distribuição em baixa tensão (trifásicas a quatro fios em 220 *V*) que recebem a alimentação através de dois alimentadores em média tensão (trifásicos em 11,4 kV) na cidade de Campinas, SP, Brasil. As medições foram realizadas com dois analisadores de energia capazes de registrar os dados de medição e calcular diversos indicadores de qualidade de energia, de acordo com a IEC 61000-4-30 (IEC, 2021b).

¹⁶O padrão RS-485 é um protocolo de comunicação multiponto, que permite que vários dispositivos possam ser ligados ao barramento de comunicação, sendo definidos 32 dispositivos em uma única rede

¹⁷Laboratório *Real-Time Digital Simulation* (RTDS), em português simulação digital em tempo real, localizado na *Tampere University of Technology* (TUT) em Tampere, Finlândia.

¹⁸Modbus é um Protocolo de comunicação de dados utilizado em sistemas de automação industrial. Criado originalmente em 1979, pela fabricante de equipamentos Modicon.

¹⁹Schneider Electric é um grupo multinacional francês, especializado em produtos e serviços para distribuição elétrica, controle e automação

²⁰A CPFL Energia é um grupo do setor de energia do Brasil, com sede em Campinas, na Região Metropolitana de Campinas. Especializada na distribuição, geração, comercialização, soluções para empresas, serviços e energia renováveis

Ainda em (RICCIARDI et al., 2018) os autores utilizaram os analisadores de energia PQ modelo Fluke 435 Série II²¹ que foram instalados em simultâneo, um no secundário de um transformador e outro num dos respectivos clientes com ligação ao sistema fotovoltaico. Esse projeto realizou o monitoramento de mais de 50 pontos entre clientes e transformadores. As medições realizaram o monitoramento das tensões, correntes e potências ativas, por fase e por string de painel fotovoltaico, em ambos os lados (CA e CC) do inversor Fotovoltaico, com intervalos de 1 minuto e eram armazenadas em um cartão SD (8GB) ou SDHC (32GB). Sendo os dados coletados com intervalos estabelecidos no seu cronograma de estudo. Os dados analisados apresentaram aspectos de qualidade de tensão da seguinte ordem de relevância: magnitude da tensão, Desequilíbrio da Tensão (DT), distorção da tensão e a distorção da corrente pode ser afetada. Segundo os autores, "as medições não apresentaram nenhuma evidência convincente de que a distorção harmônica de tensão é uma questão importante a ser considerada pela concessionária de distribuição" (tradução nossa)²². Os níveis de deformação da onda portadora²³ provocada pelos harmônicos, segundo observações de (RICCIARDI et al., 2018) nas medições realizadas ao longo do dia nos períodos de geração solar, são acentuados devido ao carregamento normalmente leve das redes de distribuição.

O trabalho apresentado por (KHARRAZI *et al.*, 2017) realiza um processo de simulação através dos softwares MATLAB e PowerFactory²⁴ com base na troca de dados proposta entre os dois pacotes de softwares. Nele foi desenvolvido um algorítimo para ser aplicado o método probabilístico para estimar o Desequilíbrio de Tensão (DT) na Rede de Distribuição em Baixa Tensão (RDBT) através da simulação de Monte Carlo²⁵ para estimar e avaliar o DT. Segundo os autores (KHARRAZI *et al.*, 2017), ainda que a injeção de energia através

²¹Analisador de Energia e de Qualidade de Energia Fluke 434-II e 435-II. Possuem as funcionalidades de medir a tensão, corrente, frequência, potência, harmônicas ou cintilação nas três fases e também no neutro, incluindo a função de medir os inversores de energia recebem corrente CC e a transformam em CA, ou vice-versa.

²² "The measurements do not present any compelling evidence that voltage harmonic distortion is a major issue to be considered by the distribution utility."

²³[Eletricidade] Sinal senoidal composto por amplitude, frequência e fase, mas que não possui modulação.

²⁴PowerFactory é um aplicativo de software de análise de sistema de energia para uso em análise de geração, transmissão, distribuição e sistemas industriais. Desenvolvedor: DIgSILENT GmbH.

²⁵A Simulação de Monte Carlo, também conhecida como Método de Monte Carlo ou uma simulação de probabilidade múltipla, é uma técnica matemática, que é usada para estimar os possíveis resultados de um evento incerto. O Método de Monte Carlo foi inventado por John von Neumann e Stanislaw Ulam durante a Segunda Guerra Mundial para melhorar a tomada de decisão em condições incertas. Disponível em: https:// www.ibm.com/br-pt/cloud/learn/monte-carlo-simulation, Online; acessado em 31 dezembro 2021.

dos Painéis Fotovoltaicos (PV) reduza as perdas, a energia gerada através dos PV "*pode impactar negativamente a rede de distribuição de baixa e média tensão em termos de perfil de tensão e qualidade de energia*" (tradução nossa)²⁶ e que o DT nas RDBT é um dos problemas comuns de qualidade de energia que pode ser causado pela distribuição desigual das cargas monofásicas ligadas às redes elétricas trifásicas, enrolamentos dos transformadores instalados na rede de distribuição do tipo assimétrico ou linhas de transmissão e distribuição (KHARRAZI *et al.*, 2017), (JOUANNE; BANERJEE, 2001) e (ALAM *et al.*, 2012). Os autores (KHARRAZI *et al.*, 2017) ressaltaram que os Operadores de Sistema de Distribuição (OSD) regulamentaram limites de penetração ou capacidade máxima permitida para a instalação dos PV, citando por exemplo, a Austrália Ocidental e a Alemanha, onde existem limites para instalação de inversores monofásicos em uma fonte trifásica, sendo 3 kVA e 4,6 kW respectivamente.

Além disso, os autores (KHARRAZI *et al.*, 2017) destacaram que em muitos países exitem limites estabelecidos em suas normas técnicas que regulamentam a máxima variação da tensão entre as fases. Em seus estudos, destacaram três métodos que identificam o Desequilíbrio de Tensão (DT) ou (*K*), os quais são: (a) A prática recomendada pela IEEE para monitorar a qualidade da energia elétrica (padrão 1159) (IEEE 1159, 2019) que indica o limite permitido para DT em 2% para as redes de baixa e média tensão. Segundo os pesquisadores (KHARRAZI *et al.*, 2017), no Reino Unido, esse limite é reduzido para 1,3% no ponto do cliente; (b) A *IEC* 61000-3-13, recomenda o limite de 2% para redes de alta, média e baixa tensão (IEC, 2008b); e (c) A norma ANSI²⁷ C84.1.2020 (ANSI, 2020), recomenda que os sistemas de alimentação elétrica devem operar para limitar o Desequilíbrio de Tensão (DT) abaixo de 3%.

Acrescente-se que o estudo realizado por (KHARRAZI *et al.*, 2017) aplicou a técnica consistente em medir as tensões de sequência positiva e negativa dos nós inicial (transformador) e final de cada alimentador da rede de distribuição em baixa tensão, ressaltando, eles, que é uma pratica comum dos OSDs para calcular o Desequilibro da Tensão (DT) ou (*K*). O resultado das mil simulações estocásticas para o alimentador mais longo com o pior índice

²⁶"May adversely impact the low and medium voltage distribution network in terms of voltage profile and power quality".

²⁷American National Standards Institute (ANSI) é um instituto que supervisiona as atividades de avaliação de padrões e conformidade nos Estados Unidos. Disponível em: https://www.ansi.org, Acessado em: 31 de dezembro de 2021.

apresentou minímas variações que excederam o percentual de 2% quando a rede não possui a injeção de energia fotovoltaica. Porém, quando a rede possui a injeção de energia fotovoltaica, o limite é ultrapassado chegando a mais de 6% para alguns dos alimentadores em baixa tensão e que na rede de média tensão no final do alimentador o valor não ultrapassou 2%. O resultado da avaliação estocástica realizada por (KHARRAZI *et al.*, 2017) demostrou que a probabilidade de exceder os limites do DT é muito baixa. No entanto, segundo (KHARRAZI *et al.*, 2017), o resultado da análise de varredura de tempo mostra que existe uma incompatibilidade entre a demanda de energia e a geração solar ao longo do dia na qual pode impactar significativamente o DT.

Em (RODRIGUEZ et al., 2015) e (TORREZAN et al., 2018), o Desequilíbrio de Tensão (DT) é definido como um distúrbio relacionado à falta de qualidade no fornecimento da energia elétrica, sendo a principal causa a distribuição desigual de cargas monofásicas, que podem estar mudando continuamente em um sistema de energia trifásico (RODRIGUEZ et al., 2015) e (JOUANNE; BANERJEE, 2001). Segundo (RODRIGUEZ et al., 2015) e (FAIZ; EBRAHIMPOUR, 2005), na maioria das redes de sistemas de potência trifásico existe o desequilíbrio da tensão. O estudo apresentado por (TORREZAN et al., 2018) realizou uma simulação para um Sistema de Distribuição (SD) do (IEEE) de 13 barras, utilizado como sistema para teste através do software Open Distribution System Simulator - OpenDSSs (DU-GAN; MONTENEGRO, 2013). Com base nos parâmetros do SD teste, obtidos via simulações, calculou-se o K ou DT, um índice inadequado para a quantificação do Desequilibro da Tensão (DT). O resultado através dos métodos mais recorrentes na literatura demostrou que o método da (IEC Definition or True Definition (TD)²⁸) e do Cigré ²⁹ apresentaram praticamente os mesmos valores e o do (IEEE) 141 foi o que mais se distanciou dos demais. Em (RODRIGUEZ et al., 2015), os autores ressaltam que o (IEEE) 141 embora seja fácil de calcular, não é compatível com nenhuma outra regulamentação e seu uso para investigações no DT é baixo. Em (PAULILO, 2013), (PILLAY et al., 2002) e (LEE, 1999) os autores descrevem que o DT em um sistema elétrico é uma condição na qual as três fases apresentam

²⁸O métodos *IEC Definition or True Definition (TD)* é utilizado para calcular o desequilíbrios da tensão entre as fases

²⁹Conseil international des grands réseaux électriques (Cigré), em português Conselho Internacional de Grandes Sistemas Elétricos (Cigré) é uma organização mundial na área de eletricidade de alta tensão. Foi fundada na França em 1921 e sua secretaria geral está em Paris. Trata dos aspectos técnicos e econômicos das redes, mas também dos aspectos ambientais e regulamentares.

diferentes valores de tensão em módulo ou defasagem angular entre fases diferente de 120° elétricos ou, ainda, as duas condições.

3.3.1 Analogia entre o estudo proposto e literatura apresentada

Diferente de (SAHA *et al.*, 2014) e (RICCIARDI *et al.*, 2018), o presente estudo propõe coletar menos dados durante o período de 24 horas, utilizar menos infraestrutura para coletar as informações e desenvolver um método de cálculo a ser aplicada no método Cigré (IEEE 1159, 2019) para realizar a análise da qualidade da tensão na própria rede de distribuição da concessionaria de energia, e uma vez que, ao utilizar infraestrutura da IPu reduz a possibilidade de interferência dos clientes nos equipamentos. Ressalta-se que em (RICCIARDI *et al.*, 2018) as medições realizadas, não constataram nenhuma evidência convincente de que a distorção harmônica de tensão durante a injeção de energia através dos painéis fotovoltaicos é uma questão importante a ser considerada pela concessionária de distribuição. Assim, o presente estudo propõe realizar o monitoramento de seis dos oito tipos de Desequilíbrios de Tensão (DT) conhecidos na literatura científica e descritos por (PAULILO, 2013), e informar as anomalias ao Operador do Sistema de Distribuição (OSD) em tempo real, para, assim, possibilitar a realização de estudos contínuos com a finalidade de propor soluções a serem implementadas, visto que a comunicação é realizada diretamente com um servidor na nuvem e o volume de dados a ser transmitido será menor.

O estudo realizado pelos autores (KHARRAZI *et al.*, 2017) através da simulação de Monte Carlo avaliou o DT em uma Rede de Distribuição em Baixa Tensão (RDBT) quando ocorre a injeção de energia através dos Painéis Fotovoltaicos (PV). Entretanto, o estudo empírico propõe realizar o monitoramento da qualidade da energia por meio da utilização da infraestrutura de telegestão da IPu, ao apresentar um método de cálculo que utiliza esta infraestrutura a ser aplicada em um dos métodos padrão 1159 da IEEE (IEEE 1159, 2019) e identificar o fluxo da corrente inversa. Por fim, em (RODRIGUEZ *et al.*, 2015), (JOUANNE; BANERJEE, 2001) e (TORREZAN *et al.*, 2018), diferentemente desses estudos, neste trabalho, o método escolhido ira calcular o DT através das medições das tensões em pontos distintos da rede de distribuição de baixa tensão, tendo em vista que os pontos de iluminação que realiza o monitoramento estão instalados ao longo da rede de distribuição.

3.4 Estudos sobre os impactos da injeção de energia fotovoltaica

O estudo apresentado por (AZIZ *et al.*, 2017) tem como base medições reais de projetos-piloto e projetos de teste em instituições acadêmicas e organizações industriais e foram baseados em simulações de redes reais ou redes padrão, como sistemas de barramento IEEE. O estudo relaciona os prós e contras da injeção de energia gerada através dos PV na RDBT, dentre os impactos está a ocorrência da geração de pico que resulta na redução das perdas na distribuição de energia, superando a oferta de energia em relação à carga que está reduzida. Além disso, os autores (AZIZ *et al.*, 2017), afirmam que o processo de reversão da energia ocasiona o aumento de tensão devido à baixa carga e alta penetração de energia fotovoltaica, condição esta que ocorre durante os períodos de maior incidência solar, ao meio-dia, e as altas impedâncias nos cabos da rede de distribuição e/ou ramal do usuário, mesmo em penetrações muito baixas de energia através dos PV, ocasionam a elevação da tensão, podendo provocar o desequilíbrio entre as fases.

Os diversos estudos analisados por (AZIZ *et al.*, 2017) consideraram a interconexão dos PV à RDBT com fator de potência unitário, sendo identificada uma variação da tensão entre 3% a 10%. Segundo (AZIZ *et al.*, 2017), na literatura estudada não existe uma definição única para os limites de penetração da geração de energia através de PV nas RDBT que seja unanimemente acordada. No entanto, os autores ressaltam que mesmo extrapolando os níveis da tensão na RDBT, estes, em certas condições, podem ser evitados mesmo com altos níveis de penetração de energia através dos PV (cerca de 90% da carga máxima do alimentador na rede distribuição eram toleráveis para os cenários 1, 2 e 3, respectivamente, em termos de violações de tensão (MOHAMMADI; MEHRAEEN, 2017)). Desse modo, o aumento da tensão está relacionado à posição e concentração dos PV ao longo do alimentador. Porém, segundo (AZIZ *et al.*, 2017), é possível integrar um grande número de PV sem grandes mudanças nos parâmetros da RDBT, desde que estudando cuidadosamente a potência de geração, a localização e a concentração dos PV ao longo do comprimento do alimentador.

Os estudos apresentados em (ALBOAOUH *et al.*, 2018a), (ALBOAOUH *et al.*, 2018b) e (SINGH *et al.*, 2019) descrevem um sistema de distribuição com uma alta penetração de sistemas fotovoltaicos com proposta para controle centralizado através de simulações de seus algoritmos. O processo de monitoramento da energia é realizado pelos autores através das leituras nos barramentos de média tensão nas redes de distribuição e na subestação de energia principal com o objetivo de controlar os níveis de tensão. O processo consiste em realizar a injeção da energia reativa capacitiva (VAR) em trechos na Rede de Distribuição (RD) de média tensão de modo a controlar os níveis da tensão ao longo dos alimentadores quando ocorrer a queda na geração fotovoltaica. Nesse sentido, nos estudos apresentados por (IBRAHEM *et al.*, 2019) e (VARGAS *et al.*, 2018), utilizou-se o software MATLAB³⁰ Simulink³¹ com objetivo de demostrar a ocorrência das anomalias provocadas pela alta penetração de energia através da geração de PV nos barramentos e alimentadores de média tensão, tais como subtensão, sobretensão e variações da tensão quando injetada ou retirada cargas de alta potência, sejam elas capacitiva, resistiva ou indutiva.

O estudo apresentado por (PUNYACHAI *et al.*, 2014) realiza um processo de simulação através dos softwares PSCAD³² e PVWatts³³ com o objetivo de identificar: o problema de sobretensão nas redes de distribuição de baixa tensão e média tensão quando ocorre o alto nível de penetração de energia através dos PV no telhado; o desequilíbrio de corrente e tensão em sistemas de distribuição trifásicos na rede de baixa tensão; as consequências quando a geração fotovoltaica é instalada em uma rede de distribuição em baixa tensão, quando esta possui uma alta impedância nos cabos alimentadores, conforme citado nos estudos de (THOMAS *et al.*, 2018) e (PUNYACHAI *et al.*, 2014); e quando existe uma alta resistência de curto-circuito no transformador, o que provoca uma elevação dos níveis de tensão. Outro fator ressaltado pelo estudo dos autores (PUNYACHAI *et al.*, 2014) é a existência, durante o maior período de geração de energia através dos PV, de uma baixa demanda por energia que contribui para o DT devido à maioria dos inversores implementados no estudo ser do tipo

³⁰MATLAB é uma plataforma de programação e computação numérica usada por milhões de engenheiros e cientistas para analisar dados, desenvolver algoritmos e criar modelos. Desenvolvedor: MathWorks Inc.

³¹O Simulink é um software que possui um editor gráfico, bibliotecas de blocos personalizáveis e solucionadores para modelar e simular sistemas dinâmicos. Permite ser integrado ao MATLAB, incorpora algoritmos do MATLAB aos modelos e exporte os resultados da simulação para o MATLAB para análise posterior. O software proporciona a criação do projeto e a sua simulação do sistema antes de mudar para o hardware, assim como projetar, analisar e testar arquiteturas de sistema e software. Desenvolvedor: MathWorks Inc.

³²PSCAD é um software de simulação de sistemas de potência desenvolvido no Canadá pela Manitoba-HVDC. Sendo ideal para a análise de transitórios eletromagnéticos associados a: cabos e Linhas de Transmissão; grandes cargas industriais não-lineares; acionamentos com eletrônica de potência; faltas assimétricas; geração de energia distribuída; máquinas rotativas; sistemas FACTS/HVDC; energia Eólica; e sistemas fotovoltaicos.

³³PVWatts é um software online gratuito que estima a produção de energia e o custo da energia de sistemas de energia fotovoltaica (PV) conectados à rede em todo o mundo. Ele permite que proprietários de residências, proprietários de pequenos prédios, instaladores e fabricantes desenvolvam facilmente estimativas do desempenho de instalações fotovoltaicas potenciais. Desenvolvedor: National Renewable Energy Laboratory (NREL).

monofásico e adotarem o Fator de Potência³⁴ (FP) unitário.

O estudo apresentado por (AL-SHETWI *et al.*, 2020) demostra os requisitos relacionados à estabilidade de tensão, de frequência e à qualidade de energia, conforme ajustes nos parâmetros de energia ativa e reativa em relação à estabilidade da rede. Os autores (AL-SHETWI *et al.*, 2020) ressaltam que as condições climáticas podem impactar a estabilidade, qualidade e confiabilidade da RDBT e que a geração de energia através dos PV ou eólica com injeção ou absorção da corrente reativa são importantes para garantir a estabilidade do sistema de potência, durante distúrbios e condições anormais da tensão. Portanto, correntes reativas devem ser injetadas na rede principal para auxiliar na recuperação da tensão e manter a estabilidade do sistema de potência durante as falhas e permanecer conectados e operar de forma semelhante aos geradores síncronos tradicionais (AL-SHETWI *et al.*, 2020) e (OON *et al.*, 2018).

Além disso, (AL-SHETWI *et al.*, 2020) citam que alguns países estabelecem um valor para o fator de potência de avanço e atraso para qualquer usina fotovoltaica conectada a uma rede de baixa tensão, a exemplo: Alemanha, Itália, China e África do Sul que especificam um fator de potência de avanço / atraso para 0,95; a irlanda especifica um fator de potência de avanço / atraso para 0,835; a Malásia especifica um fator de potência de avanço / atraso para 0,9; e a Espanha especifica um fator de potência de avanço / atraso para 0,85. Segundo os autores (AL-SHETWI *et al.*, 2020), a tensão é considerada estável quando dentro de limites aceitáveis, normalmente 0,9 a 1,1 pu³⁵, caso contrário, deverá ser aplicado o controle de tensão através da potência reativa, de modo a regular o fator de potência FP no ponto de interconexão. Os autores (AL-SHETWI *et al.*, 2020) ressaltam que geralmente os países fixam o Desequilíbrio de Tensão (DT) nos limites entre 1% e 2% e que o estudo investigou a tendência atual de fontes de energia renováveis em todo o mundo, e pesquisou e comparou os vários requisitos e padrões recentes com relação à integração das fontes de energia renováveis na RDBT para garantir a sua estabilidade. Ainda mais, destacam que o

³⁴O Fator de Potência (FP) é a razão entre a potência ativa e a potência aparente. Ele indica a eficiência do uso ou geração da energia. Um alto fator de potência indica uma eficiência alta e inversamente, um fator de potência baixo indica baixa eficiência energética.

 $^{^{35}}$ O sistema "por unidade", ou, mais brevemente, sistema p.u., consiste na definição de valores de base para as grandezas (tensão, corrente, potência, etc.), seguida da substituição dos valores das variáveis e constantes (expressas no Sistema Internacional de unidades) pelas suas relações com os valores de base pré-definidos. Para uma grandeza G o valor em p.u. numa base Gb obtém-se então através da expressão Gpu = G / Gb. (MATOS, 2003)

Operador do Sistema de Distribuição (OSD) têm um desafio que é manter as tensões da RD dentro dos limites seguros em diferente situações de operação, e uma das soluções envolve a regulação do fator de potência no ponto de conexão do empreendimento com a rede da distribuidora usando a potência ativa ou a tensão do terminal. Portanto, os autores reforçam que a integração em grande escala das Fontes de Energias Renováveis (FERs) pode resultar em problemas de qualidade de energia, ainda que padrões e regulamentos tenham sidos aplicados em vários países para garantir uma boa qualidade de energia proveniente. Sendo as principais preocupações com a qualidade da energia associadas à integração de FERs são os transientes de tensão, harmônicos, oscilações e desequilíbrio de tensão.

Os autores em (BAYER *et al.*, 2018) apresentaram a experiência alemã de integração de sistemas fotovoltaicos em redes de baixa tensão. Concluíram que os principais problemas relatados pelos OSDs foram: a necessidade de mais monitoramento dos níveis de tensão ao longo da RDBT e o fluxo máximo de corrente reversa para os transformadores configurados para fornecer uma demanda máxima de energia. Portanto, o presente estudo propõe a utilização da infraestrutura de iluminação pública para monitorar os níveis de tensão e identificar a direção do fluxo de corrente em tempo real com baixo investimento.

3.4.1 Analogia entre o estudo proposto e literatura apresentada

A RSL realizada por (AZIZ *et al.*, 2017) e os estudos simulados por (ALBOAOUH *et al.*, 2018a), (ALBOAOUH *et al.*, 2018b), (SINGH *et al.*, 2019), (IBRAHEM *et al.*, 2019) e (VARGAS *et al.*, 2018) ressaltam métodos de monitoramento centralizado em pontos distintos na rede de distribuição e a sua importância para manter a qualidade da tensão entregue aos clientes. Ao propor desenvolver um método de cálculo considerando também os estudos de (PUNYACHAI *et al.*, 2014) e (THOMAS *et al.*, 2018) os quais afirmarão que as impedâncias dos cabos da rede de distribuição podem contribuir para a elevação da tensão na rede de distribuição em baixa tensão, sendo ainda impactada pela alta resistência de curto-circuito do transformador. Além disso, a RSL dos autores (AL-SHETWI *et al.*, 2020) ressaltam que as Fontes de Energias Renováveis (FERs) ainda que padrões e regulamentos tenham sidos aplicados em vários países para garantir uma boa qualidade de energia, constam entre as principais preocupações o Desequilíbrio de Tensão (DT) na rede de distribuição, e segundo (BAYER *et al.*, 2018) existe dificuldades em identificar o fluxo da corrente reversa ao longo da RDBT. Ocasionado pelas variações na energia injetada nos nós da rede de distribuição devido a sua natureza intermitente (MOHAMMADI; MEHRAEEN, 2017).

Assim, ao utilizar o método de cálculo que utilizar a Infraestrutura da Iluminação Pública (IIPu) para realizar tratamento inicial dos dados a serem aplicados em um dos métodos da IEEE 1159 (IEEE 1159, 2019), pretende-se verificar os tipos de Desequilíbrio da Tensão (DT) e identificar o sentido do fluxo de corrente na rede de distribuição (RD) por intermédio de um experimento aleatório.

Apesar das vantagens e avanços dos sistemas da literatura apresentados na Tabela 3, nenhum deles utiliza a Infraestrutura da Iluminação Pública (IIPu) para calcular o fluxo de corrente inversa, e para calcular o Desequilíbrio da Tensão (DT) em uma Rede de Distribuição em Baixa Tensão (RDBT) com ou sem a injeção de energia através dos Painéis Fotovoltaicos (PV). A interligação do monitoramento da injeção de energia fotovoltaica com a tecnologia de telegestão dos relés da IPu pode proporcionar uma melhor qualidade de vida à população, junto no desenvolvimento de políticas públicas que auxiliaram nas regulamentações e normas técnicas no setor elétrico, bem como auxiliar na futura aquisição de dados para os trabalhos acadêmicos ao utilizar-se do método de cálculo da Infraestrutura da Iluminação Pública (IIPu) com base nos trabalhos relacionados.

Por intermédio do conceito de cidades inteligentes unido ao universo do *Cyber-Physical System* (CPS), a interação entre as tecnologias de monitoramento do Desequilíbrio da Tensão (DT), de estimativa e identificação do sentido do fluxo da corrente elétrica, nas áreas urbanas, poderão proporcionar o aumento da qualidade da energia fornecida por meio da redução dos impactos negativos oriundos da geração de energia distribuída na rede de baixa tensão.

4 Materiais e métodos

No Brasil a ANEEL através da Norma PRODIST³⁶, Módulo 8 (ANEEL, 2022) adotou por meio da Norma 1159 (IEEE 1159, 2019), dois métodos para mensurar o Desequilíbrio da Tensão (DT), o método das componentes simétricas e o método Cigré, sem as componentes simétricas, para mensurar o Desequilíbrio de Tensão (DT) nas redes de distribuição em baixa tensão, mas estabeleceu o limite de 3%, diferentemente da Norma 1159 (IEEE 1159, 2019) internacional que adota o limite de 2%.

A pesquisa proposta pretende monitorar a qualidade da tensão em um sistema trifásico na Rede de Distribuição em Baixa Tensão (RDBT) utilizando a infraestrutura já existente do sistema de telegestão da Iluminação Pública (IPu). Nesse processo de monitoramento é planejado analisar os seis primeiros dos oito tipos de Desequilíbrios de Tensão (DT) conhecidos na literatura científica e descritos por (PAULILO, 2013), (PILLAY *et al.*, 2002) e (LEE, 1999) na Rede de Distribuição (RD), os quais:

- 1. Desequilíbrio de subtensão monofásico 1 Φ (Volts)
- 2. Desequilíbrio de subtensão de duas fases 2 Φ (Volts)
- 3. Desequilíbrio de subtensão de três fases 3 Φ (Volts)
- 4. Desequilíbrio de sobretensão monofásica 1 Φ (Volts)
- 5. Desequilíbrio de sobretensão de duas fases 2Φ (Volts)
- 6. Desequilíbrio de sobretensão de três fases 3 Φ (Volts)
- 7. Deslocamento de ângulo de fase única desigual 1 Φ (Amperes)
- 8. Deslocamento de ângulo de duas fases desigual 2 Φ (Amperes)

Além disso, o método de cálculo permite estimar o valor e identificar o sentido do fluxo da corrente na RDBT nos logradouros que possui o sistema de Geração Distribuída (GD). Segundo (BAYER *et al.*, 2018), quando o fluxo de corrente reverso é superior a potência do transformador, existe uma sobrecarga no equipamento, podendo esta sobrecarga

³⁶Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional (PRODIST) são documentos elaborados pela ANEEL e normatizam e padronizam as atividades técnicas relacionadas ao funcionamento e desempenho dos sistemas de distribuição de energia elétrica. Disponível em: https://www.gov.br/ aneel/pt-br/centrais-de-conteudos/procedimentos-regulatorios/prodist, Acessado em: 25 de março de 2023.

ocorrer também nos cabos da rede de distribuição, sendo necessário redimensioná-los para minimizar as perdas excessivas por distribuição, ocasionadas pela expansão da GD.

O diagrama de bloco da Figura 9 ilustra os materiais e métodos necessários para realizar o experimento da pesquisa e demostrar a aplicação do método de cálculo utilizando a Infraestrutura da Iluminação Pública (IIPu) em comparação ao método tradicional que utiliza um Analisador de Energia (AE) para identificar o Desequilibro da Tensão (DT) na RDBT, bem como no métodos de cálculo é apresentado o valor estimado e o sentido do fluxo da corrente.

Figura 9: Diagrama de fluxo de materiais e métodos do estudo realizado. Fonte: O autor.

A estrutura deste Capítulo está organizada da seguinte forma, na Seção 4.1 descreve os tipos de Métodos utilizados para o mensurar o DT e a escolha de um método em função das suas delimitações, a ser aplicado posterior ao método de cálculo que utiliza a IIPu. Na Seção 4.2 é apresenta as equações de circuitos polifásico que são aplicadas em função do modo em que o dados são coletados. Na Seção 4.3 é apresenta por intermédio de dois diagramas de blocos, os modos utilizados para realizar a coleta dos dados a serem aplicados no método de cálculo e posteriormente em um dos Métodos expostos na Seção 4.1 que mensuram o DT. Na Seção 4.4 demostra o desenvolvimento do método de cálculo realizado por este autor através da confluência da 1º e 2º Lei de Ohm, incluído as particularidades dos dados obtidos através da IIPu, sendo exposto a sua aplicabilidade em um diagrama de bloco. Na Seção 4.5 é apresentado o processo sincronização e os procedimentos para calcular o fator de correção a serem aplicados nos relés em relação ao analisador de energia. Na Seção 4.6 é apresentado os locais nos logradouros em que estão instalados os geradores de energia do tipo fotovoltaicos e as suas características técnicas. Por fim, na Seção 4.7 é apresentada uma síntese da instalação, operação, monitoramento, coleta dos dados, utilização do analisador de energia em paralelo com a aplicação do método de cálculo apresentado na Seção 4.4 para que ambos os processos de coleta dos dados sejam aplicados nas equações polifásicas da Seção 4.2 e posteriormente ao método definido na Seção 4.1.

4.1 Métodos para mensurar o desequilíbrio da tensão

O autor deste estudo selecionou, a princípio, três métodos em comum que foram estudados por (RODRIGUEZ *et al.*, 2015), (TORREZAN *et al.*, 2018) e (TEODORO, 2005), (a) Método das componentes simétricas (IEEE, STD 1159), (b) Método Cigré definido pela (IEEE, STD 1159) que é sem as componentes simétricas e (c) Método NEMA, das quais somente as duas primeiras foram estudas por (PAULILO, 2013).

(a) Método das componentes simétricas (IEEE 1159, 2019).

Segundo (TORREZAN *et al.*, 2018), o método das componentes simétricas dimensiona o fator *K* através da decomposição das tensões de fase em três sequências equilibradas, a sequência positiva, negativa e zero.

A expressão a seguir determina o fator *K* que é dado por:

$$K\% = \frac{V_{-}}{V_{+}} \cdot 100 \tag{1}$$

No qual:

 V_{-} é a magnitude da tensão de sequência negativa (valor *Root Mean Square* (RMS), e; V_{+} a magnitude da tensão de sequência positiva (valor *RMS*). (b) Método Cigré, sem as componentes simétricas (IEEE 1159, 2019).

Em (RODRIGUEZ *et al.*, 2015) os autores ressaltam que um dos principais problemas apresentados em campo é a impossibilidade de determinar os componentes da sequência quando se tem apenas medidores *RMS*, porém o Desequilíbrio da Tensão (DT) pode ser calculado utilizando apenas os valores *RMS* da tensão fase-fase sem o ângulo, ao aplicar a equação 2 que mensura o DT e equação 3 que produz β :

$$K\% = 100 \cdot \sqrt{\frac{1 - \sqrt{3 - 6\beta}}{1 + \sqrt{3 - 6\beta}}}$$
(2)

Sendo:

$$\beta = \frac{V_{ab}{}^4 + V_{bc}{}^4 + V_{ca}{}^4}{(V_{ab}{}^2 + V_{bc}{}^2 + V_{ca}{}^2)^2}$$
(3)

(c) Método NEMA (NEMA, 2016).

O método NEMA (*National Equipment Manufacturer's Association*) define o DT através de um índice conhecido como *Line Voltage Imbalance Percentage* ou Percentual de Desequilíbrio de Tensão de Linha (NEMA, 2016), calculado da seguinte forma:

$$K\% = \frac{max|V_{ab} - V_m, V_{bc} - V_m, V_{ca} - V_m|}{V_m} \cdot 100$$
(4)

Sendo:

$$V_m = \frac{V_{ab} + V_{bc} + V_{ca}}{3} \tag{5}$$

Diante dos Métodos apresentados foi necessário selecionar um que permita utilizar os dados obtidos através da Infraestrutura da Iluminação Pública (IIPu), por meio dos relés de telegestão desenvolvido por este autor, os quais permitem realizar o monitoramento na Rede de Distribuição em Baixa Tensão (RDBT) dos níveis das tensões em *RMS*, sem as componentes simétricas. Diante desta limitação foi definido a utilização do Método Cigré por meio das equações 2 e 3 as quais foram empregadas posteriormente a aplicação do método de cálculo proposto por este autor, demostrado na Seção 4.4 para mensurar o Desequilíbrio da Tensão (DT) no ponto de iluminação definido como referência. Ademais, a ANEEL já utiliza o Método Cigré da (IEEE 1159, 2019), conforme procedimentos da PRODIST (ANEEL, 2022), a qual estabelece os níveis da qualidade da energia no Brasil.

4.2 Equações de circuitos polifásico

As RDBT chamadas de circuitos polifásico, geralmente consistem em quatro condutores, um dos quais é o terra (neutro), enquanto os outros três (fases) são usados para transmitir a energia em Tensão e Corrente Alternada (CA) (IRWIN, 1999), (GIANCOLI, 2008) e (TEODORO, 2005). É importante evidenciar que todas as fontes de tensão polifásica é um fonte trifásica em equilíbrio (IRWIN, 1999), de modo que o valor da corrente que circula no condutor neutro é zero.

Assim, é possível realizar a superposição que as três fases de tensões equilibradas apresentam uma defasadas entre si em 120° (GIANCOLI, 2008), (TEODORO, 2005) e (IRWIN, 1999):

$$V_{an} = \frac{V_0}{\sqrt{2}} \cdot \cos \omega t \tag{6}$$

$$V_{bn} = \frac{V_0}{\sqrt{2}} \cdot \cos(\omega t + 4\pi/3)$$
 (7)

$$V_{cn} = \frac{V_0}{\sqrt{2}} \cdot \cos(\omega t + 2\pi/3)$$
 (8)

Os equipamentos elétricos utilizados para medir os níveis de tensão das fases coletam os valores em *Root Mean Square (RMS)* que é a tensão de cada fase em relação ao neutro ou entre fases. Assim, a tensão entre cada fase e neutro com os valores em *Root Mean Square* é dada pela equação 9, e que ao examinar a leitura instantânea das tensões para t = 0, obtêm-se os ângulos de seus fasores³⁷.

$$V_{rms} = \frac{V_0}{\sqrt{2}} \tag{9}$$

Portanto, ao aplicar os termos é descrita as seguintes expressões para identificar a tensão de cada fase em ralação ao neutro e seus fasores para V_{an} , V_{bn} e V_{cn} (RODRIGUEZ *et al.*, 2015), (TEODORO, 2005) e (IRWIN, 1999):

$$V_{an} = V_{rms} \angle 0^{\circ} \tag{10}$$

$$V_{bn} = V_{rms} \angle 240^{\circ} \tag{11}$$

³⁷Fasor ou Fasores. Em física e engenharia, um vetor de fase ou fasor, é uma representação de uma função senoidal cuja amplitude (*A*), frequência angular (ω) e fase (θ) são invariantes no tempo. Douglas C. Giancoli (1989). *Physics for Scientists and Engineers*. p.803 [S.1.]: Prentice Hall. ISBN 0-13-666322-2

$$V_{cn} = V_{rms} \angle 120^{\circ} \tag{12}$$

Para obter os valores das tensões de fase-fase (linha) de V_{ab} , V_{bc} e V_{ca} , substitui-se os valores das equações Eq. 10, Eq. 11 e Eq. 12, nas equações Eq. 13, Eq. 14 e Eq. 15 (RODRIGUEZ *et al.*, 2015) e (IRWIN, 1999).

$$V_{ab} = V_{an} - V_{bn} \tag{13}$$

$$V_{bc} = V_{bn} - V_{cn} \tag{14}$$

$$V_{ca} = V_{cn} - V_{an} \tag{15}$$

Estas são as tensões entre fases (linha) que devem ser aplicadas nos três métodos descritos na Seção 4.1, caso os instrumentos ou equipamentos só realizem as leituras e/ou coletas das tensões entre fase e neutro. Na proposta apresentada foi necessário utilizar as equações polifásica posterior ao método de cálculo apresentado na Seção 4.4, para obter as tensões entre as fases (linha) devido os Relés de Telegestão (RT) somente obterem os valores das tensões entre fase e neutro na Rede de Distribuição (RD).

4.3 Diagramas para coleta dos dados utilizados no cálculo do desequilíbrio da tensão

Para a realizar o monitoramento do Desequilíbrio da Tensão (DT) em pontos específicos na rede de distribuição atualmente é necessário a instalação de um analisador de energia ou três voltímetros, sendo o primeiro utilizado para coletar as leituras por longo período e o segundo somente para verificar se o desequilibro da tensão, é de forma constante. Estes equipamentos são instalados fisicamente para monitorar a tensão das três fases com o neutro em um determinado ponto na rede de distribuição, podendo identificar o sentido do fluxo da corrente.

Sendo demonstrado no item: a) o diagrama de bloco que utiliza o analisador de energia para coletar os dados; e no item b) o diagrama de bloco que utiliza três voltímetros para realizar as leituras em campo.

a) A Figura 10 apresenta um diagrama de bloco para coleta de dados através do analisa-

dor de energia, cujas informações podem ser aplicadas no Método da Norma 1159 da IEEE (IEEE 1159, 2019) com a utilização das componentes simétricas ou no Método Cigré que não utiliza as componentes simétricas (IEEE 1159, 2019), para mensurar de forma percentual o DT. Este tipo de coleta de dados é utilizado para identificar o desequilibro da tensão por um longo período.

Figura 10: Fluxograma de coleta dos dados quando utilizado o analisador de energia e aplicação nos Métodos da IEEE 1159 (IEEE 1159, 2019). Fonte: O autor. No Brasil o período definido para a realização das leituras e coleta dos dados é regulamentado através da norma PRODIST da ANEEL, na qual os indicadores individuais deve compreender o registro de 1008 leituras válidas obtidas em intervalos consecutivos (período de integralização) de 10 minutos cada, podendo ser adicionados intervalos de modo consecutivamente (ANEEL, 2022).

b) A Figura 11 apresenta um diagrama de bloco que simboliza três voltímetros para realizar as leituras dos níveis de tensão, entre fase-fase com aplicação direta no Método Cigré (IEEE 1159, 2019), ou entre as fases e o neutro utilizando as equações polifásica da Seção 4.2 para calcular as tensões de fase-fase, e assim aplicar os valores das leituras no Método Cigré (IEEE 1159, 2019) para mensurar o DT. Este tipo de coleta é utilizando quando o desequilibro da tensão é constante na rede.

Figura 11: Fluxograma de coleta dos dados que manuseia três voltímetros, em seguida utiliza as equações polifásica e por fim aplica o Método Cigré (IEEE 1159, 2019). Fonte: Elaborado pelo autor.

4.4 Método de cálculo que utiliza a Infraestrutura da Iluminação Pública (IIPu)

4.4.1 Conceito de queda de tensão

O estudo é realizado de forma simplificada e desconsidera o efeito magnético sobre os condutores, deste modo é possível calcular a queda de tensão de forma tolerável usando os valores de resistência dos condutores através da confluência da 1º e 2º Lei de Ohm, descritas nas equações 16 e 17:

$$V = R \cdot I \tag{16}$$

$$R = \frac{\rho \cdot L}{S} \tag{17}$$

Onde,

- V Tensão do ponto inicial da rede (v);
- R Resistência (Ω);
- *I* Corrente elétrica (A);
- S Seção transversal do condutor (mm^2);
- L Comprimento do cabo no trecho entre os pontos analisados (m);
- ρ Resistividade do condutor ($\Omega \cdot mm^2/m$).

A queda de tensão depende diretamente da resistência elétrica R que é uma propriedade do corpo e da corrente elétrica que circula por este. Essa propriedade depende de fatores geométricos, como o comprimento e da área transversal do corpo, mas também depende de uma grandeza chamada de resistividade ρ . Tal grandeza relaciona-se exclusivamente ao material do qual um corpo é formado, assim para o condutor de cobre o valor corresponde a $0,0178 \ \Omega . mm^2/m$ e para o condutor de alumínio corresponde a $0,0282 \ \Omega . mm^2/m$, ambos os valores obtidos a uma temperatura de 20° C (OHRING, 1995). Portanto, a junção das duas equações 16 e 17, proporciona identificar o valor da queda de tensão ΔV provocada pela passagem da corrente neste corpo representada na equação 18.

$$\Delta V = \frac{\rho \cdot L \cdot I}{S} \tag{18}$$

Onde,

 ΔV – Valor da queda de tensão (v).

Para poder obter o percentual da queda de tensão em uma rede de distribuição é necessário identificar a formação do circuito, portanto é atribuído uma constante *k* a equação 18, que multiplicará o comprimento *L* do cabo em função dessa formação, cujo valor para *k* em uma rede monofásica é 2, e para uma rede trifásica com neutro é $\sqrt{3}$. Portanto, a equação 19 apresenta um meio de como mensurar o percentual de queda de tensão para um circuito monofásico ou trifásico com neutro, por meio da equação 18:

$$\delta V\% = \frac{k \cdot \rho \cdot L \cdot I}{S \cdot V} \cdot 100 \tag{19}$$

Onde,

- δ Valor percentual da queda de tensão (%);
- k Constante em função da formação do circuito;
- ρ Resistividade do condutor (Ω . mm^2/m);
- L Comprimento do cabo no trecho entre os pontos analisados (m);
- I Corrente elétrica (A);

S – Seção transversal do condutor (mm^2);

V – Tensão do ponto inicial da rede (v).

Além disso, ΔV pode ser também obtido como o valor real de queda de tensão dada pela equação 20.

$$\Delta V = \frac{\delta V \cdot V}{100} \tag{20}$$

4.4.2 Desenvolvimento do método de cálculo a partir do conceito de queda de tensão

O conceito de queda de tensão definido na Seção 4.4.1 em que possibilita calcular de forma simples desconsiderando o efeito magnético sobre os condutores, com base neste conceito o método de cálculo apresentado proporciona uma nova abordagem para aquisição dos dados para mensurar o Desequilíbrio da Tensão (DT) por meio do método Cigré (IEEE 1159, 2019), além disso, é possível determinar o sentido e fluxo da corrente em uma Rede de Distribuição em Baixa Tensão (RDBT). O método de cálculo consiste em determinar os níveis de tensão a partir da escolha de um ponto da iluminação que esteja compreendido dentro do trecho em que estão instalados os seis relés de telegestão das luminárias, cuja função é realizar a coleta dos dados (níveis de tensão) de forma síncrona das três fases em relação ao neutro na rede de distribuição.

Além disso, outras informações técnicas serão coletadas referente ao logradouro no qual está instalada a rede de distribuição a ser analisada, dentre elas: (I) a distância entre os postes da rede de distribuição em baixa tensão; (II) as seções transversais de cada condutor elétrico ao logo da rede de distribuição; (III) o tipo de resistividade do condutor elétrico; e por fim, (IV) os seis pontos de iluminação (luminárias) que possui a formação em pares para cada uma das três fases, a exemplo: os três primeiro pontos de iluminação ligados na sequenciada entre as fases e neutro em V_{an} , V_{bn} e V_{cn} e as três últimos pontos de iluminação respectivamente na mesma sequencia.

Recomenda-se que a coleta dos dados (perfis de tensão) seja realizada em ramos principais do transformador, iniciado pelo ponto de iluminação em que está instalado o transformador, até que o procedimento possibilite a instalação dos seis pontos de Iluminação Pública (IPu) no mesmo sentido do ramo. A figura 12 descreve através de um diagrama a forma da qual é realizada aquisição dos dados para o início do tratamento por meio do método de cálculo, que em seguida é utilizada as equações dos circuitos polifásicos, e por fim aplicado no Método Cigré (IEEE 1159, 2019), o qual não utiliza as componentes simétricas para mensurar o Desequilíbrio da Tensão (DT). O desenvolvimento do método de cálculo tem como base a Equação 19 que apresenta o valor da queda de tensão. Assim, isola-se o termo para calcular a corrente estimada do circuito em função da diferença de potencial entre os dois pontos de iluminação que estão na mesma fase da rede da distribuição $(V_{an^P} \leftrightarrow V_{an^{P+g}}), (V_{bn^P} \leftrightarrow V_{bn^{P+g}})$ e $(V_{cn^P} \leftrightarrow V_{cn^{P+g}})$, separados por uma distância que normalmente não varia, assim como as seções do condutores elétricos e sua resistividade. Por conseguinte, obtém-se o termo da corrente *I* estimada que circula no condutor elétrico em uma fase na rede de distribuição expressa na Equação 21.

$$I = \frac{\delta V \cdot V \cdot S}{100 \cdot k \cdot \rho \cdot L} \tag{21}$$

Assim, aplica-se como a primeira parte do método, a Equação 21 para calcular a corrente em função da Diferença De Potencial (DDP) no ramo de cada fase na Rede de Distribuição (RD), sendo definido que os níveis de tensão das fases serão obtidos no mesmo intervalo de tempo com a finalidade de manter o sincronismo na coleta dos dados. Ademais, todos os Relés de Telegestão (RT) utilizados na Infraestrutura da Iluminação Pública (IIPu) possuem um *Real Time Clock* (RTC) para informar a data e horário das leituras.

Ressalta-se que ao utilizar Equação 21, e ao adotar o ponto inicial o transformador de energia, é possíveis estimar o valor da corrente elétrica e o seu sentido. De modo que quando o seu valor for negativo é identificado o fluxo de corrente reversa para o transformador.

a os gaps que separam os relés que fazem a leitura da tensão da mesma fase, e y corresponde a fase da adotada PR.

Figura 12: Fluxograma de coleta dos dados, realizada por meio da infraestrutura iluminação pública que utiliza os relés de telegestão, cujos dados seguem para processamento e inserção no método de cálculo, a ser aplicado nas equações polifásicas e, por fim, inseridos no Método Cigré. Fonte: Elaborado pelo autor.

Portanto, desconsiderando o efeito magnético sobre os condutores, pelo que é possível calcular a queda de tensão de forma tolerável utilizando os valores de resistência dos condutores através da 1ª e 2ª Lei de Ohm. Na figura 12 descreve as ligações elétricas na rede de distribuição da rua, considerando os seguintes valores:

- o valor de g corresponde ao número de vãos que separam os relés que efetuam as leituras dos níveis de tensão entre as mesmas fases. Neste estudo, o valor do número de vãos corresponde a 6, para as fases A, B e C;
- 2) os valores de tensão entre fase e neutro para a fase A (V_{an^p}), fase B (V_{bn^p}), e fase C (V_{cn^p}) correspondem aos pontos mais próximos do transformador, e V_{an^{P+g}}, V_{bn^{P+g}}, e V_{cn^{P+g}} representam os valores de tensão entre fase e neutro para os pontos de iluminação mais afastados do transformador;
- 3) a distância ($L_{i,i+1}$) entre os postes *i* e *i*+1;
- 4) a secção transversal $(S_{i,i+1})$ do cabo entre os postes *i* e *i*+1;
- 5) a RDBT em estudo utiliza cabos de alumínio, portanto $\rho = 0.0282 (\Omega \cdot mm^2/m);$
- finalmente, k indica o tipo de rede, o valor considerado neste estudo é 1,73 representando uma rede trifásica com neutro.

É importante notar que o método de cálculo define um **Ponto de Referência** (**PR**) para medir o desequilíbrio de tensão. O PR só pode ser definido entre as seções que executam a monitoramento inicial (V_{an^P} , V_{bn^P} , V_{cn^P}) e final ($V_{an^{P+g}}$, $V_{bn^{P+g}}$, $V_{cn^{P+g}}$) dos níveis de tensão nas três fases relativas ao neutro na RDBT. A figura 12 mostra os locais que podem ser adaptados como pontos de referência identificados pela abreviatura PR. Ao definir o poste 7 como PR devido às leituras do nível de tensão tomadas pelo relé 4A, instalado na fase A da RDBT, permitir aplicar diretamente os seus valores a V_{an} . Portanto, uma vez que $V_{an} = V_{an^{P+g}}$, reduz-se os cálculos porque só é necessário calcular os valores para as fases B e C.

O desenvolvimento do método de cálculo para mensurar o desequilíbrio de tensão utilizando os dados de leitura dos relés, é descrito por intermédio de três equações:

 Na Equação 22 estima-se a corrente I_x que circula nos ramos da fase x e a sua direção em função da Diferença De Potencial (DDP), onde m é a i-ésima leitura dos dados coletados;

$$I_{x} = \frac{\left(\frac{V_{xn}P - V_{xn}P + g}{V_{xn}P}, 100\right) \cdot V_{xn}P}{\left[S_{i,i+1}, \left(\frac{L_{i,i+1}}{L_{i,i+1} + \dots + L_{i,i+1}^{m}}\right) + \dots + S_{i,i+1}^{m}, \left(\frac{L_{i,i+1}^{m}}{L_{i,i+1} + \dots + L_{i,i+1}^{m}}\right)\right]}{100.k.\rho.\left(L_{i,i+1} + \dots + L_{i,i+1}^{m}\right)}$$
(22)

Ao simplificar a Equação 22, obtêm-se as seguintes expressões algébricas, sendo a primeira mais detalhada, e a segunda expressão resumida;

$$I_{x} = \frac{(V_{xn^{P}} - V_{xn^{P+g}}) \cdot \left[S_{i,i+1} \cdot \left(\frac{L_{i,i+1}}{L_{i,i+1} + \dots + L_{i,i+1}^{m}} \right) + \dots + S_{i,i+1}^{m} \cdot \left(\frac{L_{i,i+1}^{m}}{L_{i,i+1} + \dots + L_{i,i+1}^{m}} \right) \right]}{k \cdot \rho \cdot \left(L_{i,i+1} + \dots + L_{i,i+1}^{m} \right)}$$
$$(V_{xn^{P}} - V_{xn^{(P_{f})}}) \cdot \left[\sum_{i=P}^{P_{f}-1} S_{i,i+1} \cdot \left(\frac{L_{i,i+1}}{P_{f}-1} \right) \right]$$

$$I_{x} = \frac{\sum_{i=P}^{P_{f}-1} \sum_{i=P}^{P_{f}-1} L_{i,i+1}}{k \cdot \rho \cdot \left(\sum_{i=P}^{P_{f}-1} L_{i,i+1}\right)}$$

Nestas duas últimas expressões da Equação 22, x é igual a A, B, ou C, P é o número do poste de referência perto do transformador, e P_f é o número do poste de referência longe do transformador ($P_f = P + g$); Cada fase tem dois postes de referência, quando x = A, P = 1, quando x = B, P = 2, e quando x = C, P = 3;

Na Equação 23, sendo a primeira expressão algébrica mais detalhada, e a segunda expressão resumida, utiliza-se a corrente calculada na Equação 22 para identificar a queda de tensão na rede da fase B, no poste 8 (relé 5B) até ao ponto de referência, bem como na fase C, no poste 9 (relé 6C) até ao ponto de referência. O y em V_{xn^PVyn^{RP}} corresponde à fase do ponto de referência, neste caso, y = a;

$$V_{xn^{P}Vyn^{RP}} = \frac{k \cdot \rho \cdot L_{i,i+1} \cdot I_{x}}{\left[S_{i,i+1} \cdot \left(\frac{L_{i,i+1}}{L_{i,i+1} + \dots + L_{i,i+1}^{m}}\right) + \dots + S_{i,i+1}^{m} \cdot \left(\frac{L_{i,i+1}^{m}}{L_{i,i+1} + \dots + L_{i,i+1}^{m}}\right)\right]}$$
(23)

$$V_{xn^{P}Vyn^{RP}} = \frac{k \cdot \rho \cdot L_{xn^{P}yn^{RP}} I_{x}}{\left[\sum_{i=P}^{P_{f}-1} S_{i,i+1} \cdot \left(\frac{L_{i,i+1}}{\sum_{i=P}^{P_{f}-1} L_{i,i+1}} \right) \right]}$$

Na equação 24 calcula-se a tensão para fase B (V_{bn}) e fase C (V_{cn}) no ponto de referência.

$$V_{xn} = V_{xn^P} + V_{xn^P V yn^{RP}} \tag{24}$$

4.5 Processo sincronização e cálculo do fator de correção

4.5.1 Processo de sincronização dos relés de telegestão e do analisador de energia

Antes de iniciar o processo de calibração ou verificação do erro de cada um dos seis relés em relação ao analisador de energia, foi realizado o processo de sincronização de todos os dispositivos, a começar pelo ajuste manual do *Real Time Clock* (RTC) do analisador de energia com o horário da plataforma WEB TIME.IS³⁸. Em seguida, iniciou-se o processo de sincronização do RTC interno dos seis Relés de Telegestão (RT) durante o carregamento da EEPROM Atmega328P.

Ressalta-se, ainda, que os seis relés possuem em sua programação interna um processo diário de sincronização realizado as 19 h 0 min 0 s. Além disso, este processo levou em conta o tempo médio de 3,75 segundos, arredondado para 4 segundos, de forma que o tempo total corresponde ao período de processamento das informações no dispositivo, somados à resposta na comunicação com o servidor da Hostinger, incluindo o serviço M2M fornecido pela empresa da META Telecom a qual é a responsável pela conexão com a internet via operadora de telecomunicações da Claro³⁹.

4.5.2 Cálculo do fator de correção dos 6 relés em relação ao analisador de energia

O processo do cálculo do Fator de Correção (FC) tem início com a ligação de todos os relés a um circuito em aberto, assim, são enviados comandos através do protocolo de

³⁸Time.is é um plataforma que exibe a hora exata, de acordo com o relógio atômico oficial para qualquer fuso horário em 57 idiomas. O Time.is se baseia em dados de fusos horários do banco de dados IANA de fusos horários. Disponível em: https://time.is/pt_br/, Acessado em: 25 de novembro de 2022.

³⁹Claro é uma concessionária de telefonia móvel, telefonia fixa, banda larga e TV por assinatura.

comunicação *SPI*⁴⁰ ao CI CS5463, com a retirada do sinal CC e dos ruídos dos transdutores, conforme procedimentos do fabricante, (CIRRUS LOGIC, 2021). Posteriormente, todos os seis relés de telegestão e o analisador de energia são ligados na mesma fase e no mesmo ponto de conexão elétrica para identificar os respectivos fatores de correção. Os resultados obtidos são descritos no Capítulo 5.

Evidencia-se que o horário registrado pelos relés inclui o segundo em que ocorre a saída da informação do módulo de comunicação dos relés, por meio do protocolo HTTP, de modo que no segundo zero é realizado o processo das leituras e no segundo um é realizado o envio das leituras ao servidor. Ademais, somente no relé 04 foi realizado o processo de calibração em relação ao analisador de energia, através dos parâmetros do firmware, em virtude de ser um processo demorado em função das limitações técnicas e considerando-se que já se encontrava agendada a instalação dos relés na rede de distribuição para o dia 24 de novembro as 14 horas, a qual já havia sido adiada uma vez devido a um defeito no circuito regulador de tensão, que alimenta o *RTC* dos relés, os quais foram substituídos por outro componente similar.

Por esses motivos, optou-se por identificar um Fator de Correção (FC_r) para cada relé, a ser aplicado em suas leituras. O processo tem início a partir do módulo da Diferença (DF_r) entre os valores de V_{ae} que correspondem às leituras da tensão do Analisador de Energia (AE) em relação aos valores de V_r que são as leituras da tensão de cada Relé de Telegestão (RT), por meio da Equação 25, em que *r* corresponde ao número do relé (r = [1, 6]).

$$DF_r = |V_{ae} - V_r| \tag{25}$$

Após obter o resultado da diferença entre cada leitura obtida por relé, em relação as leituras do analisador, serão construídos os conjuntos de seis *Boxplots*, cujos parâmetros utilizados serão a média e a amplitude interquartil (IQR) para cada relé, a qual possibilita realizar a estimativa da variabilidade para calcular os limites inferior e superior e possibilita identificar os *outliers* de cada relé, cujos valores serão descartados em conjunto com os dados do Analisador de Energia (AE). Ressalta-se que por meio dos procedimentos realizados anteriormente o valor da média corresponde ao *Mean Absolut Rrror* (MAE).

⁴⁰Serial Peripheral Interface (SPI), em português Interface Periférica Serial, é um protocolo que permite a comunicação do microcontrolador com diversos outros componentes, formando uma rede.

Os demais dados restantes referentes a cada relé, em relação aos dados do analisador de energia serão aplicados na Equação 26, com a função de obter o Fator de Correção (FC_r), cujo resultado é obtido por meio da razão entre a soma das leituras do analisador de energia e a soma das leituras correspondentes a cada relé, sendo *r* o número do relé (r = [1, 6]).

$$CF_r = \frac{\sum\limits_{i=1}^{n} V_{ae}^i}{\sum\limits_{i=1}^{n} V_r^i}$$
(26)

onde *i* é a leitura da i-ésima voltagem e *n* é o número de leituras das tensões.

Após a aplicação dos Fatores de Correção (FC_r) correspondentes a cada relé, serão realizados os mesmos procedimentos com o objetivo de identificar o novo valor para o *Mean Absolute Error* (MAE).

4.6 Infraestrutura da iluminação pública, comunicação e geração

A tecnologia de telegestão utilizada para a Iluminação Pública (IPu) possibilita, dentre outras funções, realizar o monitoramento da qualidade da energia e, por meio do método de cálculo proposto, possibilita mensurar o Desequilibro da Tensão (DT) e identificar o fluxo de corrente inversa em uma Rede de Distribuição em Baixa Tensão (RDBT). A Figura 13 apresenta uma visão específica do sistema proposto utilizando a Infraestrutura da Iluminação Pública (IIPu) através de um diagrama de blocos que descreve as seções a seguir: 4.6.1 Geradores de energia através de Painéis Fotovoltaicos e sua injeção na rede de distribuição; 4.6.2 Procedimentos de instalação e disposição das luminárias na rede de distribuição; 4.6.3 Sistema de sensores de comunicação da IIPu; 4.6.4 Armazenamento de dados e comunicação cliente-servidor; 4.6.5 Verificação dos níveis de tensão com o analisador de energia; e por fim, a seção 4.7 Síntese da instalação, operação, monitoramento, coleta dos dados, aplicação do método de cálculo e do Método Cigré.

4.6.1 Geradores de energia através de Painéis Fotovoltaicos e sua injeção na rede de distribuição

O estudo realizado no logradouro foi composto por nove residências que possuem geração do tipo fotovoltaica, que estão instaladas de modo aleatório no logradouro, e cujos

Figura 13: Visão geral do sistema proposto. Fonte: Elaborado pelo autor.

geradores são do tipo monofásico e trifásicos que estão ligados às fases da rede de distribuição em baixa tensão. A localização destes equipamentos estão identificadas na figura 14, que utilizou a plataforma Google Earth Pro⁴¹ a qual possibilita consultar e inserir as coordenadas dos pontos de iluminação e demais equipamentos. Nas alíneas a seguir são apresentadas as especificações técnicas referente a capacidade de geração dos equipamentos, modelo do inversor solar e das placas fotovoltaicas instaladas em cada uma das noves residências:

a) A primeira residência possui quatro micro inversores de 1,2 kW do fabricante Hoymiles, modelo MI-1200 e configurado para o perfil unitário para o Fator de Potência (FP) que estão ligados a uma fase, não identificada na rede de distribuição para fornecimento de energia. Cada micro inversor é constituído por quatro painéis, totalizando dezesseis painéis fotovoltaicos de 380 Wp por painel do fabricante Suntech que possui o modelo STP380S-24/vfh do tipo monocristalino. A capacidade total de geração é de 6,08 kWp, e o seu potencial de injeção na rede de distribuição é de 4,8 kW;

⁴¹Programa de computador utilizado para localizar por georreferência os pontos de iluminação pública, transformadores e fontes geradoras de energia fotovoltaica, na cidade de Marechal Deodoro, Alagoas, Brasil. Versão 7.3.4.8248 (64-bit). Disponível em: https://earth.google.com/web/, Acessado em: 21 de novembro de 2021.

Legenda

- Poste com iluminação pública na rede de distribuição em baixa tensão
- Poste com iluminação pública e relé de telegestão fase indicada pela letra
- Residências com geração de energia através de painéis fotovoltaicos
- Poste com iluminação pública e transformador relé de telegestão ligado na fase "A"

Figura 14: Mapa dos logradouros. Fonte: Adaptado do Google Earth Pro e dados da legenda inseridos pelo autor.

b) A segunda residência possui um inversor de 5,00 kW do fabricante Fronius, modelo Primo 5.0-1 e configurado para o perfil unitário do Fator de Potência (FP) que está ligado a uma fase, não identificada na rede de distribuição para fornecimento de energia. O sistema é constituído por vinte painéis fotovoltaicos de 335 Wp por painel do fabricante BYD que possui o modelo BYD335-PHK36-5B do tipo policristalino. A capacidade de geração é de 6,70 kWp, e o seu potencial de injeção na rede de distribuição é de 5,0 kW;

- c) A terceira residência possui três micro inversores de 2,00 kW do fabricante Deye, modelo SUN2000G3-US-220 e configurado para o perfil unitário do FP que está ligado a uma fase, não identificada na rede de distribuição para fornecimento de energia. O sistema é constituído por doze painéis fotovoltaicos de 535 Wp por painel do fabricante Phono Solar e modelo PS535M6H-24TH do tipo *monocrystalline*. A capacidade de geração é de 6,42 kWp e o seu potencial de injeção na rede de distribuição é de aproximadamente 5,79 kW, em função do rendimento de 96,5% do inversor;
- d) A quarta residência possui um inversor de 8,00 kW do fabricante GROWATT, modelo MIN 8000TL-X(E) e configurado para o perfil unitário do FP que está ligado a uma fase, não identificada na rede de distribuição para fornecimento de energia. O sistema é constituído por doze painéis fotovoltaicos de 535 Wp por painel do fabricante JAsolar que possui o modelo JAM72S30-535/MR do tipo monocristalino. A capacidade de geração é de 6,42 kWp e o seu potencial de injeção na rede de distribuição é de aproximadamente 6,24 kW, em função do rendimento de 97,3% do inversor;
- e) A quinta residência possui um inversor de 5,00 kW do fabricante PHB, modelo MIN PHB5000D-NS e configurado para o perfil unitário do FP que está ligado a uma fase, não identificada na rede de distribuição para fornecimento de energia. O sistema é constituído por dezesseis painéis fotovoltaicos de 335 Wp por painel do fabricante Jinko e modelo JKM335PP-72 do tipo Polycrystalline Silicon. A capacidade de geração é de 5,36 kWp e o seu potencial de injeção na rede de distribuição é de aproximadamente 5,24 kW, em função do rendimento de 97,8% do inversor;
- f) A sexta residência possui dois inversores trifásicos, o primeiro com potência de 15,00 kW do fabricante SUNGROW, modelo SG15KTL-M, configurado para o perfil unitário do FP que está ligado às três fases na rede de distribuição para fornecimento de energia. O sistema é constituído por 38 painéis fotovoltaicos de 410 Wp por painel do fabricante JAsolar que possui o modelo JAM54S30-410/MR do tipo monocrista-

lino. A capacidade de geração é de 15,58 kWp e o seu potencial de injeção na rede de distribuição é de aproximadamente 16,269 kW, em função do rendimento de 98,4% do inversor;

O segundo inversor possui uma potência de 20,00 kW do fabricante SUNGROW, modelo SG20KTL-M, configurado para o perfil unitário do FP que está ligado às três fases na rede de distribuição para fornecimento de energia. O sistema é constituído por 44 painéis fotovoltaicos de 470 Wp por painel do fabricante JAsolar que possui o modelo JAM72S20-470/MR do tipo monocristalino. A capacidade de geração é de 20,68 kWp e o seu potencial de injeção na rede de distribuição é de aproximadamente 20,39 kW, em função do rendimento do inversor que é de 98,6%. A potência trifásica total de injeção na rede de distribuição é de aproximadamente 36,659 kW;

- g) A sétima residência possui um inversor de 5,00 kW do fabricante GROWATT, modelo MIN 5000TL-X e configurado para o perfil unitário do FP que está ligado a uma fase, não identificada na rede de distribuição para fornecimento de energia. O sistema é constituído por doze painéis fotovoltaicos de 405 Wp por painel do fabricante JAsolar que possui o modelo JKM405M-72H do tipo monocristalino. A capacidade de geração é de 4,86 kWp e o seu potencial de injeção na rede de distribuição é de aproximadamente 4,78 kW, em função do rendimento de 98,4% do inversor;
- h) A oitava residência possui um inversor de 3,00 kW do fabricante CanadianSolar, modelo CSI-3K-S22002-ED e configurado para o perfil unitário do FP que está ligado a uma fase, não identificada na rede de distribuição para fornecimento de energia. O sistema é constituído por oito painéis fotovoltaicos de 395 Wp por painel do fabricante JAsolar e modelo JAM72S09 375-395/PR do tipo *Monocrystalline*. A capacidade de geração é de 5,16 kWp e o seu potencial de injeção na rede de distribuição é de aproximadamente 2,934 kW, em função do rendimento de 97,8% do inversor, e;
- i) A nona residência possui um inversor de 5,00 kW do fabricante SAJ-Eletric, modelo R5-5K-S2-15 e configurado para o perfil unitário do FP que está ligado a uma fase, não identificada na rede de distribuição para fornecimento de energia. O sistema é constituído por dez painéis fotovoltaicos de 535 Wp por painel do fabricante Phono Solar e modelo PS535M6H-24TH do tipo *monocrystalline*. A capacidade de geração

é de 5,35 kWp e o seu potencial de injeção na rede de distribuição é de aproximadamente 4,905 kW, em função do rendimento de 98,1% do inversor.

As noves residencias que possuem geração através dos Painéis Fotovoltaicos (PV) neste logradouro, possibilitam juntas, injetar na Rede de Distribuição em Baixa Tensão (RDBT) por meio do sistema de Geração Distribuída (GD) um potência total de 76,618 kW, sendo esta superior a potência do transformador instalado neste logradouro que é de 75,0 kVA.

4.6.2 Procedimentos para substituição das luminárias e da instalação dos relés de telegestão

Inicialmente, para realizar a instalação dos Relés de Telegestão (RT) foi necessária a substituição de seis Luminárias Completas (LC) ou pontos de Iluminação Pública (IPu) em um logradouro localizado no bairro da Massagueira, na cidade de Marechal Deodoro, Alagoas, Brasil. Essa substituição foi realizada na Infraestrutura da Iluminação Pública (IIPu) sob autorização da Prefeitura, conforme documento constante no Apêndice C, mediante a retirada de seis luminárias do logradouro, conforme modelo apresentado na Figura 15, que estavam instaladas em braços curtos com 1 metro de projeção, constituídas por lâmpadas com potência de 70 W e pelos equipamentos auxiliares a seguir: reator com potência de 70 W, tomadas para relé, e relés fotelétricos. A substituição das luminárias foi necessária devido à forma de instalação dos equipamentos auxiliares, que ficavam expostos e fixados na sapata do braço da luminária junto ao poste, condição esta que possibilitava mais facilmente a interferência de terceiros nos dispositivos e nos relés de telegestão.

Antes da substituição das Luminárias Completas (LC) por modelos mais novos, doados pela Superintendência Municipal de Energia e Iluminação Pública de Maceió (SIMA), documento constante no Apêndice A para a realização deste estudo, as seis LC que já haviam sido usadas, receberam as devidas manutenções por este autor para que pudessem ser instaladas na rede de distribuição do logradouro. Cada LC é constituída por: braço com projeção de 2 metros galvanizado a fogo; parafusos, porca e arruelas; reator com potência de 100 W com o fator de potência de 0,92; relé fotoelétrico com contatos para 1.000 VA, luminária do tipo fechada com material a base de polietileno do fabricante Schreder, lâmpada do tipo vapor de sódio de alta pressão com potência de 100 W do fabricante Avant; cabos com isolação de

Figura 15: Foto do Padrão I1 do modelo das luminárias que foram retiradas. Fonte: Elaborado pelo autor.

0,6/1kV com duas vias para ligação interna da luminária a rede de distribuição e conectores de pressão.

As Figuras 16, 17 e 18 apresentam o modelo instalado e a descrição para instalação das luminárias na rede de distribuição utilizadas para a pesquisa, respectivamente. Este modelo de instalação foi adotado para evitar acesso de terceiros aos dispositivos das luminárias, em especial aos relés de telegestão que substituíram os relés convencionais durante o estudo. Na Figura 14 constam os locais identificados por balões na cor rosa com as letras "A", "B" e "C", incluindo um balão na cor verde que indica o local do transformador e representa a letra "A", complementado pela descrição de sua legenda. Estas letras indicam a ligação elétrica das luminárias entre a fase e neutro a Rede de Distribuição em Baixa Tensão (RDBT).

A pesquisa buscou delimitar uma área com o objetivo de estudar apenas um dos ramos do transformador, no qual se procedeu à substituição das seis Luminárias Completas (LC), bem como à instalação dos relés de telegestão para dar inicio ao processo de monitoramento da tensão na RDBT, cujo sentido dos pontos são apresentados na Figura 14. Ademais, analisando o ramo escolhido do transformador, adotou-se que o primeiro ponto é o do próprio transformador, o segundo e o terceiro são os seguintes no mesmo sentido do ramo, mas obedecendo a uma sequência de ligação entre as fases e o neutro, de modo que o primeiro

Figura 16: Foto do Padrão I2 do modelo das luminárias que foram instaladas e um dos protótipos dos relés desenvolvidos por este autor instalado acima da luminária. Fonte: Elaborado pelo autor.

Figura 17: Foto com detalhe da ligação dos cabos da luminária na rede de distribuição e identificação do estudo no braço da luminária. Fonte: Elaborado pelo autor.

ponto de iluminação foi ligado na fase "A" e neutro, o segundo na fase "B" e neutro e o terceiro na fase "C" e neutro. Os outro três pontos de iluminação foram instalados no mesmo sentido do ramo, na sequência do sétimo, oitavo e nono, mantendo a mesma sequência de ligação entre as fases e o neutro, citadas anteriormente.

Além da disposição das luminárias substituídas na rede de distribuição, foi necessário também realizar o cadastramento dos pontos através das informações obtidas no ramo do transformador estudado, que compreende deste o primeiro relé até o ultimo relé de telegestão,

Figura 18: Detalhe do procedimento de instalação e montagem de um ponto do sistema de Iluminação Pública (IPu) do Padrão I2. Fonte: Elaborado pelo autor.

conforme é apresentado na Figura 19, descritas nas alíneas a seguir:

- a) a distância entre os postes do ramo do transformador estudado;
- b) a seção transversão dos cabos entre cada poste do ramo do estudo; e
- c) o tipo de material condutor dos cabos, se for instalado alumínio ou cobre.

Essas informações fazem parte do projeto elétrico de uma Rede Distribuição (RD), que deve ser mantido atualizado pelas distribuidoras de energia, conforme resoluções da ANEEL, possuindo, desta forma, alta confiabilidade técnica diante do dever de atualização após a realização de manutenção ou de reordenamento técnico da rede de distribuição. Na Figura 19 é apresentado um diagrama do bloco preenchido com os dados das seções do cabos, dos espaçamentos entre postes da rede de distribuição do logradouro utilizado para o estudo. Salienta-se que todos os cabos da RD são de alumínio.

Estas informações foram obtidas através de um levantamento técnico especializado,

após a substituição das Luminárias Completas (LC), que correspondem ao trecho do ramo do estudo.

A tecnologia de telegestão utilizada para a Iluminação Pública (IPu) possibilita, dentre outras funções, realizar o monitoramento da qualidade da energia, que, por sua vez, por intermédio do método de cálculo apresentado na Seção 4.4.2 que viabiliza mensurar o Desequilíbrio da Tensão (DT) ao longo da rede de distribuição, assim como identificar o sentido do fluxo da corrente e estimar o seu valor no trecho mononitrado entre os relés do mesmo circuito. Os Relés de Telegestão (RT) utilizados para realizar o monitoramento, embora tenham sido desenvolvidos por este autor, todo o seu desenvolvimento e construção não fazem parte desta pesquisa, mas foi apresentado no Apêndice F, um resumo por foto da construção e desenvolvimento do relé. Ademais, a utilização é justificada devido a umas de suas funções, que é monitorar os níveis de tensão de forma sincronizada através de um *Real Time Clock* (RTC) interno e do envio das informações a um servidor na nuvem.

a os gaps que separam os relés que fazem a leitura da tensão da mesma fase, e y corresponde a fase da adotada PR.

Figura 19: Fluxograma de coleta dos dados, incluindo a parte física da infraestrutura de iluminação pública através dos relés de telegestão, que seguem para processamento da informações por meio do método de cálculo, em seguida são aplicados nas equações polifásica, para, por fim, serem aplicados no Método Cigré. Fonte: Elaborado pelo autor.

4.6.3 Sistema de sensores e comunicação

Os relés convencionais existentes e instalados nos pontos de iluminação na rede de distribuição foram substituídos por seis Relés de Telegestão (RT), capazes de realizar a prova do conceito por meio do monitoramento dos níveis de tensão. Os relés de telegestão instalados possuem algumas característica técnicas descritas nas alíneas a seguir:

- a) O hardware é constituído por um Atmega328P, chips para sinal GPRS (2G)⁴², GPS⁴³, transdutores, sensor de temperatura, conversor Analógico-Digital (A/D) de 8 bits, e um firmware que é compilado através de uma IDE⁴⁴ de aplicação de plataforma cruzada, escrito em funções em C++⁴⁵ com alguns recurso da linguagem C⁴⁶;
- b) Permite realizar o cadastramento georreferenciado por meio de um microchip do fabricante ublox, que utiliza o sinal GPS L1 C/A code, e que possui uma precisão de 2,5 metro ou *Circle of Error Probable* (CEP) (UBLOX, 2011);
- c) O sistema permite realizar leituras com conversor A/D de 8 bits, através do CI CS5463⁴⁷ (CIRRUS LOGIC, 2021), que possibilita realizar 2240 amostras para os níveis de tensão e corrente, em um intervalo de 0,56 segundos de modo a proporcionar uma linearidade nas leitura de energia de \pm 0,1% da leitura em mais de 1000:1 na faixa dinâmica, cujos equipamentos possuem uma capacidade de leitura máxima da tensão entre fase e neutro de 293 *V*, e para uma corrente máxima de 5,25 *A*;

⁴²É a segunda geração de tecnologias de telefone, a (2G) é baseada na tecnologia GSM ou, em tradução livre, o sistema global para comunicações móveis, lançado no ano de 1991. A rede 2G permite um intensidade de penetração muito maior

⁴³GPS é a sigla para Global Positioning System, que em português significa "Sistema de Posicionamento Global", e consiste numa tecnologia de localização por satélite

⁴⁴A *Integrated Development Environment* (IDE), em português Ambiente de Desenvolvimento Integrado, é um software para criar aplicações que combina ferramentas comuns de desenvolvimento em uma única interface gráfica do usuário (GUI).

⁴⁵C++ é uma linguagem de programação compilada multi-paradigma e de uso geral. Criada por Bjarne Stroustrup, desde os anos 1990 é uma das linguagens comerciais mais populares, sendo bastante usada também na academia por seu grande desempenho e base de utilizadores.

⁴⁶C é uma linguagem de programação compilada de propósito geral, estruturada, imperativa, procedural, padronizada pela Organização Internacional para Padronização (ISO), criada em 1972 por Dennis Ritchie na empresa AT&T Bell Labs.

 $^{^{47}}$ Fabricado pela Cirrus Logic este CI é um medidor bidirecional de energia do tipo monofásico. Sendo utilizado em projetos para aplicações residenciais monofásicas ou trifásicas industriais, o CI mede com precisão a corrente e a tensão instantâneas enquanto calcula a potência instantânea, I_{RMS} e V_{RMS} , potência real, potência aparente, potência reativa, potência fundamental, potência harmônica, fator de potência e frequência de linha. O datasheet está disponível em: https://statics.cirrus.com/pubs/proDatasheet/CS5463_F4.pdf

- d) Nos conversores Analógico/Digital (A/D) de 8 bits dos relés foram realizados o processo de calibração CC com objetivo de remover o ruído deste sinal e de habilitação dos filtros internos de CC para minimizar outros ruídos que possivelmente pudessem ser detectados durante o processo de leitura. Estes procedimentos foram realizados devido à utilização de transdutores, neste caso, Transformadores de Corrente (TC)⁴⁸ e Transformadores de Potencial (TP)⁴⁹, incluindo resistores com classe de precisão de 1%, que compõem os circuitos destinados a realizar as leituras da tensão e corrente.
- e) Permite realizar o acionamento e controle do ponto de iluminação através do modo local, ativado por um resistor *Light Dependent Resistor* (LDR)⁵⁰, ou pelo modo remoto acionado através de comando realizado pelo usuário, bem como dimerizar o fluxo luminoso para ambos os modos;
- f) O processo de comunicação do equipamento com a internet ocorre através do método GPRS⁵¹, utilizado para transferência de dados em redes móveis 2G, sendo necessário a contratação dos serviços de *Machine-to-Machine* (M2M) através da empresa Meta Telecom⁵² (Apêndice E), responsável por fornecer os seis chips SIM Card do tipo M2M para instalação nos seis Relés de Telegestão (RT). A Figura 13 apresenta o diagrama de bloco do processo de coleta dos dados e mostra a etapa do RT, e;
- g) Os dispositivos de monitoramento desenvolvidos para validação do método de cálculo por intermédio da engenharia de sistemas possuem um *Real Time Clock* (RTC), que realiza uma vez por dia as 19 horas a sincronização com o servidor da Hostinger. Os dispositivos possuem instalados o CI DS3231 ⁵³ com bateria de lítio, cuja porta

⁴⁸O Transformador de Corrente (TC) possuem características próprias para ser instalado com medidores de energia elétrica, sendo o enrolamento primário ligado em série ao circuito que se deseja medir a corrente enquanto o secundário é ligado aos terminais de corrente de um ou mais instrumentos de medição, controle ou proteção

⁴⁹O transformador de Potencial (TP) é um equipamento usado principalmente para sistemas de medição de tensão elétrica, sendo capaz de reduzir a tensão do circuito para níveis compatíveis com a máxima suportável pelos instrumentos de medição

⁵⁰É um componente eletrônico passivo do tipo resistor variável, mais especificamente, é um resistor cuja resistência varia conforme a intensidade da luz que incide sobre ele.

⁵¹GPRS é a sigla de *General Packet Radio Services*, ou Serviços Gerais de Pacote por Rádio, uma das formas mais utilizadas para comunicação M2M no Brasil.

⁵²Meta Telecom Telecomunicações Ltda é a uma empresa que fornece serviços conectividade gerenciada para Telemetria e Internet das Coisas.

⁵³O DS3231 é um circuito integrado desenvolvido para ser um relógio de tempo real de alta precisão e baixo consumo de energia. Em sua estrutura interna existe um cristal oscilador e um sensor de temperatura para

de comunicação utilizada com o Atmega328P é a I^2C^{54} do microcontrolador.

4.6.4 Armazenamento de dados e comunicação - Protocolos cliente/servidor

O sistema desenvolvido por este autor para o armazenamento dos dados e comunicação cliente e servidor também não faz parte desta pesquisa, esta infraestrutura foi utilizada somente para coleta dos dados enviando pelos Relés de Telegestão (RT) através do protocolo *HTTP* ao servidor contratado da empresa Hostinger⁵⁵ (Apêndice D), que dentre os serviços contratado junto a esta empresa está: disponibilidade para o gerenciamento de bancos de dados no formato $MySQL^{56}$, suporte a linguagem PHP^{57} 5.0 ou superior, SSL, Proteção *hotlink* e Gerenciamento de IP. Os Relés de Telegestão (RT) realizam o processo de comunicação bidirecional através do protocolo *HTTP*⁵⁸ com o servidor que armazena as informações coletadas pelos relés no banco de dados. Por fim, uma aplicação *WEB* que é executada através da linguagem *PHP* com comandos em *MySQL* a qual permite fornecer os dados que estão hospedados em um servidor na nuvem com capacidade de gerar conteúdo dinâmico, a qual permite a troca de dados entre o servidor e os relés de telegestão, e que pode ser acessado em qualquer navegador que execute os códigos *HTML*, *CSS e JavaScript*⁵⁹. Na Figura 13 apresenta o diagrama de bloco do processo de coleta dos dados e mostra as etapas da Internet, Servidor na Nuvem e Aplicação *WEB*.

A plataforma WEB *City Lights Maps* desenvolvida por este autor permite realizar consultas nos pontos de iluminação além das suas grandezas elétricas, a exemplo da temperatura interna do relé, tensões elétricas nos circuitos, sensores e outras. Na Figura 20 é

melhorar sua exatidão.

⁵⁴I²C (*Inter-Integrated Circuit*) é um barramento serial multimestre desenvolvido pela Philips que é usado para conectar periféricos de baixa velocidade a uma placa mãe, a um sistema embarcado ou a um telefone celular.

⁵⁵Hostinger International, Ltd é um provedor de Hospedagem Web de propriedade de funcionários e registrador de domínio na Internet, estabelecido em 2004.

⁵⁶O *MySQL* é um sistema de gerenciamento de banco de dados, que utiliza a linguagem *SQL* como interface. Sendo um dos sistema da Oracle Corporation

⁵⁷PHP é uma linguagem interpretada livre, usada originalmente apenas para o desenvolvimento de aplicações presentes e atuantes no lado do servidor, capazes de gerar conteúdo dinâmico na *World Wide Web*, criada por Rasmus Lerdorf.

⁵⁸O *Hypertext Transfer Protocol*, sigla *HTTP* é um protocolo de comunicação utilizado para sistemas de informação de hipermídia, distribuídos e colaborativos. Ele é a base para a comunicação de dados da *World Wide Web*. Hipertexto é o texto estruturado que utiliza ligações lógicas entre nós contendo texto. Fonte livro: Anatomia do Protocolo HTTP.

⁵⁹Javascript, ou simplesmente JS, é uma linguagem de programação de uso geral, aplicada principalmente para desenvolvimento web e desenvolvimento de software

apresentada a tela da aplicação na qual está selecionado o campo de monitoramento dos níveis de tensão do ponto de iluminação, que inclui também a sua ultima sincronização realizada no relógio interno do dispositivo MD000006 (Fase C R6) na qual foi encaminhada ao servidor na nuvem.

A Figura 21 apresenta um gráfico dos níveis da tensão por período definido do ponto de iluminação MD000006 (Relé 6C, Fase C), que inclui uma tabela da última leitura realizada contendo as seguintes informações: data, hora, valores das potências ativa (*W*), aparente (VA), tensão (*V*), corrente (*A*), fator de potência e informar a condição do nível de tensão, conforme Módulo 8 da PRODIST, (ANEEL, 2022).

Figura 20: Plataforma City Lights Maps desenvolvida pelo autor e utilizada como prova de conceito. Fonte: Elaborado pelo autor.

Figura 21: Plataforma WEB *City Lights Maps* desenvolvida e utilizada como prova de conceito - Gráfico dos níveis da tensão do ponto de iluminação MD000006 (Relé 6C) por período. Fonte: Elaborado pelo autor e extraído de sua plataforma WEB.

4.6.5 Analisador de energia

A utilização do Analisador de Energia⁶⁰ no estudo tem como finalidade verificar os níveis de tensão no sétimo poste (quarto ponto de iluminação com relé de telegestão), uma vez que foi o escolhido como **Ponto de Referência** (PR) para realizar a aplicação do método de cálculo desenvolvido por este autor, descrita na Seção 4.4, a ser usada antes do Método Cigré, que mensura o Desequilíbrio da Tensão (DT). A utilização deste equipamento consiste em comparar os valores das tensões coletadas durante um período de 24 horas em intervalos de 5 minutos, que totalizaram 288 amostras, com as informações coletadas pelos seis Relés de Telegestão (RT) de forma síncrona por meio do *Real Time Clock (RTC)* interno.

Este procedimento foi realizado em paralelo para definir a classe de exatidão do método de cálculo com os Relés de Telegestão (RT) em relação a um equipamento de uso comercial, que é o analisador de energia modelo PowerNET P-600 G4 do fabricante IMS (IMS, 2020). A Figura 22 apresenta o equipamento utilizado no estudo, o qual foi cedido sem ônus para este autor através da Stemáquinas Engenharia Ltda⁶¹, além disso, foi utilizado o software PowerMANAGER desktop PRO para baixar os arquivos do equipamento, bem como para converter estes para o formato CSV. A Figura 23 apresenta a tela do programa utilizado e adquirido por um período de trinta dias, através do contato realizado por e-mail com o suporte técnico da Industria IMS⁶²

Os dispositivos utilizados como prova de conceito possibilitam a configuração em intervalos de 5 minutos para realizar as leituras dos níveis das tensões das três fases em relação ao neutro para os pontos de iluminação nos quais serão instalados os relés de telegestão na rede de distribuição. Assim, torna-se possível manter o intervalo definido pelo Módulo 8 da PRODIST, (ANEEL, 2022) e reduzir o período entre as leituras dos níveis de tensão de 10 para 5 minutos, totalizando 2016 leituras válidas e mantendo o número de 7 dias.

Esta redução aumenta o número de amostras obtidas e, com a análise dos dados em tempo real através da aplicação de ferramentas, permite a captação da variação da potência

⁶⁰Os analisadores podem ser empregados pra medir fluxo de energia em sistemas de corrente alternada ou contínua. Com eles, torna-se possível fazer a detecção da corrente e da tensão do sistema. O cálculo do consumo e da demanda de energia elétrica também pode ser realizado por meio do analisador de energia. Esses números podem ser conseguidos em relação a dias, semanas ou meses. E os dados são armazenados em um cartão SD. Disponível em: https://www.instrutemp.com.br/, Acessado em: 28 de julho de 2022.

⁶¹A Stemáquinas Engenharia Ltda é uma empresa de instalação e manutenção de máquinas e equipamentos industriais sob a responsabilidade técnica do Engenheiro Eletricista Marcos Antônio Gonçalves dos Santos.

⁶²Industria 100% brasileira, especializada em produtos para supervisão e controle da energia elétrica.

Figura 22: Analisador de energia, modelo PowerNET PQ 600 G4 do fabricante IMS. Fonte: IMS (IMS, 2020).

injetada e do perfil da tensão, pois, em virtude de a Rede de Distribuição (RD) possuir diversas fontes geradoras de energia oriundas de Painéis Fotovoltaicos (PV) que variam conforme as condições ambientais (LISERRE *et al.*, 2010), pode haver mudanças de até 80% na potência injetada em questão de segundos devido à passagem de uma nuvem (RAHIMI *et al.*, 2018), que, por sua vez, afetam o nível da tensão e o sentido do fluxo da corrente da RDBT.

Eq	quipamento		Programaçã	io	Dados	Aplica	ções	Opçõ	ies	_		_				_																			
1					1					X	W			9		Reiccio		<																	
	Gerar Sa	alvar	Mostrar	- Ce	onfidurar	Filtrar	Modific	ar Alte	mar (Grático P	elatório	Alterar	Salvi	ar Si	alvar	Salvar	Fec	har																	
re	latório ta	bela	interrupçõe	s relaç	ão de TP/TC	linhas	coluna	is tab	ela =			intervalo	como	CSV con	TXT DI	como XM	tab	ela																	
ea			Tap	ela		F	iltros.			Entir		Conversão		EH	ooitar																				
de M	ledições ARE	A0006	TFLESIL >	C 80	Statico de Lin	inas AREA	0006 - TF	LESIL																											
	V	avg [V]	Van [V]	Vbn [V]	Vcn [V] lav	ng [A] Ia	[A] Ib [A	ic [A]	Uav	g M U	b [V] Ub	c [V] Uc	[V] PF	PFa PF	b PFe	LC LC	LCb	LCc P [W]	Pa [W]	Pb [W]	Pc [W]	Q[VAr]	Qa [VAr]	Qb [VAr	Qc [VAr]	S [VA]	Sa[VA]	Sb [VA]	Sc [VA]	Freq [Hz]	in [A]	Ph(f)	Van min [V]	Vbn min f	[V] Ven m
17:2	25:00.000 22	6,50	221,76 2	30,73	227,02 -	-	-		392,2	23 38	6,84 396	97 392	89 0,00	4	1-	RES RES	RES	RES 0,00	12		-	0,00	-	4	-	0,00	-	-		59,97	0,00	A	221,76	230,73	227,02
17/5	30:00.000 22	6,02	220,80 2	31,49	225,78 -	12	÷	1.81	391,3	38 38	ijas 395	50 392	29 0,00	8 8	12	RES RES	RES	RES 0,00	(). I)	8	4	0,00	8	0	-	0,00	8	1	1	60,01	0,00	A	217,83	222,19	221,93
17:3	35:00.000 22	5,42	221,47 2	30,69	224,10 -	-	-	-	390,3	35 38	56 393	,96 390	52 0,00		-	RES RES	RES	RES 0,00	-		-	0,00	-	÷	-	0,00	-	-	Č.	60,04	0,00	A	219,72	229,59	219,89
17:4	45:00.000 22	2.02	219.94 2	23,49	222.62 -		-		384.4	49 38	32 386	70 386	44 0.00		-	RES RES	RES	RES 0.00			-	0.00			-	0.00		-		60.03	0.00	A	213.88	222.92	216.23
17:5	50:00.000 22	2,22	218,69 2	27,21	220,76 -	12	+	81	384,7	79 38	1,52 388	34 385	50 0,00	8	12	RES RES	RES	RES 0,00	1	3.0	2	0,00	8	1	-	0,00	8	1	-	60,05	0,00	A.	214,38	223,36	216,73
17:5	55:00.000 22	2,54	221,45 2	24,89	221,27 -		-	4	385,3	35 38	,59 387	93 386	53 0,00	4	-	RES RES	RES	RES 0,00	-		-	0,00	-	4	2	0,00	3	-	-	60,08	0,00	A	208,86	221,22	218,83
18:0	00:00.000 21	8,78	216,54 2	21,31	218,50 -	13	÷	19	378,8	36 37	56 381	99 379	0,00		-	RES RES	RES	RES 0,00	12 11	8	4	0,00	-	1	-	0,00	8	2	-	60,12	0,00	Α.	212,95	216,59	217,60
18:1	10:00.000 27	4.67	223.20	25.48	225.32 -	1	1	-	3891	31 37	93 391	19 391	10 0.00		-	RES RES	RES	RES 0.00	1		-	0.00	-		-	0.00	8	1		60.01	0.00	A	213,05	214.69	215,46
18:1	15:00.000 22	3,81	222,59 2	24,12	224,71 -	1	-	-	387,5	59 38	61 390	21 388	93 0,00	4-1-2	-	RES RES	RES	RES 0,00	-		-	0,00	-	-	-	0,00	-	-	-	59,95	0,00	A	218,78	218,39	219,54
18:2	20:00.000 22	3,44	223,80 2	22,07	224,44 -	1.5	-	1.0	386,9	96 38	,28 388	76 388	83 0,00		-	RES RES	RES	RES 0,00		8	-	0,00	-	-	-	0,00	8	1		60,01	0,00	A	219,61	211,13	221,46
18:2	25:00.000 22	3,90	222,42 2	24,17	225,12 -	4	-	-	387,7	76 38	01 390	02 389	25 0,00	4 4	-	RES RES	RES	RES 0,00	i i		-	0,00	-	-	-	0,00	-	-	2	60,05	0,00	A	218,39	221,38	220,18
18:3	30:00.000 22	2,99	223,84 2	17,92	227,20 -	40	-	2	385,4	20 38	06 387	00 380	42 0.00		-	RES RES	RES	RES 0,00		8	-	0,00	8	1	-	0,00	8	-	5	60.03	0,00	A	220,87	213,88	223,32
18:4	40:00.000 22	4,16	224,37	23.70	224,40 -	12	1		388.1	19 38	85 390	41 389	31 0.00		-	RES RES	RES	RES 0.00			4	0.00		1	1	0.00	8	1	1	59,99	0,00	A	218,10	218,56	224,10
18:4	45:00.000 22	4,79	225,16 2	23,18	226,04 -	-	-	-	389,3	29 38	49 390	97 391	41 0,00	\$ \$	-	RES RES	RES	RES 0,00	4	6	5	0,00	~		1	0,00	~	2	-	60,00	0,00	A	224,08	217,60	222,95
18:5	50:00.000 22	4,70	225,08 2	23,10	225,90 -	13	+	18	389,	13 38	70 390	,41 391,	26 0,00		-	RES RES	RES	RES 0,00	1	8	-	0,00	-	-	-	0,00	8	2	2	59,98	0,00	A	222,04	218,50	219,75
18:5	55:00.000 22	3,96	224,22 2	23,83	223,82 -	-	-	-	387,8	33 38	73 389	95 388	82 0,00		-	RES RES	RES	RES 0,00	-	-	-	0,00	-	-	-	0,00	-		-	59,98	0,00	A	220,11	220,73	220,41
19:0	05:00.000 22	3.88	224,33 2	22.99	225,77 -		-	-	387.3	71 38	00 390	85 389	28 0.00		-	RES RES	RES	RES 0,00			-	0,00	-			0,00	-	-	-	59.95	0.00	A	219.55	210,04	219,97
19:1	10:00.000 22	4,02	223,46 2	23,16	225,43 -	12	+	8	387,9	95 38	39 390	33 390	11 0,00		-	RES RES	RES	RES 0,00	-	3.0	-	0,00	-	-	-	0,00	8	=	-	60,03	0,00	A.	222,61	217,77	218,23
19:1	15:00.000 22	3,94	221,80 2	24,79	225,23 -	1 2-	-	-	387,8	30 38	,80 390	,44 390	17 0,00	4 4	~	RES RES	RES	RES 0,00	-		-	0,00	-	-	2	0,00	3	2	5	59,98	0,00	A	220,74	220,12	213,51
19:2	20:00.000 22	2,47	223,42 2	24,91	219,08 -	15	12	19	385,2	21 38	50 387	74 385	40 0,00	9 9	-	RES RES	RES	RES 0,00		8	4	0,00	8	-	2	0,00	8	1	-	59,96	0,00	A	217,57	221,28	217,87
19:2	30:00:000 22	3,34	222,14 2	23,92	225,98 -		-	-	387	10 38	267 388	44 389	96 0,00	· ·	-	RES RES	RES	RES 0,00			-	0,00	-	i.	-	0,00	0		-	59,99	0,00	A	217 70	223,49	213,58
19:3	35:00.000 22	3,80	221,33 2	25,63	224,44 -		-	-	387,5	56 38	30 390	75 388	64 0,00	-)	-	RES RES	RES	RES 0,00			-	0,00	-		-	0,00	-	-	-	60,02	0,00	A	219,81	221,04	221,68
19:4	40:00.000 22	3,21	219,94 2	24,27	225,41 -	12	4	18	386,5	53 38	,09 390	34 388	17 0,00		12	RES RES	RES	RES 0,00	1	8	5	0,00	8	1	-	0,00	8	1	2	59,98	0,00	Α.	217,19	219,88	219,82
19:4	45:00.000 22	3,08	218,63 2	25,16	225,47 -	2	-	~	386,3	34 38	,29 390	,10 387	62 0,00	4 4	-	RES RES	RES	RES 0,00	-		-	0,00	-		-	0,00	-	-	-	60,02	0,00	A	214,79	216,55	221,04
19(5	50:00.000 22	3,77	218,23 2	26,95	226,13 -	12	-	8	387,5	53 38	28 392	31 388	02 0,00		-	RES RES	RES	RES 0,00	12	8	-	0,00	8	-	8	0,00	8	-	-	60,02	0,00	A	213,75	219,06	223,16
20:0	00:00.000 22	3.60	219,72 2	24.40	226.68	1	1	-	387.2	25 38	96 390	83 388	95 0.00		-	RES RES	RES	RES 0.00			-	0.00	-		12	0.00		1		60.01	0.00	A	216,13	222.20	219,10
20:0	05:00.000 22	3,72	219,82 2	26,39	224,96 -		-	~	387,4	43 38	24 391	46 388	59 0,00	2 1 2	-	RES RES	RES	RES 0,00			-	0,00	-		-	0,00	-	-	-	60,04	0,00	A	219,30	220,22	223,48
20:1	10:00.000 22	3,24	220,98 2	27,54	221,18 -		2	8	386,5	57 38	42 390	58 385	71 0,00		-	RES RES	RES	RES 0,00	14 I)	8	-	0,00	8	1	-	0,00	8	÷	-	60,00	0,00	Α.	219,17	217,08	220,73
20:1	15:00.000 22	3,69	220,12 2	27,63	223,31 -	1	-	-	387,5	36 38	,98 391	89 387	21 0,00	4 4	-	RES RES	RES	RES 0,00	-		-	0,00	-	i.	2	0,00	-		2	59,96	0,00	A	214,50	222,67	215,80
2012	25:00.000 22	2,04	222,04 2	27.45	219,82 -		-	1	386.0	22 38	88 390	76 384	36 0.00		-	RES RES	RES	RES 0.00		-	-	0.00			-	0,00		-	1	60.02	0,00	A	215,57	223.42	219,25
20:3	30:00.000 22	3,82	220,70 2	27,77	222,99 -		+	1.0	387,3	59 38	,82 391	47 387	47 0,00	-	-	RES RES	RES	RES 0,00		3	-	0,00	-	-	-	0,00		£	-	60,02	0,00	A.	218,91	223,18	214,31
20:3	35:00.000 22	2,17	219,29 2	23,00	224,24 -	1 2-	- 1	1.2	384,7	77 38	,44 386	88 386	00 0,00	4 4	2	RES RES	RES	RES 0,00	4		-	0,00	2	1	~	0,00	3	÷	2	60,00	0,00	A	215,67	217,91	219;54
20:4	40:00.000 22	1,98	220,68 2	25,54	219,72 -	12	÷	18	384,3	39 38	23 387	18 383	76 0,00	8	12	RES RES	RES	RES 0,00		8	-	0,00	8	1	-	0,00	8	1	1	59,94	0,00	A.	215,30	218,47	211,74
20:4	45:00.000 22	1,57	220,43 2	25,02	219,27 -	-	-	-	383,7	71 38	161 200	52 382	97 0,00	· ·	-	RES RES	RES	RES 0,00	1		-	0,00	-		-	0,00	-		2	59,99	0,00	A	217,31	221,41	214,42
20:5	55:00.000 22	2.66	219,74	24,65	223,59 -		-	-	385.9	59 38	62 388	98 386	17 0.00	-	-	RES RES	RES	RES 0,00	1.		-	0.00	-	1	-	0,00	-	-	-	60,00	0,00	A	219,05	220,55	217,92
21:0	00:00.000 22	2,20	221,07 2	24,24	221,29 -	12	+	18	384	79 38	88 387	52 384	97 0,00	-	-	RES RES	RES	RES 0,00		8	4	0,00	8	-	-	0,00	8	1	-	60,01	0,00	A.	213,62	219,90	215,89
21:0	05:00.000 22	1,46	220,95 2	25,02	218,42 -	1.12	-	3	383,4	49 38	,28 386	,16 383	02 0,00	-2	-	RES RES	RES	RES 0,00	-	-	-	0,00	-	-	-	0,00	-	-	-	59,96	0,00	A	220,85	214,01	212,95
21:1	10:00.000 22	1,15	219,63 2	25,43	218,41 -	15	12	*	382,9	95 38	0,01 386	52 382	32 0,00		-	RES RES	RES	RES 0,00	1	8	-	0,00	8	2	2	0,00	8	2	-	59,97	0,00	A	216,11	220,02	214,31
21:1	15:00.000 22	1,41	220,05 2	25,04	219,14 -	1 Di	-	1	383,4	1 38	06 202	35 300	72 0,00	-	-	RES RES	RES	RES 0,00	1		-	0,00	-	i.	-	0,00	-	1		59,96	0,00	A	217,00	219 10	217,81
21:2	25:00.000 22	1,09	221,03	24,56	217,67 -	12	-	-	382.8	84 38	0,72 385	,78 382	02 0,00		-	RES RES	RES	RES 0,00			-	0,00	-		-	0,00	-	-	2	59,99	0,00	A	217,92	217,28	216,09
21:5	30:00.000 22	2,57	221,10 2	24,11	222,49 -		1	-	385,4	43 38	,75 388	76 385	78 0,00	8 8	-	RES RES	RES	RES 0,00	12 17	-	4	0,00	3	2	-	0,00		£	-	59,97	0,00	A	219,37	223,19	215,21
			Lesses la		- interest			-	lane a		an loss	leer			1	Linelana	free.	Lane la co	1 1			+ + + +	1	1.	1	le es		1		Lastes.	In sec.	4.4	/	lease and	Face or

Figura 23: PowerMANAGER desktop - Software para análise de grandezas elétricas. Fonte: Programa da IMS (IMS, 2020) e dados extraídos do analisador de energia PowerNET P-600 G4 para o formato CSV e utilizados pelo autor.

4.7 Síntese do sistema para aplicação do Método de Cálculo e do Método Cigré

A pesquisa proposta realizou monitoramento, utilizando a infraestrutura do sistema de telegestão da Iluminação Pública (IPu), da qualidade da tensão em um sistema trifásico quando é injetada ou não energia proveniente da geração fotovoltaica na Rede de Distribuição em Baixa Tensão (RDBT) de um logradouro público. Após a coleta dos dados, foi realizada a aplicação do **método de cálculo** para, em seguida, ser utilizado o **método Cigré** com objetivo de mensurar o Desequilíbrio da Tensão (DT) em um determinado ponto escolhido para o estudo na Rede de Distribuição (RD), e por meio do **método de cálculo** é identificado o sentido e estimado o valor do fluxo da corrente entre os relés da mesma fase na RDBT. Os procedimentos são apresentados de forma resumida nas alinhas a seguir, por meio de relatório simples fotográfico (Apêndice G) e na Figura 24, cujos resultados e discussões são apresentados no Capítulo 5:

- I A escolha do logradouro foi definida pelo autor devido à proximidade da sua residência o que permitiu acompanhar diariamente todos os procedimentos e supervisionar as condições dos equipamentos e possíveis manutenções e ajustes necessários;
- II Com a escolha do logradouro, passa-se a realizar o processo de aferição dos seis relés em relação ao analisador de energia de energia PowerNET P-600 G4 do fabricante IMS, através da ligação de todos os Relés de Telegestão (RT) e do analisador de energia na mesma fase do mesmo ponto elétrico para sincronizá-los no mesmo horário, incluindo os segundos. Aplicam-se os dados coletados em uma planilha para verificar Erro médio absoluto (*Mean Absolute Error*) de cada relé em relação ao analisador de energia e, assim, aplicar o Fator de Correção (FC) correspondente;
- III Com a sincronização e o estabelecimento do fator de correção, passa-se à substituição das luminárias do Padrão I1 mostrado na Figura 15, que estão instaladas nos postes com a numeração 1, 2, 3, 7, 8 e 9 na rede de distribuição, cujo modelo é identificado na Figura19, por outras do Padrão I2 mostrado na Figura 16. O modelo proposto é detalhado na Figura 18 e foi escolhido por possibilitar uma melhor conexão elétrica com Rede de Distribuição (RD) e, ainda, dificultar a interferência de terceiros

no estudo, minimizando a probabilidade de furto dos equipamentos e dos Relés de Telegestão (RT) que foram instalados de forma conjunta. O posicionamento dos postes na rede de distribuição do trecho estudado são apresentados nas Figuras 14 e 19, sendo a ligação das luminárias e dos relés na seguinte sequência das Fases: Relé de Telegestão 1 instalado na luminária do Poste 1, ligado a Fase A, abreviação [Relé 1A (Fase A)] do poste 1; [Relé 2B (Fase B)] do poste 2; [Relé 3C (Fase C)] do poste 3; [Relé 4A (Fase A)] do Poste 7; [Relé 5B (Fase B)] do Poste 8 e [Relé 6C (Fase C)] do Poste 9;

- IV Com a substituição das luminárias, passa-se à instalação do analisador de energia no sétimo ponto da rede de distribuição do ramo escolhido para aferir os níveis de tensão das três fases (Fases A, B e C) em relação ao neutro na Rede de Distribuição (RD), conforme o texto "Ponto de Referência" apresentado na Figura 19, já descrito na Seção 4.6.5 para realizar o monitoramento por um período de 24 horas da qualidade da tensão;
- V O processo de monitoramento é iniciado simultaneamente nos Relés de Telegestão (RT) e no analisador de energia, que medindo os níveis da tensão por um período de 24 horas com intervalo de 5 minutos entre as leituras, ou até serem atingidas 288 leituras válidas;
- VI Após o período de 24 horas ou após serem atingidas 288 leituras válidas pelo analisador de energia, o equipamento será retirado da RD e os dados armazenados no cartão SD serão extraídos para análise utilizando o software PowerMANAGER desktop da IMS (IMS, 2020), com o objetivo de exportar para o formato CSV, enquanto os dados dos relés, que permanecerão instalados, e são armazenados em um servidor na nuvem em um banco de dados no formato MySQL serão baixados no formato CSV;
- VII Os dados obtidos dos seis relés são organizados para aplicação em uma planilha e realização dos cálculos do DT empregando o método de cálculo que utiliza a Infraestrutura da Iluminação Pública (IIPu), descrita na Seção 4.4. Em seguida, utilizam-se as equações polifásicas da Seção 4.2 para transformar as tensões de fase e neutro (fase) em tensões entre fases (linha), que, posteriormente, são aplicadas no Método

Cigré (IEEE 1159, 2019) da Seção 4.1 para, então, os resultados serem aplicados no Python para geração dos gráficos;

- VIII Já os dados obtidos do analisador de energia são organizados para serem aplicados em uma planilha e realizados os cálculos do DT, sem a utilização do método de cálculo proposto, apenas através das equações polifásicas da Seção 4.2 para transformar as tensões de fase e neutro (fase) em tensões entre fases (linha), que, posteriormente, são aplicados no Método Cigré da Seção 4.1. Os resultados serão aplicado no Python para geração dos gráficos;
 - IX Após a finalização das atividades dos itens VII e VIII, passa-se à aplicação das informações no Python para o cruzamento dos dados, cujo objetivo é validar o método de cálculo proposto por intermédio da Engenharia de Sistemas Computacionais. Os gráficos gerados através dos dados coletados e calculados serão apresentados no Capítulo 5 resultados e discussões, e ;
 - X Por fim, após os procedimentos de validação do método de cálculo, o sistema de monitoramento inicia-se com a medição dos níveis da tensão por um período de 7 dias com intervalo de 5 minutos entre as leituras ou até atingir 2016 leituras validas, conforme justificativa apresentada na Seção 4.6.5. Nesta etapa, verifica-se se a Rede de Distribuição em Baixa Tensão (RDBT) possui o Desequilíbrio da Tensão (DT).

Figura 24: Diagrama de procedimentos descritos na Seção 4.7 referentes às atividades desenvolvidas para obtenção dos resultados.

5 Resultados e discussão

Neste Capítulo serão apresentados: a) o resultado do processo de ajuste para cada um dos seis relés de telegestão utilizados neste trabalho; b) os resultados mostram que o sistema pode ser utilizado para medir a direção da corrente na rede de distribuição de baixa tensão com geração distribuída, e; c) os resultados para a validação do sistema com base nos dados recolhidos do Analisador de Energia (AE), e; d) os resultados da analise das 2016 leituras válidas nos 7 dias de monitoramento através dos relés de telegestão para examinar os níveis de Desequilíbrio da Tensão (DT) na Rede de Distribuição (RD) por meio do método de cálculo proposto. Em todas as etapas descritas, serão apresentadas análises quantitativas sobre os dados adquiridos, e uma discussão qualitativa sobre os valores observados.

5.1 Aplicação de fatores de correção

Inicialmente foram realizadas leituras das tensões pelos seis relés e pelo analisador de energia, com intervalos de dez minutos, com duração de cinco horas e dez minutos, obtendose 32 leituras válidas. A Figura 25 apresenta essas medições em forma de um gráfico no qual os valores dos níveis das tensões coletadas pelos seis relés e pelo analisador de energia são representados como uma série temporal (linha). Sendo uma série para cada equipamento. Percebe-se que o comportamento das linhas dos relés são similares ao do Analisador de Energia (AE), contudo, existe uma diferença de magnitude entre as linhas dos relés e a do AE que pode chegar a aproximadamente 2 volts. Também percebe-se que os valores das tensões variam de 219,818 V a 227,25 V. No Anexo 9, consta a Tabela 9 na qual são apresentadas as 32 amostras válidas que foram coletadas.

Para reduzir as diferenças das leituras entre os relés e o analisador de energia optou-se por aplicar os fatores de correção em todos os relés. ⁶³ O processo é iniciando obtendo-se o módulo da Diferença da tensão entre o Analisador de Energia (AE) e cada Relé de Telegestão (RT), através da Equação 25 apresentada na Seção 4.5.2. A Tabela 4 apresenta os valores calculados para os fatores de correção de cada um dos RTs considerados. Percebe-se que o fator de correção é menor no relé 4, pois esse relé foi o único que passou por um processo

⁶³Uma solução alternativa, e mais definitiva, seria a calibração dos relés, porém, por restrições de tempo, foi utilizado o fator de correção.

de calibração do hardware antes das medidas.

Definido os valores dos fatores de correção para cada um dos seis relé, estes são aplicados nas 32 amostras válidas dos seus respectivos dados coletados. A Figura 26 apresenta essas leituras corrigidas, após a aplicação dos Fatores de Correção nos seis relés, e os compara em relação aos valores dos níveis das tensões obtidas pelo analisador de energia. É observado que o comportamento das linhas dos relés são aproximadas ao do Analisador.

Período de teste 5 horas - Intervalo entre as leituras 10 minutos

Figura 25: Os valores de tensão entre a fase B e o neutro foram obtidos a partir dos seis relés e do analisador de energia ligados ao mesmo ponto elétrico durante 5 horas.

Período de teste 5 horas - Intervalo entre as leituras 10 minutos

Figura 26: Valores de tensão entre a fase B e o neutro obtidos a partir dos seis relés, após aplicação do fator de correção, e o analisador de energia ligado no mesmo ponto elétrico durante 5 horas.

Após a aplicação dos Fatores de Correção referente a cada Relé são identificados os novos valores do MAE (*Mean Absolut Error*), constante na Tabela 4. Percebe-se que os MAEs correspondentes a cada relé possuem um valor menor do que 0,16 Volts. Além disso, a Figura 27 apresenta, utilizando um conjunto de seis *Boxplot*, a distribuição do erro absoluto. Por meio dela é possível perceber que após a correção os valores máximos de erros ficam abaixo de 0,4 Volts, e que os *outliers* de todos os relés possuem valores menores que 1,5 Volts. Antes da correção, os *outliers* possuíam valores próximos a 3,5 volts.

Tabela 4: Fatores de correção aplicados aos níveis de tensão dos 6 relés para corrigir os erros de leitura em relação aos do analisador de energia, bem como o erro médio absoluto (MAE) antes e depois da aplicação do fator em cada um dos relés.

Identificação dos relés	MAE (A)	Fator de Correção (FC)	MAE (D)
Relé 1	2,092468750	0,991028451	0,147944985
Relé 2	1,938031250	0,991651993	0,132765934
Relé 3	1,545718750	0,993448958	0,158633916
Relé 4	0,189000000	0,999550611	0,139810274
Relé 5	1,849687500	0,992065523	0,142170251
Relé 6	1,774687500	0,992065733	0,097823093

Legenda: MAE (A) é o erro médio absoluto antes da aplicação do fator de correção; MAE (D) é o erro médio absoluto depois da aplicação do fator de correção.

Figura 27: Os *Boxplots* representam a distribuição absoluta de erros entre as leituras de tensão do relé e as leituras de tensão do analisador de potência.

A Figura 28a apresenta a correlação linear entre os valores das tensões dos seis relés e os valores de tensão do analisador de energia antes da aplicação dos fatores de correção. Já na Figura 28b, é apresentada a correlação entre as medidas dos equipamentos citados
anteriormente após a aplicação dos fatores de correção apresentados. Percebe-se que após a aplicação dos Fatores de Correção por relé (FC_r) a correlação entre as medidas dos relés e as medidas do analisador se aproximam bastante de uma correlação linear direta (linha preta).

Figura 28: Correlação entre as variáveis dos valores da tensão, obtidos através dos seis relés e do analisador de energia (a) sem utilizar o Fator de Correção (FC) e (b) utilizando o Fator de Correção (FC).

Ressalta-se que os dados utilizados para criar o fator de correção por relé foram adquiridos em um ambiente com temperatura de 26°C graus e a uma temperatura média interna na caixa dos relés de 34,35°C, durante o período noturno e que não foram realizadas leituras das tensões destinadas ao desenvolvimento do fator de correção por temperatura interna da caixa dos relés, que chegaram a atingir valores de até 53°C no período mais quente. Essas leituras de temperatura foram obtidas através de um sensor⁶⁴ instalado internamente em cada relé, cujos dados não fazem parte deste estudo.

Ressalta-se que os dados do analisador de energia e dos relés, utilizados como parâmetros para calcular a correção que foi aplicada a estes, possuem uma faixa de tensão, cujos valores variam de 219,818 V a 227,250 V. Para aprimorar o fator de correção dos erros de leitura, serão necessários novos estudos para definir um valor de correção ou, o desenvol-

⁶⁴Para medir a temperatura interna na caixa dos relés foi utilizado o CI TMP36, que possui a capacidade de medir temperaturas entre -40° C e $+125^{\circ}$ C, com tensão de operação de 2,7V a 5,5V, com uma escala de $10mV/^{\circ}$ C e uma precisão de $\pm 2^{\circ}$ C.

vimento de uma equação a ser embutida na programação do firmware dos equipamentos, considerando-se a forma construtiva dos circuitos transdutores serem suscetível a variação da temperatura, podendo estes também serem substituídos por resistores do tipo Shunt. Este tipo de resistor é menos suscetível à variação da temperatura, de maneira que ao substituir os transdutores dos relés de telegestão por este componente, é possível obter maior exatidão nas leituras dos níveis de tensão.

No Anexo A, na Tabela 9 são apresentadas 32 leituras válidas dos seis relés e do analisador de energia, cujos dados foram utilizados para identificar o fator de correção de cada relé, a ser aplicado nas suas leituras.

5.2 Validação do sistema proposto

Nas figuras 29, 30, e 31, as linhas vermelhas correspondem aos relés instalados mais próximos do transformador (1A, 2B, e 3C), e as linhas azuis correspondem aos relés mais afastados (4A, 5B, e 6C). Percebe-se que durante o período das 6 h 00 min às 16 h 00 min (geração fotovoltaica), os níveis de tensão dos relés 5B (ligados à fase B) e 6C (ligados à fase C) são superiores aos dos relés 2B (ligados à fase B) e 3C (ligados à fase C), que estão mais próximos do transformador.

Na Seção 4.4.2 do Capítulo materiais e métodos foi definido o poste 7 como **Ponto de Referência (PR)** da RD, o que permitir aplicar diretamente os seus valores a V_{an} , conforme Figura 19. Portanto, uma vez que $V_{an} = V_{an^{P+g}}$, ou seja, a tensão do Relé 4A é igual a Fase A -Calculada, como pode ser confirmado pela superposição das linhas das duas séries temporais apresentadas na Figura 29. Assim, reduziu-se os cálculos porque só é necessário calcular os valores para as fases B e C. Dessa forma, o método de cálculo proposto apresentado na Seção 4.4.2 foi aplicado para identificar os valores de V_{bn} e V_{cn} no **ponto de referência**, obtendose os valores do perfil das tensões apresentadas por meio das séries temporais (linha) nas Figuras 30 e 31.

É observado nas Figuras 30 e 31 que os perfis de tensão entre o **relé 5B** e a **fase B** - **calculada**, e o **relé 6C** e a **fase C** - **calculada**, possuem uma similaridade na série temporal (linha) em relação aos valores dos perfis da tensão do relé 2B e relé 3C, respectivamente, por estarem a uma distância menor em relação ao **ponto de referência**. Além disso, o relé 4A possui uma tensão superior à do relé 1A durante alguns intervalos das 11 h 40 min às 15 h

55 min. Ambos estão ligados à fase A da rede de distribuição, sendo esta a fase da rede que registou a menor corrente reversa em direção ao transformador.

Período de teste 24 horas (ou até 288 válidas) - Intervalo entre as leituras 5 min.

Figura 29: Leituras dos níveis de tensão do relé 1A e do relé 4A, e os resultados da **fase A calculada** usando a Equação 24, durante um período de 24 horas com intervalo de 5 minutos entre as leituras.

Período de teste 24 horas (ou até 288 válidas) - Intervalo entre as leituras 5 min.

Figura 30: Leituras dos níveis de tensão do relé 2B e do relé 5B, e os resultados da **fase B** calculada usando a Equação 24, durante um período de 24 horas com intervalo de 5 minutos entre as leituras.

Percebe-se que o sistema proposto pode obter os valores estimados das correntes através da diferença de potencial medida entre os relés ligados na mesma fase na RDBT. Definindo o transformador de potência como o ponto de partida das leituras, pode-se ver na Figura 32 que existem valores de corrente para as três fases na RDBT durante todo o período

Período de teste 24 horas (ou até 288 válidas) - Intervalo entre as leituras 5 min.

Figura 31: Leituras dos níveis de tensão do relé 3C e do relé 6C, e os resultados da **fase C** calculada usando a Equação 24, durante um período de 24 horas com intervalo de 5 minutos entre as leituras.

de teste. Quando o valor da corrente é **negativo**, o fluxo de corrente é invertido, sendo a direção da corrente da RDBT para o transformador de potência. Além disso, pode-se ver que durante os períodos de sol, a geração distribuída das nove residências injeta mais energia do que é consumido pelas outras residências na rua, devido à tensão no final da rede ser mais alta do que no ponto de partida.

Período de teste 24 horas (ou até 288 válidas) - Intervalo entre as leituras 5 min.

Figura 32: Corrente estimada para cada fase calculada usando Equação 22 considerando um período de 24 horas com intervalo de 5 minutos entre leituras.

Assim, é possível destacar duas condições que podem ocorrer em paralelo quando a

injeção de energia através da geração distribuída ocorre. A primeira é que a fase A, neste ramo da rede de distribuição, tem menos energia injetada. A segunda é que o consumo das outras residências ligadas a esta fase da rede de distribuição absorve a energia injetada. Além disso, pode-se ver que as outras fases da RDBT têm uma capacidade de geração superior ao consumo da rede durante o período de fluxo reverso da corrente.

Diante do exposto, foram identificadas quatro situações relacionador ao tipo da infraestrutura da rede de distribuição de baixa tensão e em função da analise do dados:

- I) que se identificou que a geração de energia por meio dos Painéis Fotovoltaicos (PV) contribuiu para a redução das perdas na distribuição, visto que os níveis da tensão no final da Rede de Distribuição eram superiores à fonte principal que é a do transformador de energia, entretanto este autor desconhece a imposição de limites para esses níveis de tensão nas extremidades da rede, visto que se a potência injetada pela Geração Distribuída (GD) for alta, a corrente reversa gerada poderá ocasionar o aumento das perdas, ao invés de reduzi-las.
- II) que as Redes de Distribuição em Baixa Tensão (RDBT) que possuem um escalonamento redutivo da seção dos condutores, com início no transformador até o final da rede, não são adequadas para logradouros que possuem GD, porque caso nas extremidades da rede haja os cabos com seção reduzida podem elevar a tensão devido à limitação da resistência à passagem da corrente. Por essa razão, é recomendada uma única seção transversal para os seus condutores ao longo do alimentador principal para as redes de distribuição em baixa tensão, com objetivo de reduzir e/ou minimizar a elevação da tensão.
- III) que embora os geradores fotovoltaicos do tipo monofásico estejam ligados a rede de forma estocástica, percebi-se que os geradores de maior potência ou a maioria estão ligados na fase B e C da rede, em função dos níveis de tensão, monitorados pelos relés por meio do sistema computacional proposto, estarem superiores aos do início da rede, em que é o ponto de instalação do transformador, conforme observado nas Figuras 29, 30 e 31.
- IV) identificou-se nos pontos de iluminação pública em que estão instalados os relés 5B e 6C, uma diferença entre os limites máximo e mínimo da tensão nas 288 amostras válidas coletadas (vide Figura 30). Sendo percebida uma variação no valor de 30,319 volts no o relé 5B e 36,136 volts no relé 6C. Portanto, verificou-se a possibilidade de realização de estudos direcionados à avaliação da necessidade de redimensionamento da área em relação ao transformador do logradouro, atualmente sobrecarregado por

uma geração distribuída durante o período diurno, a fim de garantir uma regularidade na qualidade dos níveis de energia. Contudo, este autor verificou, que não há uma norma que unifique o limite de sobrecarga para um transformador com potência inferior à GD, ficando à critério das distribuidoras de energia sua fixação.

No Anexo B, na Tabela 10 são apresentadas 32 leituras válidas das 288 leituras coletadas pelos Relés de Telegestão (RT), cujos valores foram aplicados no métodos de cálculo e posteriormente utilizados no métodos Cigré para mensurar o Desequilíbrio da Tensão (DT). Como consequência, os resultados iniciais apresentados nas Figuras 29, 30, 31 e 32 foi possível verificar que o sistema computacional é capaz de identificar o sentido do fluxo da corrente na RDBT, assim como possibilita fornecer os dados necessários para aplicação no Método Cigré e, consequentemente, o cálculo do desbalanceamento de tensão.

Nas figuras 33, 34, e 35, pode-se ver que as séries cronológicas (linha) obtidas empregando o método de cálculo **calculo para as fases A, B, e C** têm semelhanças na sua forma de onda considerando os valores de tensão obtidos pelo Analisador de Energia (AE), que tem um conversor Analógico-Digital (A/D) de 24 bits. Além disso, percebe-se um aumento na voltagem da fase A das 7 da manhã até às 17 da tarde. Esta elevação ocorre provavelmente devido à elevação da temperatura interna da caixa de relés, que interfere com os transdutores do circuito eletrônico, e pela possível existência de *Outliers* devido ao fato do conversor utilizado pelos relés possuir o conversor (A/D) de 8 bits. Além disso, foi registado através de um sensor interno nos relés que a temperatura atingiu valores até 53°C no período mais quente do dia.

Ademais, durante o processo de leitura dos níveis de tensão realizados pelos relés 1A, 2B, 3C, 4A, e 5B, as suas variações individuais podem atingir o valor de 1,47, 1,45, 1,40, 1,43, e 1,44 volts, respectivamente, exceto para o relé 6A, onde o valor pode atingir até 0,40 volts, após a aplicação do Fator de Correção (FC), de acordo com a Figura 28. Neste caso, a variação dos perfis de tensão somadas dos relés 2B e 5B pode chegar a 2,89 volts para o métodos de cálculo da fase B, tal como, para os relés 3C e 6C que são somadas pode chegar a 1,80 volts para o métodos de cálculo da fase C.

A figura 36 ilustra a correlação entre a tensão de fase calculada pelo sistema proposto e a tensão de fase medida pelo analisador de energia para cada fase da RDBT. Para todas as fases, existe uma forte correlação linear entre as medições, que é mais elevada para a fase C.

Período de teste 24 horas (ou até 288 válidas) - Intervalo entre as leituras 5 min.

Figura 33: Leituras do analisador de energia para a fase A e do perfil da tensão da fase A calculado pelo sistema proposto, utilizando dados do relé 4A, considerando 24 horas com um intervalo de 5 minutos entre as leituras.

Período de teste 24 horas (ou até 288 válidas) - Intervalo entre as leituras 5 min.

Para as fases A e B, os valores de tensão calculados pelo sistema proposto estão ligeiramente acima das leituras do analisador de energia.

Por fim, na Tabela 5 são apresentadas os valores dos erros, calculados utilizando o *Mean Absolute Error* (MAE) com base nos dados coletados pelos relés, e obtidos por meio do método de cálculo proposto, cujos valores das tensões das fases (A, B e C) em relação ao neutro considerando os dados do Analisador de Energia (AE) como referência. Percebe-

Período de teste 24 horas (ou até 288 válidas) - Intervalo entre as leituras 5 min.

Figura 35: Leituras do analisador de energia para a fase C e o nível do perfil da tensão da fase C calculado pelo sistema proposto, utilizando dados dos relés 3C e 6C, considerando 24 horas com um intervalo de 5 minutos entre as leituras.

Figura 36: Correlação entre a tensão medida pelo analisador de energia e a tensão calculada pelo sistema proposto para as **fases A, B, e C** no poste 7 (ponto de referência), considerando 24 horas com um intervalo de 5 minutos entre leituras.

se que o *MAE* do métodos de cálculo da fase C em relação ao analisador de energia fase C, detém um erro médio absoluto menor que os demais métodos de cálculo da fase A e B, possivelmente ocasionado pela melhor exatidão nas leituras realizadas pelo relé 6C, as quais, após a aplicação do Fator de Correção (FC) apresentam valores de *Outliers* menor em relação aos demais relés, conforme demostrado na Figura 27b, e apresentado na Tabela 4. Condição na qual justifica uma melhor correlação linear entre as variáveis a da fase C, demostrada na

Figura 36c.

No Anexo C, na Tabela 11 são apresentadas 32 leituras válidas das 288 leituras coletadas pelo Analisador de Energia (AE), que foi instalado no poste 7 na Rede de Distribuição (RD), os dados completos são apresentados nas figuras 33, 34 35 descritos na legenda como medido com o AE.

Tabela 5: Erro médio absoluto (*Mean Absolute Error*) dos valores estimados (sistema proposto) em relação aos observados (analisador de energia) da tensão para cada uma das fases.

Fases	MAE (Volts)
Fase Van	1,062993671 V
Fase Vbn	1,021066618 V
Fase Vcn	0,568260777 V

5.3 Validação do sistema proposto - Cálculo do Desequilíbrio de Tensão

O sistema proposto visa determinar o Desequilíbrio da Tensão (DT). Nesta seção, será validado o DT calculado pelo sistema proposto utilizando o DT medido pelo analisador de energia como referência. O Método Cigré foi aplicado em ambos os casos (sistema e analisador de energia).

A figura 37 mostra o DT calculada pelo sistema proposto e o DT medido pelo analisador de energia, considerando 24 horas com 5 minutos entre leituras. Percebe-se que as curvas do DT mantêm uma semelhança significativa na sua forma ao longo do tempo. O *Mean Absolute Error* (MAE) entre o DT calculada pelo sistema proposto e o DT medido pelo analisador de energia é igual a 0,096766794%. Uma vez que as leituras de tensão apresentadas nas Figuras 33, 34 e 35 são muito semelhantes, e este MAE as justificam.

A figura 38 apresenta um histograma da diferença do DT calculado pelo sistema proposto e medida pelo analisador de energia. Em 95% dos dados, a diferença entre os DTs variam de -0.2118% a 0.2382%. Além disso, vê-se que 83% dos erros têm valores inferiores a 0.1

Deve acrescentar-se que o erro nestes resultados já era esperado uma vez que o conversor Analógico-Digital (A/D) utilizado no circuito integrado (CS5463) dos relés tem uma conversão de 8 bits. Em contraste, ao analisador de energia que possui um conversor (A/D)

Período de teste 24 horas (ou até 288 válidas) - Intervalo entre as leituras 5 min.

Figura 37: Desequilíbrio da tensão calculado pelo sistema proposto e medido pelo analisador de energia considerando 24 horas com um intervalo de 5 minutos entre leituras.

Figura 38: Histograma do *Mean Absolute Error* (MAE) considerando o desequilíbrio de tensão calculado pelo sistema proposto e medido pelo analisador de energia.

de 24 bits. Além disso, os transdutores utilizados necessitam de um processo de calibração que deve incluir a variação da temperatura de trabalho nos Relés de Telegestão (TR) para apresentar uma melhor precisão nos dados, podendo ainda, os circuitos dos transdutores serem substituídos por resistores do tipo Shunt. Contudo, o erro apresentado pode ser aceitável para uma aplicação prática do método de cálculo, considerando todos os benefícios que o sistema proposto pode oferecer em troca. Saliente-se, ainda, que o estudo desenvolvido até este ponto foi submetido no dia 01 de abril de 2023 à revista *IEEE Transactions on Power Delivery*, que realiza avaliação nas áreas de ciência da computação e engenharias, e que possui classificação qualis A1 pela CAPES no quadriênio de 2017-2020.

5.4 Discussão sobre os valores do desequilíbrio da tensão na rede de distribuição com fontes de geração de energia fotovoltaica

O método de cálculo proposto para realizar o monitoramento do Desequilíbrio da Tensão (DT) foi validade por meio dos resultados apresentados nas Seções 5.2, 5.3. Após a validação, o sistema foi utilizado na coleta de 2016 leituras válidas, com intervalos a cada 5 minutos, sendo o período justificado na Seção 4.6.5.

O processo teve como objetivo principal em investigar o impacto da Geração Distribuída (GD) ocasionado por dez geradores, identificados na Figura 14. Assim, com base neste sistema proposto foi verificado se os níveis de tensão, bem como, o Desequilíbrio da Tensão (DT) estão em conformidade com os indicadores estabelecidos na Norma PRODIST, Módulo 8 da ANEEL (ANEEL, 2022).

O processo de monitoramento ocorreu a partir do dia 18/12/2022 das 0 h 0 min 0 s até 25/12/2022 as 12 h 0 min 0 s, e produziu um total de 2016 leituras válidas, das quais somente 32 estão contidos no Anexo D, na Tabela 12. Ressalta-se que existe uma lacuna de 5 h 55 min 0 s iniciada no dia 21/12/2022 as 0 h 20 min 0 s provocada pelo não comissionamento do Relé 6C à operadora de telefonia do sistema de celular, sendo re-comissionado de forma remota por este autor através do sistema da empresa Meta Telecom.

Na Figura 39 são apresentadas as leituras das tensões referentes ao Poste 7, obtidas por meio da IIPu das fases A, B e C em relação ao neutro da RDBT. Na análise dos dados é possível identificar que no dia 21/12/2022 as 11 h 20 min 0 s ocorreu uma mudança no perfil da tensão (setas amarelas), sendo identificada como uma possível mudança da linha do alimentador de média tensão (13,8 kV) para outra linha de alimentação, devido às festividade natalinas. Esse evento foi identificado pela falta de energia nos equipamentos, iniciada possivelmente após as 11 h 20 min 0 s, e sendo reestabelecida aos equipamentos as 11 h 50 min 0 s. Como resultado é possível observar na Figura 39 um decréscimo nos níveis das

tensões nas fases A, B e C de aproximadamente 19,41, 18,82, e 16,99 Volts respectivamente após o reestabelecimento da energia.

Monitoramento realizado por 7 dias ou até completar 2016 leituras válidas - Intervalo entre as leituras é de 5 minutos

Figura 39: Gráfico das leituras realizadas por meio da IIPu dos níveis de tensão das fases A, B e C em relação ao neutro no poste 7 da rede de distribuição em baixa tensão. A região verde delimita o intervalo no qual o valor da tensão é adequado segundo a PRODIST através do Módulo 8 (ANEEL, 2022).

Consequentemente, analisando a Figura 40 percebe-se que o desequilibro da tensão é maior após esse evento, provavelmente por estarem com os níveis de tensão abaixo do adequado, conforme definido na PRODIST através do Módulo 8 (ANEEL, 2022), cujos níveis de tensão são demostrados na legenda da Figura 39 e que o perfil da tensão adequada está compreendido entre as faixas verdes.

Na Tabela 6 é quantificado o número de amostras que estão fora dos níveis adequados da tensão a ser fornecida aos clientes, além disso, é identificado na Rede de Distribuição (RD) que a fase C possui mais cargas ligadas em relação às demais fases devido ao número de amostras com a faixa de tensão inadequada ser maior. Na sequência são apresentados na Tabela 7 os percentuais máximos de Desequilíbrio de Tensão (DT) por meio das normas técnicas e seus respetivos países ou bloco econômico. Assim, com base nestes percentuais é informada na Tabela 8 a quantidade de amostras e seus percentuais acima dos limites exposto nas normas citadas na Tabela 7 com base nas 2016 amostras coletadas.

Monitoramento realizado por 7 dias ou até completar 2016 leituras válidas - Intervalo entre as leituras é de 5 minutos

Figura 40: Gráfico de dispersão do Desequilíbrio da Tensão (DT) na rede de distribuição em baixa tensão.

Tabela	6:	Leituras	dos	níveis	de	tensão	fora	da	faixa	adequada	(Volts)	das	2016	amostras
válida	s co	letadas p	or fa	ise										

Faixa de tensão*	Método da Fase A	Método da Fase B	Método da Fase C
Tensão > 233	10,32%	15,03%	16,79%
$231 \leq Tensão \geq 233$	3,72%	2,08%	1,09%
$191 \leq Tensão \geq 202$	25,00%	21,78%	25,60%
Tensão < 191	2,48%	2,18%	2,08%
Total de amostras	41,52%	41,07%	45,59%

Legenda: Tensão = Valores obtidos por meio do método de cálculo para cada uma das fases. *Fonte: Valores da faixa de tensão obtidos pela Norma PRODIST, (ANEEL, 2022).

É evidente pela Tabela 8 que ao considerar um limite de 2%, ao invés de 3%, o número de amostras fora do limite aumenta mais de 14 vezes. Na Seção 4.1 foram citados os Métodos utilizados pela norma PRODIST da (ANEEL, 2022), para calcular o DT através das Equações 1 e 2, sendo estas equações as mesmas relacionadas na norma da *IEEE Recommended Practice for Monitoring Electric Power Quality*, (IEEE 1159, 2019). Essa norma recomenda, através de seus estudos e por meio de suas equações, que o Desequilíbrio de Tensão (DT) seja menor que 2%. Este autor desconhece os critérios e os estudos utilizados pela ANEEL para definir na norma PRODIST da (ANEEL, 2022), com a utilização das Tabela 7: Limites definidos para Desequilíbrio da Tensão (DT) por normas técnicas, *Technical Report* (TR) e *Review Panel* identificando os países e membros da *European Union* (EU)

Norma	País	Limite
PRODIST, MOD. 8 (ANEEL, 2022).	Brasil	3%
ANSI C84.1-2011, (ANSI, 2020).	USA	3%
IEC TR 61000-3-13:2008, (ANSI, 2011).	UE	2%
IEEE 1159-2019, (IEEE 1159, 2019).	USA	2%
NEMA MG1 14-34, (NEMA, 2016).	USA	2%
Eurogrid GmbH, (GHASSEMI; PERRY, 2014b).	Germany	2%
AS/NZS 61000.4.30 (ESC, 2020).	Australia	2%
AS/NZS 61000.4.30 (STANDARDS NEW ZEALAND, 2013).	New Zealand	2%
South Africa (NRSPMA, 2003).	South Africa	2%
Grid Code CC.6.1.5 (b), (GHASSEMI; PERRY, 2014a).	Great Britain	2%

Equações 1 e 2 que o valor aceito para o Desequilíbrio de Tensão (DT) seja de 3%.

Tabela 8: Quantidade de amostras e seus percentuais acima dos limites.

Limites percentuais	№ de amostras	Percentuais das amostras
Superior a 3%	6 Amostras	0,298%
Superior a 2%	88 Amostras	4,365%

6 Considerações finais

Nesta pesquisa foi desenvolvido um sistema computacional para monitoramento da tensão com a finalidade de identificar os Desequilíbrios da Tensão (DT) ao longo da Rede de Distribuição em Baixa Tensão (RDBT). No entanto, também foi possível identificar a elevação dos níveis da tensão nas três fases em relação ao neutro nas extremidades de um dos ramos na Rede de Distribuição em Baixa Tensão (RDBT), ocasionada pela corrente reversa quando a potência da Geração Distribuída (GD) é maior que o consumo naquele ramo ou maior que a potência do transformador, visto que se a potência injetada pela Geração Distribuída (GD) for alta, a corrente reversa gerada poderá ocasionar o aumento das perdas, ao invés de reduzi-las.

O sistema utiliza a infraestrutura já existente da Iluminação Pública (IPu) para monitorar a tensão, e aplicar um método de cálculo feito com base na primeira e na segunda leis de Ohm e que é composto por três equações, para ser aplicada no método Cigré. Uma aplicação desse método de cálculo foi feita para avaliar o impacto da geração da energia fotovoltaica na qualidade da tensão de um logradouro na cidade de Marechal Deodoro/AL que possui nove residências com sistemas de geração fotovoltaicos. Para coletar os dados que foram aplicados no método de cálculo desenvolvido, foram utilizados seis relés de telegestão de baixo custo que foram instalados no logradouro.

O sistema foi validado comparando-se as medições do sistema com as medições de um analisador de energia profissional. Os resultados mostraram que as medidas do sistema possuem um erro médio absoluto de 0,096766794 na medição da tensão. Além disso, foi possível identificar o sentido e o fluxo da corrente na RDBT estudada e que as RDBT que possuem um escalonamento redutivo da seção dos condutores, com início no transformador até o final da rede, não são adequadas para logradouros que possuem GD, porque caso nas extremidades da rede haja os cabos com seção reduzida podem elevar a tensão devido à limitação da resistência à passagem da corrente. Portanto, em função desse método, é possível redimensionar os cabos da rede de forma adequada para minimizar as perdas de distribuição ocasionado por um fluxo elevado da corrente reversa.

Após a validação do método de cálculo, foi dado início ao processo de monitoramento da rede pelos relés de telegestão durante 7 dias, em que foram colhidas 2016 leituras válidas

e por meio das quais foi possível observar que o percentual estabelecido pela ANEEL para o Desequilíbrio da Tensão (DT) dificilmente será ultrapassado, ainda que diante de grandes variações na tensão. Ademais, caso ocorra este Desequilíbrio da Tensão (DT) a situação provavelmente será extremamente crítica, o que pode apontar a necessidade de revisão referente ao percentual de 3% estabelecido pela PRODIST no Módulo 8 da ANEEL, (ANEEL, 2022).

No decorrer do estudo foi identificado que a geração de energia por meio de Painéis Fotovoltaico nas RDBT tem se expandido de forma exponencial, de modo que é necessário um alto investimento por parte das distribuidoras de energia para realizar o monitoramento do Desequilíbrio da Tensão (DT) e de seus níveis de tensão, ao longo de uma rede de distribuição em baixa tensão trifásica com neutro. O desbalanceamento de tensão afeta o funcionamento de equipamentos eletrônicos, motores, reguladores de tensão (RTs) e principalmente os transformadores conectados à rede de distribuição desequilibrada, como consequência deste desequilíbrio ocorre a redução da potência útil (em Watts) devido ao aumento das perdas elétricas.

Salienta-se, ainda, que não é de conhecimento deste autor, após a revisão sistemática da literatura descrita no Capitulo 3, trabalhos que se destinam identificar o sentido do fluxo da corrente elétrica e mensurar o Desequilíbrio da Tensão (DT) em RDBT por meio de um sistema que utiliza a Infraestrutura da Iluminação Pública (IIPu), sendo este provavelmente o primeiro a abordar o tema e a verificar a possibilidade de utilização desta abordagem para obter resultados satisfatórios. De forma específica, consideramos que o sistema proposto nessa pesquisa trouxe as seguintes contribuições:

- a) Manutenção por tempo indefinido do equipamento no local, uma vez que estará integrado à Infraestrutura da Iluminação Pública (IIPu), enquanto os procedimentos atualmente existentes de coleta dos dados exigem o deslocamento para instalação temporária do analisador de energia nos locais a serem verificados;
- b) Realização da coleta em tempo real, no momento e nos intervalos desejados;
- c) Criação de bases de dados com a capacidade de observar os perfis normal, precário e crítico da tensão em pontos específicos na Rede de Distribuição em Baixa Tensão (RDBT), e identificar a Duração Relativa da transgressão para tensão Precária (DRP) e o para tensão Crítica (DRC);
- d) Monitoramento mais eficiente das perdas na distribuição de energia, com um menor gasto de recursos e tempo;

- e) Identificação da necessidade do redimensionamento dos cabos na RDBT em função da corrente reversa ocasionada pelas fontes de Geração Distribuída (GD);
- f) Disponibilização de indicadores de forma independente da distribuidora de energia para promoção de estudos técnicos para auxiliar em politicas pública destinadas à qualidade, à confiabilidade e à expansão do sistema elétrico em baixa tensão de forma planejada pelo Operador Nacional do Sistema Elétrico (ONS), pela Agência Reguladora de Energia Elétrica (ANEEL), e pela Empresa de Pesquisa Energética (EPE);
- g) Acompanhamento em tempo real dos indicadores de DEC (Duração Equivalente de Interrupção por Unidade Consumidora) e FEC (Frequência Equivalente de Interrupção por Unidade Consumidora) regulamentados pelo Módulo 8 da PRODIST da ANEEL (ANEEL, 2022) de modo que o consumidor possa ser restituído pelo não fornecimento de energia;
- h) Monitoramento da falta de uma ou mais fases na RDBT pela distribuidora de energia elétrica;
- i) Acompanhamento do conceito de cidades inteligentes ao proporcionar a integração da Rede de Distribuição em Baixa Tensão (RDBT) a um *Cyber-Physical System* (CPS) e, assim, gerenciar de forma mais eficiente o recurso da energia elétrica possibilitando a adequação às demandas energéticas do futuro que necessitarão de uma reorganização nas estruturas das cidades em relação à produção, distribuição e consumo de energia, em função da diversificação da matriz de energia elétrica, gerenciando de forma mais eficiente esse recurso por meio de soluções tecnológicas inteligentes, que proporcionam um melhor acesso aos serviços e uma melhoria na qualidade de vida das pessoas.

Contudo, o trabalho possui algumas limitações que podem ser tratadas em trabalhos futuros. Uma das limitações foi a utilização de um hardware para o monitoramento que possui um conversor analógico digital de baixo custo e um transdutor de tensão com baixa eficiência em ambientes com alta temperatura. Portanto, um trabalho futuro pode ser a adaptação do hardware atual, ou a utilização de um novo hardware, para considerar um conversor Analógico/Digital mais preciso e um transdutor de tensão que trabalhe melhor em ambientes de temperatura elevada. Além disso, o estudo analisou somente o impacto da geração distribuída na RDBT, e que em trabalhos futuros pretende-se realizar essa análise desligando os sistemas de geração distribuída e comparando o perfil do desequilíbrio de tensão do logradouro em dias com e sem geração distribuída.

A pesquisa desenvolvida, então, será submetida a um processo de registro de patente do modelo computacional proposto, o qual, por intermédio do método de cálculo desenvolvido, utiliza a Infraestrutura da Iluminação Pública (IIPu) para o sensoriamento e coleta dos dados em tempo real e, com isso, realiza o monitoramento dos níveis normal, precário e crítico da tensão, conforme estabelecido no Módulo 8 da PRODIST, (ANEEL, 2021), e dos tipos de desequilíbrios da tensão, e; identifica o sentido e o fluxo da corrente em pontos específicos na RDBT. Além disso, será incluído um novo modelo para aquisição das informações contidas das alíneas "a"até "i", citadas anteriormente, com o objetivo de informar aos Operadores do Sistema de Distribuição (OSDs), à ANEEL e à EPE, acerca da ocorrência desses anomalias, assim como, dos intervalos e dos períodos de duração.

Referências Bibliográficas

ABSOLAR. *1 milhão de geração distribuída solar fotovoltaica*. [*S.l.: s.n.*]: ABSOLAR, 2022. https://www.absolar.org.br/. Online; Acessado em: 13 de Janeiro de 2022.

ABSOLAR. *Energia Solar Fotovoltaica no Brasil*. [*S.l.: s.n.*]: ABSOLAR, 2023. https://www.absolar.org.br/. Online; Acessado em: 05 de abril de 2023.

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional - PRODIST. Módulo 8 - Qualidade da Energia Elétrica, Revisão 7: Qualidade da energia elétrica. Brasília, 2016. 76 p.

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional - PRODIST. Módulo 8 - Qualidade da Energia Elétrica, Revisão 8: Qualidade da energia elétrica. Brasília, 2017. 90 p.

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional - PRODIST. Módulo 1 - Introdução, Revisão 10: Introdução. Brasília, 2018. 55 p.

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. *Regulação dos Serviços de Distribuição*. Brasília, 2018. 1 p. https://www.aneel.gov.br/regulacao-dos-servicos-de distribuicao Online; Acessado em: 06 de Dezembro de 2021.

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional - PRODIST. Módulo 8 - Qualidade da Energia Elétrica. Brasília, 2022. 69 p.

AL-SHETWI, A. Q. *et al.* Grid-connected renewable energy sources: Review of the recent integration requirements and control methods. *Journal of Cleaner Production*, v. 253, p. 119831, 2020. ISSN 0959-6526. Available at: https://www.sciencedirect.com/science/ article/pii/S0959652619347018.

ALAM, M. J. E.; MUTTAQI, K. M.; SUTANTO, D. A comprehensive assessment tool for solar pv impacts on low voltage three phase distribution networks. *In: 2nd International Conference on the Developments in Renewable Energy Technology (ICDRET 2012).* [*S.l.: s.n.*], 2012. p. 1–5.

ALBOAOUH, K.; MOHAGHEGHI; SALMAN. Voltage and power optimization in a distribution network with high pv penetration. *In*: IEEE. 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T D). [S.l.: s.n.], 2018. p. 1–9.

ALBOAOUH, K.; MOHAGHEGHI, S.; HARLEY, R. G. Voltage, var and watt control in a distribution system with high pv penetration using nsga-iii. *In*: IEEE. 2018 Clemson University Power Systems Conference (PSC). [S.l.: s.n.], 2018. p. 1–8.

AMERICAN NATIONAL STANDARDS INSTITUTE. AS 61000.3.100: Electromagnetic compatibility (EMC) - Part 3.100: Limits—Steady state voltage limits in public electricity systems. Sydney, 2011. 24 p.

AMERICAN NATIONAL STANDARDS INSTITUTE. ANSI C84. 1-2016: American National Standard for Electric Power Systems and Equipment — Voltage Ratings (60 Hertz). Washington, 2020. 21 p.

ANEEL. Agência Nacional de Energia Elétrica: Matriz Elétrica Brasileira. Sistema de Informações de Geração da ANEEL - SIGA. Brasília, 2021. Disponível em: https://bit.ly/2IGf4Q0, Jul. 2022.

ANEEL. Agência Nacional de Energia Elétrica: Matriz Elétrica Brasileira. Sistema de Informações de Geração da ANEEL - SIGA. Brasília, 2023. Disponível em: https://encurtador.com.br/jouAX, Jul. 2022.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. *NBR 14522: Intercâmbio de informações para sistemas de medição de energia elétrica*. Rio de Janeiro, 2008. 135 p.

AZIZ, T.; KETJOY; NIPON. Pv penetration limits in low voltage networks and voltage variations. *IEEE Access*, IEEE, v. 5, p. 16784–16792, 2017.

BAYER, B. *et al.* The german experience with integrating photovoltaic systems into the low-voltage grids. *Renewable Energy*, v. 119, p. 129–141, 2018. ISSN 0960-1481. Available at: https://www.sciencedirect.com/science/article/pii/S0960148117311461.

C Sharp. [*S.l.: s.n.*]: Microsoft, 2000. https://docs.microsoft.com/pt-br/. Online; Acessado em: 05 de Janeiro de 2022.

CASSANDRAS, C. G. Smart cities as cyber-physical social systems. *Engineering*, v. 2, n. 2, p. 156–158, 2016. ISSN 2095-8099. Available at: https://www.sciencedirect.com/ $_{>}$ science/article/pii/S2095809916309420.

CHIDURALA, A.; SAHA, T.; MITHULANANTHAN, N. Field investigation of voltage quality issues in distribution network with pv penetration. *In*: IEEE. *2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)*. [*S.l.: s.n.*], 2015. p. 1–5.

CIRRUS LOGIC. *Single Phase, Bi-directional Power/Energy IC*.: Cs5463 product data sheet. Edinburgh, 2021. 46 p. Disponível em: https://statics.cirrus.com/pubs/ proDatasheet/CS5463_F4.pdf, jul. 2022.

CONZATTI, N. d. C. *Redução do desequilíbrio de tensão por meio do controle de componentes de sequência negativa em inversores conectados à rede de distribuição.* Dissertação (Mestrado) — Universidade Estadual do Oeste do Paraná, http://tede. unioeste.br/bitstream/tede/4922/5/Nauana_Del_Castanhel_Conzatti_2020.pdf, Mar. 2020. Online; Acessado em: 20 de Fevereiro de 2022.

DHLAMINI, N.; CHOWDHURY, D.; P, S. Solar photovoltaic generation and its integration impact on the existing power grid. *In*: 2018 IEEE PES/IAS PowerAfrica. [S.l.: s.n.], 2018. p. 710–715.

DUGAN, R. C.; MONTENEGRO, D. Reference guide: The open distribution system simulator (opendss). *EPRI*, 2013.

EIA. *Petroleum & Other Liquids*. Washington DC, 2021. Available in: https:// www.eia.gov/petroleum/weekly/archive/2021/211110/includes/analysis_print.php, Nov. 2021.

EIA. *Petroleum & Other Liquids*. Washington DC, 2022. Available in: https:// www.eia.gov/petroleum/weekly/archive/2022/220309/includes/analysis_print.php, Mar. 2022.

EPE. Empresa de Pesquisa Energética: Balanço Energético Nacional (BEN) -Séries Históricas e Matrizes. Anexo I - Capacidade instalada. Rio de Janeiro, 2021. Disponível em: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/ > publicacoes/PublicacoesArquivos/publicacao-145/topico-515/Anexo%20I%20- > %20Capacidade%20instalada.xls, Nov. 2021.

EPE. *Empresa de Pesquisa Energética: BEN Interativo. Análise Energética e Dados Agregados - Oferta Interna de Energia.* Rio de Janeiro, 2021. Disponível em: http://shinyepe.brazilsouth.cloudapp.azure.com:3838/ben/#shiny-tab-cap1, Nov. 2021.

EPE. *Empresa de Pesquisa Energética: Matriz energética e elétrica - Anuário estatístico*. Rio de Janeiro, 2022. Disponível em: https://www.epe.gov.br/pt/publicacoes-dados abertos/publicacoes/anuario-estatistico-de-energia-eletrica, Jul. 2022.

ESSENTIAL SERVICES COMMISSION. *Electricity Distribution Code*. Melbourne, 2020. 69 p.

EUROPE, S. Solar continues to break installation records, on track for Terawatt scale by 2022. 2021. https://www.solarpowereurope.org/solar-continues-to-break-installation-> records-on-track-for-terawatt-scale-by-2022/. Online; Acessado em: 21 de Novembro de 2021.

EUROPE, S. *Global Market Outlook For Solar 2022 - 2026*. 2022. https://api. solarpowereurope.org/uploads/Solar_Power_Europe_Global_Market_Outlook_report_ 2022_2022_V2_07aa98200a.pdf. Online; Acessado em: 29 de junho de 2022.

FAIZ, J.; EBRAHIMPOUR, H. Precise derating of three-phase induction motors with unbalanced voltages. *In: Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, 2005.* [*S.l.: s.n.*], 2005. v. 1, p. 485–491 Vol. 1.

FORBES. *Brasil atinge 1 milhão de consumidores com geração própria de energia solar*. [*S.l.: s.n.*]: Forbes, 2022. https://forbes.com.br/forbesesg/2022/01/brasil-atinge-1-milhaode-consumidores-com-geração-propria-de-energia-solar/. Online; Acessado em: 13 de Janeiro de 2022.

GHASSEMI, F.; PERRY, M. National Grid - Review of Voltage Unbalance Limit in The GB Grid Code CC.6.1.5 (b). London, 2014. 35 p.

GHASSEMI, F.; PERRY, M. Review of voltage unbalance limit in the gb grid code cc. 6.1. 5 (b). *National Grid, Report*, p. 14–58, 2014.

GIANCOLI, D. C. Physics for Scientists and Engineers. *In*: _____. 4. ed. New Jersey: Pearson Prentice Hall, 2008. v. 2, cap. 30, p. 803. ISBN-13: 978-0-13-149508-1.

GOMES, V. J. F. O meio ambiente e o risco de apagão no Brasil. *II seminário internacional*, 2007.

GUEVANE, E. População mundial atingiu 7, 6 bilhões de habitantes. *DESENVOLVIMENTO ECONÔMICO. ONU News*, 2017.

IBRAHEM, H.; YEHIA, D. M.; AZMY, A. M. Power quality investigation of distribution networks with high penetration of solar energy. *In*: IEEE. 2019 21st International Middle East Power Systems Conference (MEPCON). [S.l.: s.n.], 2019. p. 1193–1198.

IEA. *International Energy Agency: Renewables 2021*: Analysis and forecast to 2026. Paris, 2021. 14–16 p. https://iea.blob.core.windows.net/assets/5ae32253-7409-4f9a-a91d- 1493ffb9777a/Renewables2021-Analysisandforecastto2026.pdf, Jan. 2021.

IEEE Recommended Practice for Monitoring Electric Power Quality. *IEEE Std 1159-2019* (*Revision of IEEE Std 1159-2009*), p. 1–98, 2019.

IMS - SOLUÇÕES EM ENERGIA. *PowerNET P-600 G4 - Analisador Portátil de Grandezas Elétricas*.: Manual de instalação e operação. Porto Alegre, 2020. 134 p. Disponível em: https://ims.ind.br/downloads/manuais/manual_PowerNET_P-600_G4.pdf, jul. 2022.

INTELI. *Iluminação pública inteligente*. 2022. https://intelilight.eu/iluminacao-publicainteligente/. Online; Acessado em: 15 de Fevereiro de 2022.

INTERNATIONAL ELECTROTECHNICAL COMMISSION. *IEC 61000-3-7: Electromagnetic compatibility (EMC) - Part 3-7*: Limits - assessment of emission limits for the connection of fluctuating installations to mv, hv and ehv power systems. Genebra, 2008. 65 p.

INTERNATIONAL ELECTROTECHNICAL COMMISSION. *IEC/TR 61000-3-13: Electromagnetic compatibility (EMC) - Part 3-13*: Limits - assessment of emission limits for the connection of unbalanced installations to mv, hv and ehv power systems. Genebra, 2008. 41 p.

INTERNATIONAL ELECTROTECHNICAL COMMISSION. *IEC 61000-3-14: Electromagnetic compatibility (EMC) - Part 3-14*: Assessment of emission limits for harmonics, interharmonics, voltage fluctuations and unbalance for the connection of disturbing installations to lv power systems. Genebra, 2011. 102 p.

INTERNATIONAL ELECTROTECHNICAL COMMISSION. *IEC 61000-3-3: Electromagnetic compatibility (EMC) - Part 3-3*: Limits - limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤ 16 a per phase and not subject to conditional connection. Genebra, 2021. 72 p.

INTERNATIONAL ELECTROTECHNICAL COMMISSION. *IEC 61000-4-30: Electromagnetic compatibility (EMC) - Part 4-30*: Testing and measurement techniquespower quality measurement methods. Genebra, 2021. 292 p. IRWIN, J. D. Análise de circuitos em engenharia. 4. ed. [S.l.: s.n.]: Pearson, 1999. ISBN 978-8534606936.

JINTAKA, D. R. *et al.* Analysis of voltage and power factor fluctuation due to photovoltaic generation in distribution system model. *In*: IEEE. 2019 International Conference on Technologies and Policies in Electric Power Energy. [S.l.: s.n.], 2019. p. 1–5.

JOUANNE, A. von; BANERJEE, B. Assessment of voltage unbalance. *IEEE Transactions* on *Power Delivery*, v. 16, n. 4, p. 782–790, 2001.

KANDIL, S. *et al.* A power quality monitor system for quantifying the effects of photovoltaic penetration on the grid. *In*: IEEE. *2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE)*. [*S.l.: s.n.*], 2015. p. 237–241.

KHARRAZI, A.; SREERAM, V.; MISHRA, Y. Assessment of voltage unbalance due to single phase rooftop photovoltaic panels in residential low voltage distribution network: A study on a real lv network in western australia. *In*: IEEE. 2017 Australasian Universities Power Engineering Conference (AUPEC). [S.l.: s.n.], 2017. p. 1–6.

KHODAYAR, M. E.; FEIZI, M. R.; VAFAMEHR, A. Solar photovoltaic generation: Benefits and operation challenges in distribution networks. *The Electricity Journal*, v. 32, n. 4, p. 50–57, 2019. ISSN 1040-6190. Special Issue on Strategies for a sustainable, reliable and resilient grid. Available at: https://www.sciencedirect.com/science/article/pii/ > S1040619019300491.

KITCHENHAM, B. Procedures for performing systematic reviews. *Keele, UK, Keele University*, v. 33, n. 2004, p. 1–26, 2004.

LECCISI, M. *et al.* An iot application for industry 4.0: a new and efficient public lighting management model. *In*: IEEE. 2020 *IEEE International Workshop on Metrology for Industry 4.0 IoT*. [*S.l.: s.n.*], 2020. p. 669–673.

LEE, C.-Y. Effects of unbalanced voltage on the operation performance of a three-phase induction motor. *IEEE Transactions on Energy Conversion*, IEEE, v. 14, n. 2, p. 202–208, 1999.

LEITE, C. Cidades sustentáveis? desafios e oportunidades. *ComCiência*, SciELO Brasil, n. 118, p. 0–0, 2010. ISSN 1519-7654.

LISERRE, M.; SAUTER, T.; HUNG, J. Y. Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics. *IEEE Industrial Electronics Magazine*, IEEE, v. 4, n. 1, p. 18–37, 2010.

LOONEY, B. *Statistical Review of World Energy*. London, 2021. https://www.bp.com/en/ global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html.

LU, S. *et al.* Real-Time low voltage network monitoring-ICT architecture and field test experience. *IEEE Transactions on Smart Grid*, v. 6, n. 4, p. 2002–2012, 2015.

MAKASHEVA, S.; PINCHUKOV, P.; SZOłTYSEK, J. The power quality as a pretext for developing smart city concepts. *In*: IEEE. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). [S.l.: s.n.], 2020. p. 1–7.

MATOS, M. A. C. d. C. *Sistema por unidade (PU)*. [*S.l.: s.n.*]: Faculdade de Engenharia da Universidade do Porto (FEUP), 2003. https://web.fe.up.pt/~mam/sistemapu.pdf. Online; Acessado em: 03 de Janeiro de 2022.

MOHAMMADI, P.; MEHRAEEN, S. Challenges of pv integration in low-voltage secondary networks. *IEEE Transactions on Power Delivery*, v. 32, n. 1, p. 525–535, 2017.

MORAIS, J. M. d. A agenda 2030 das nações unidas e as energias renováveis no brasil. *In*: IPEA. *Radar: tecnologia, produção e comércio exterior / Instituto de Pesquisa Econômica Aplicada. Diretoria de Estudos e Políticas Setoriais de Inovação e Infraestrutura (Diset). n. 1.* [*S.l.: s.n.*], 2019. p. 7–11.

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION. *NEMA MG 1-2016 - Motors and Generators*. Rosslyn, 2016. Part 1–34 p.

NRS PROJECT MANAGEMENT AGENCY (NRSPMA). NRS 048-2:2003 - Electricity Supply - Quality of supply. Joanesburgo, 2003. 33 p.

OHRING, M. *Engineering materials science*. 3. ed. 525 B Street, Suite 1900, San Diego, California 92101-4495: Elsevier, 1995. v. 1. 577 p. https://doi.org/10.1016/B978-0-12-> 524995-9.X5023-5 Acessado em: 12 de Setembro de 2022. ISBN 0-12-524995-0.

OLESKOVICZ, M. *Aula 09 - Qualidade da energia elétrica*. [*S.l.: s.n.*]: E-DISCIPLINAS, 2018. https://edisciplinas.usp.br/pluginfile.php/4449925/mod_resource/content/1/ Aula_09.pdf. Online; Acessado em: 16 de Fevereiro de 2022.

OON, K. H. *et al.* Establishment of fault current characteristics for solar photovoltaic generator considering low voltage ride through and reactive current injection requirement. *Renewable and Sustainable Energy Reviews*, Elsevier, v. 92, p. 478–488, 2018.

PAULILO, G. Capítulo iii desequilíbrios de tensão. *Revista O Setor Elétrico, São Paulo*, n. 86, p. 42–48, 2013.

PILLAY, P.; HOFMANN, P.; MANYAGE, M. Derating of induction motors operating with a combination of unblanced voltages and over-or under-voltages. *IEEE Power Engineering Review*, IEEE, v. 22, n. 7, p. 51–51, 2002.

PINTO, M. F. *et al.* Power quality measurements embedded in smart lighting systems. *In*: IEEE. 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE). [S.l.: s.n.], 2015. p. 1202–1207.

PINTO, M. F. *et al.* Street lighting system for power quality monitoring and energy-efficient illumination control. *In*: IEEE. 2016 IEEE 25th International Symposium on Industrial *Electronics (ISIE)*. [S.l.: s.n.], 2016. p. 34–39.

PINTO, M. F. *et al.* Smart modules for lighting system applications and power quality measurements. *In*: IEEE. 2014 11th IEEE/IAS International Conference on Industry Applications. [S.l.: s.n.], 2014. p. 1–8.

PORTALsolar. *Capacidade de geração solar global poderá superar 2 TW em 2025*. 2021. https://www.portalsolar.com.br/noticias/mercado/internacional/capacidade-de-geracaosolar-global-podera-superar-2-tw-em-2025. Online; Acessado em: 21 de Novembro de 2021.

PUNYACHAI, R.; ONGSAKUL, W.; SCHMIDT, U. Impact of high solar rooftop pv penetration on voltage profiles in distribution systems. *In*: IEEE. 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE). [S.l.: s.n.], 2014. p. 1–7.

RAHIMI, K. *et al.* Computation of voltage flicker with cloud motion simulator. *IEEE Transactions on Industry Applications*, IEEE, v. 54, n. 3, p. 2628–2636, 2018.

RENEWS.BIZ. Every third power plant' installed in 2020 was solar. 2021. https:/ /renews.biz/71105/every-third-power-plant-unit-installed-in-2020-was-solar/. Online; Acessado em: 21 de Novembro de 2021.

RICCIARDI, T. R. *et al.* Measurement based power quality analysis of real distribution networks with high pv penetration. *In*: IEEE. *2018 18th International Conference on Harmonics and Quality of Power (ICHQP)*. [*S.l.: s.n.*], 2018. p. 1–6.

RODRIGUES, M. d. C. B.; TEIXEIRA, E. C.; BRAGA, H. A. C. Uma visão topológica sobre sistemas fotovoltaicos monofásicos conectados à rede de energia elétrica. *In: Fifth Latin-American Congress: Electricity Generation and Transmission, São Pedro, São Paulo.* [*S.l.: s.n.*], 2003.

RODRIGUEZ, A. D.; FUENTES, F. M.; MATTA, A. J. Comparative analysis between voltage unbalance definitions. *In*: IEEE. 2015 Workshop on Engineering Applications - International Congress on Engineering (WEA). [S.l.: s.n.], 2015. p. 1–7.

SAHA, R.; BERA, J.; SARKAR, G. Remote monitoring for power quality analysis of distribution system. *In*: IEEE. *Proceedings of The 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC)*. [*S.l.: s.n.*], 2014. p. 402–406.

SCHWAB, K. A quarta revolução industrial. 1. ed. [S.l.: s.n.]: Edipro, 2019. ISBN 857283978X.

SENERGAM. *Energia Solar*. 2022. http://www.senergam.com.br/pagina/8-solar. Online; Acessado em: 15 de Fevereiro de 2022.

SHAMMARI, M. M. A.; KO; WONSUK. Photovoltaic-based distribution generation system integration effects on the power quality issues on electrical distribution network. *In*: IEEE. *2019 International Conference on Electrical Engineering Research Practice (ICEERP)*. [*S.l.: s.n.*], 2019. p. 1–6.

SILVA, J. G. d. ONU prevê que cidades abriguem 70% da população mundial até 2050. *CLIMA E MEIO AMBIENTE. ONU News*, 2019.

SILVA, R. d. A.; BRAGA, R. T. V. Simulating systems-of-systems with agent-based modeling: A systematic literature review. *IEEE Systems Journal*, v. 14, n. 3, p. 3609–3617, 2020.

SINGH, R.; TRIPATHI, P.; YATENDRA, K. Impact of solar photovoltaic penetration in distribution network. *In: 2019 3rd International Conference on Recent Developments in Control, Automation Power Engineering (RDCAPE).* [S.l.: s.n.], 2019. p. 551–56.

STANDARDS NEW ZEALAND. SA/SNZ TR IEC 61000.3.14:2013 - Electromagnetic compatibility (EMC). Wellington, 2013. 56 p.

STEVAN, S. L.; LEME, M. O.; SANTOS, M. M. D. Indústria 4.0 - Fundamentos, Perspectivas e Aplicações. 1. ed. [S.l.: s.n.]: Erica, 2018. ISBN 9788536527208.

TEODORO, R. G. *Metodologia Para Compensação de Desequilíbrio em Redes Elétricas*. Dissertação (Mestrado) — Universidade Estadual Paulista - UNESP, Avenida Brasil, nº 56, Centro, Ilha Solteira, São Paulo, Brasil, FeV. 2005. Disponível em: https://www.feis.unesp.br/Home/departamentos/engenhariaeletrica/pos-graduacao/141 dissertação_ricardo_gouveia_teodoro.pdf Acessado em: 15 de Janeiro de 2022.

THOMAS, N.; JAYABARATHI, R.; NAMBIAR, T. N. P. Effect of line impedance and loading on voltage profile in distribution network with distributed solar photovoltaic system. *In*: IEEE. *2018 3rd International Conference on Communication and Electronics Systems* (*ICCES*). [*S.l.: s.n.*], 2018. p. 962–968.

TONKOSKI, R.; TURCOTTE, D.; EL-FOULY, T. H. M. Impact of high pv penetration on voltage profiles in residential neighborhoods. *IEEE Transactions on Sustainable Energy*, v. 3, n. 3, p. 518–527, 2012.

TORRES, I. C. *et al.* Voltage regulation for residential prosumers using a set of scalable power storage. *Energies*, v. 14, n. 11, 2021. ISSN 1996-1073. Available at: https://www.mdpi.com/1996-1073/14/11/3288.

TORREZAN, G. F.; OLESKOVICZ, M.; PESSOA, A. L. d. S. Analysis of voltage unbalance in a distribution system via opendss software. *In: 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE)*. [*S.l.: s.n.*], 2018. p. 1–5.

TRISUL, U. *Como é feita a distribuição de energia elétrica no Brasil.* 2021. https://www.universidadetrisul.com.br/etapas-construtivas/como-e-feita-a-distribuicaode-energia-eletrica-no-brasil. Online; Acessado em: 06 de Dezembro de 2021.

UBLOX. GPS.G6-HW-09003-D.indd - NEO-6 series, Versatile u-blox 6 GPS modules. [S.l.], 2011.

VARGAS, M. C.; MENDES, M. A.; BATISTA, O. E. Impacts of high pv penetration on voltage profile of distribution feeders under brazilian electricity regulation. *In*: IEEE. 2018 13th IEEE International Conference on Industry Applications (INDUSCON). [S.l.: s.n.], 2018. p. 38–44.

ZAMBENEDETTI, V. C. *et al.* Communication solution for implementing smart grid environment in the distribution network. *In*: IEEE. *2013 IEEE PES Conference on Innovative Smart Grid Technologies (ISGT Latin America).* [*S.l.: s.n.*], 2013. p. 1–5.

Apêndice A Processo requisitando doação de luminárias usadas

Neste apêndice consta parte do documento referente solicitação de doação de material usado que foi atendido por meio da doação de um conjunto de seis luminárias usadas que foram retiradas da iluminação pública para implantação do sistema LED. Destaca-se que todos os materiais foram realizadas a devida manutenção, bem como testados por mim para posterior instalação em uma rede de distribuição da iluminação pública.

Resumo dos materiais usados e descrição do que foi doado pela Superintendência Municipal de Energia e Iluminação Pública de Maceió - SIMA para a realização desta pesquisa: braço de 2 metros galvanizado a fogo; parafusos, porca e arruelas; reatores com potencia de 100 W e fator de potência de 0,92; relés fotoelétrico com contatos para 1.000 VA, luminárias do tipo fechada com material a base de polietileno do fabricante Schreder, lâmpadas do tipo vapor de sódio de alta pressão com potência de 100 W do fabricante Avant; e cabos pp com duas vias para ligação interna da luminária a rede de distribuição.

No entanto, os documentos não foram apensados por completo a pesquisa, em função da Lei nº 13.709/2018 - Lei Geral de Proteção de Dados Pessoais, que regula as atividades de tratamento de dados pessoais e que também altera os artigos 7º e 16 do Marco Civil da Internet. Contudo, os documentos originais estão sob a guarda do autor desta pesquisa.

MUNICÍPIO DE MACEIÓ Secretaria Municipal de Gestão DTI -Diretoria de Tecnologia da Informação SIIMM - Sistema Integrado de Informações do Município de Maceió

PROCESSO 6800/40870/2022

Secretaria:

Setor: PROTOCOLO SETORIAL- SIMA

Data: 20/04/2022

Interessado: LUCIANO JULIO DOS SANTOS

Natureza: 4290 - SOLICITACAO DE SERVIDOR

Assunto:

SOL. COLABORAÇÃO TÉCNICA PARA O MESTRADO.

Maceió, quarta-feira 20 de abril de 2022 09:36:36

Requerimento nº 01/2022

A Sua Senhoria JOÃO GILBERTO C. FOLHA FILHO Superintendente Superintendência Municipal de Energia e Iluminação Pública Rua Márquez de Abrantes S/N, Bebedouro CEP 57018-330 – Maceió – AL

Senhor Superintendente,

Eu, Luciano Júlio dos Santos, servidor efetivo de matrícula nº lotado no cargo de Eletrotécnico desta Superintendência, destaco a importância da vida pública ao longo do meu processo de qualificação. Possuo graduação em engenharia elétrica, cujo trabalho de conclusão de curso foi a teoria e prática referente à "Automação Industrial, o Braço Robótico" no ano de 2002, e devido ao caráter inovador para a época, foi exibido na TV Pajuçara, através do programa Informativo Educacional Jayme de Altavila. Complementei meus estudos com uma Pós-Graduação em Engenharia Ambiental, cujo trabalho de conclusão de curso foi a "Análise dos Impactos Ambientais na Iluminação Pública de Maceió", advindo da necessidade de condicionar e descartar adequadamente os resíduos sólidos gerados pela iluminação pública da capital, conforme consta no meu Currículo Lattes no Anexo 01, cujo endereço de acesso é http://lattes.cnpq.br/0090210016054468, o qual apresenta a minha formação acadêmica, formação complementar, vínculos institucionais, áreas de atuação, produções, participações em bancas e orientações, eventos, congressos, exposições e feiras e outras informações relevantes.

Atualmente estou matriculado no curso de Mestrado junto à Universidade Federal de Alagoas – UFAL, vinculado ao Instituto de Computação – IC na área de informática, em Engenharia de Sistemas Computacionais, conforme Anexo 02. A dissertação, com o tema "Monitoramento do desequilíbrio da tensão ocasionada pela injeção de energia solar advinda da geração distribuída na rede de baixa tensão: um estudo através da infraestrutura da iluminação pública no município de Marechal Deodoro", já foi qualificada pela banca examinadora, conforme histórico escolar, no Anexo 03. No Anexo 04 consta o resumo do estudo que está em desenvolvimento.

O projeto utilizará seis reles de telegestão desenvolvidos por mim, que serão instalados em luminárias para monitorar os níveis de tensão e do desequilíbrio da tensão entre as fases, quando ocorre ou não a injeção de energia através de fontes fotovoltaicas. Para tanto, será empregada uma das métricas existentes e adaptada por mim à utilização da infraestrutura da iluminação pública. Esse estudo poderá proporcionar aos operadores do sistema de distribuição de energia informações em tempo real referentes às redes de distribuição em baixa tensão, através de um modelo de aquisição de dados de baixo custo viabilizada pela infraestrutura da iluminação pública, que, por sua vez, poderá gerar uma nova fonte de receita para os órgãos gestores da iluminação pública mediante a prestação de um serviço.

Por essa razão, diante da complexidade do trabalho a ser desenvolvido junto ao Instituto de Computação – IC da UFAL, solicito ao Senhor a doação de 06 (seis) luminárias completas para viabilizar o estudo em campo.

Certos de sua atenção, coloco-me à disposição para esclarecimentos adicionais e aguardo posicionamento desta Superintendência quanto a confirmação desta doação, e caso confirmada será destacado no estudo a participação desta Superintendência, bem como no artigo de publicação científica.

Atenciosamente,

SUPERINTENDÊNCIA MUNICIPAL DE ILUMINAÇÃO DE MACEIÓ

Bebedouro, n°, CEP 57018-330, Bebedouro, Maceió - AL Tel. 3312-5310, CNPJ 00.734.571/0001-50

Processo	6800.40870.2022	Data de abertura	20/04/2022			
Interessado	LUCIANO JULIO DOS SANTOS					
Assunto	SOL. COLABORAÇÃO TÉCNICA PARA O MESTRADO.					
Local de origem	SIMA / CHEFIA DE GABINETE					
Local de destino	SIMA / DIRETORIA TECNICA					

DESPACHO

Encaminhamos os autos para análise e manifestação técnica, no âmbito de sua competência.

WESLEY FRANS CHAVES FELISMINO

Chefia de Gabinete - SIMA

Maceió/AL, 25 de abril de 2022

A autenticidade deste documento pode ser conferida no site <u>https://autentica2.maceio.al.gov.br/AutenticaDocumento</u>, informando o código verificador: FVT408702022 e o Id do documento: 1359174

SIIMM assinatura eletrônica

Documento assinado eletronicamente por WESLEY FRANS CHAVES FELISMINO, CHEFE DE GABINETE - SIMA, matrícula 954536-0 em 25 de abril de 2022 às 11:31:57

SUPERINTENDÊNCIA MUNICIPAL DE ILUMINAÇÃO DE MACEIÓ

Bebedouro, n° , CEP 57018-330, Bebedouro, Maceió - AL Tel. 3312-5310, CNPJ 00.734.571/0001-50

Processo	6800.40870.2022	Data de abertura	20/04/2022				
Interessado	LUCIANO JULIO DOS SANTOS						
Assunto	SOL. COLABORAÇÃO TÉCNICA PARA O MESTRADO.						
Local de origem	SIMA / DIRETORIA TECNICA						
Local de destino	SIMA / DIVISAO DE OFICINA ELETRICA E CONTROLE DE MATERIAL						

DESPACHO

Esta Diretoria Técnica encaminha os autos para análise e manifestação, referente à doação de 06 (seis) luminárias para viabilizar estudo em campo, conforme página 2.

José Aleksander Pinheiro Canuto Rocha

Diretor Técnico

Matricula: 954592-1

Maceió/AL, 26 de abril de 2022

A autenticidade deste documento pode ser conferida no site <u>https://autentica2.maceio.al.gov.br/AutenticaDocumento</u>, informando o código verificador: MYH408702022 e o Id do documento: 1374531

SIMM assinatura eletrônica

Documento assinado eletronicamente por JOSE ALEKSANDER PINHEIRO CANUTO, DIRETOR DA DIRETORIA TECNICA - SIMA, matrícula 954592-1 em 26 de abril de 2022 às 09:24:24

SUPERINTENDÊNCIA MUNICIPAL DE ILUMINAÇÃO DE MACEIÓ

Bebedouro, n°, CEP 57018-330, Bebedouro, Maceió - AL Tel. 3312-5310, CNPJ 00.734.571/0001-50

Processo	6800.40870.2022	Data de abertura	20/04/2022			
Interessado	LUCIANO JULIO DOS SANTOS					
Assunto	SOL. COLABORAÇÃO TÉCNICA PARA O MESTRADO.					
Origem	SIMA / DIVISAO DE OFICINA ELETRICA E CONTROLE DE MATERIAL					

TERMO DE JUNTADA

Em 27/04/2022-09:01, certifico que foi juntada aos autos a documentação anexa, que passa a fazer parte do presente processo administrativo, para oportuna apreciação pela autoridade competente.

Relação do(s) documento(s) juntado(s):

SCAN_20220427_084018995.pdf SCAN_20220427_085416405.pdf

Maceió/AL, 27 de abril de 2022

A autenticidade deste documento pode ser conferida no site https://autentica2.maceio.al.gov.br/AutenticaDocumento, informando o código verificador: WKV408702022 e o Id do documento: 1382863

Documento assinado eletronicamente por EDMILSON ILDEFONSO, ELETRICISTA - SIMA, matrícula 19055-1 em 27 de abril de 2022 às 09:02:44

Documento assinado eletronicamente por MARCOS ANTONIO ARAUJO, ASSESSOR - SIMA, matrícula 19046-2 em 27 de abril de 2022 às 09:42:59

CONFERE COM ORIGINAL ID: 1382864 Estado de Alagoas Prefeitura Municipal de Maceió Superintendência Municipal de Energia e Iluminação Pública de Maceió TERMO DE MATERIAL DOADOS Eu 01 AI por MARCOS ANTONIO ARAUJO, Mat. 19046-2 em 27/04/2022 às 09:42:59 Portador do RG nº . CPF X Sou responsável pelos materiais abaixo relacionados, doados pela Superintendência Municipal de Energia e Iluminação Pública de Maceió- SIMA Destino dos Materiais Un 01 SM 0 2 SMM 02 03 04 05 07 08 09 10 11 12 13 14 15 COMPT UMI-16 i'AS. 2 ABR Maceió, 7 -de de

Rua Marquês de Abrantes, S/N, Bebedouro, Maceió-AL - CEP 57018-601 – Fone: (82)3315-6410 CNPJ: 00.734.571/0001-50

CONFERE COM ORIGINAL	
	ID: 1382865 Docume
Preserve de la construir de la	ocumento assinado eletronicamente por MARCOS ANTONIO ARAUJO, Mat. 19046-2 em 27/04/2022 às 09:42:59.

Rua Marquês de Abrantes, S/N, Bebedouro, Maceió-AL - CEP 57018-601 - Fone: (82)3315-6410 CNPJ: 00.734.571/0001-50

Bebedouro, n°, CEP 57018-330, Bebedouro, Maceió - AL Tel. 3312-5310, CNPJ 00.734.571/0001-50

Processo	6800.40870.2022 Data de abertura 20/04/2022			
Interessado	LUCIANO JULIO DOS SANTOS			
Assunto	SOL. COLABORAÇÃO TÉCNICA PARA O MESTRADO.			
Origem	SIMA / DIVISAO DE OFICINA ELETRICA E CONTROLE DE MATERIAL			

TERMO DE JUNTADA

Em 27/04/2022-09:16, certifico que foi juntada aos autos a documentação anexa, que passa a fazer parte do presente processo administrativo, para oportuna apreciação pela autoridade competente.

Relação do(s) documento(s) juntado(s):

PROC LUCIANO JULIO.pdf

Maceió/AL, 27 de abril de 2022

A autenticidade deste documento pode ser conferida no site <u>https://autentica2.maceio.al.gov.br/AutenticaDocumento</u>, informando o código verificador: SGZ408702022 e o Id do documento: 1383092

Documento assinado eletronicamente por EDMILSON ILDEFONSO, ELETRICISTA - SIMA, matrícula 19055-1 em 27 de abril de 2022 às 09:17:28

Documento assinado eletronicamente por MARCOS ANTONIO ARAUJO, ASSESSOR - SIMA, matrícula 19046-2 em 27 de abril de 2022 às 09:42:59

Página 16

Bebedouro, nº , CEP 57018-330, Bebedouro, Maceió - AL Tel. 3312-5310, CNPJ 00.734.571/0001-50

Processo	6800.40870.2022 Data de abertura 20/04/2022			
Interessado	LUCIANO JULIO DOS SANTOS			
Assunto	SOL. COLABORAÇÃO TÉCNICA PARA O MESTRADO.			
Local de origem	SIMA / DIVISAO DE OFICINA ELETRICA E CONTROLE DE MATERIAL			
Local de destino	SIMA / DIRETORIA TECNICA			

DESPACHO

A Assessoria de Oficina Elétrica informa a Diretoria Técnica, que a solicitação do servidor foi atendida, conforme documentos em anexo.

Maceió/AL, 27 de abril de 2022

A

autenticidade deste documento pode ser conferida no site https://autentica2.maceio.al.gov.br/AutenticaDocumento, informando o código verificador: SBS408702022 e o Id do documento: 1383481

Documento assinado eletronicamente por MARCOS ANTONIO ARAUJO, ASSESSOR - SIMA, matrícula 19046-2 em 27 de abril de 2022 às 09:42:59

Bebedouro, n°, CEP 57018-330, Bebedouro, Maceió - AL Tel. 3312-5310, CNPJ 00.734.571/0001-50

Processo	6800.40870.2022 Data de abertura 20/04/2022				
Interessado	LUCIANO JULIO DOS	LUCIANO JULIO DOS SANTOS			
Assunto	SOL. COLABORAÇÃO	SOL. COLABORAÇÃO TÉCNICA PARA O MESTRADO.			
Local de origem	SIMA / DIRETORIA TECNICA				
Local de destino	SIMA / CHEFIA DE GABINETE				
DESPACHO					

Encaminhamos os autos para conhecimento referente à doação dos materiais solicitados pelo Luciano Júlio, conforme termo de materiais doados nas páginas 14 e 15, e retornando para arquivamento.

José Aleksander Pinheiro Canuto Rocha

Diretor Técnico

Matricula - 954592-1

Maceió/AL, 27 de abril de 2022

A autenticidade deste documento pode ser conferida no site https://autentica2.maceio.al.gov.br/AutenticaDocumento, informando o código verificador: TGF408702022 e o Id do documento: 1384397

SIIMM assinatura eletrônica

Documento assinado eletronicamente por JOSE ALEKSANDER PINHEIRO CANUTO, DIRETOR DA DIRETORIA TECNICA - SIMA, matrícula 954592-1 em 27 de abril de 2022 às 12:00:12

Página 19

Bebedouro, n°, CEP 57018-330, Bebedouro, Maceió - AL Tel. 3312-5310, CNPJ 00.734.571/0001-50

Processo	6800.40870.2022 Data de abertura 20/04/2022			
Interessado	LUCIANO JULIO DOS SANTOS			
Assunto	SOL. COLABORAÇÃO TÉCNICA PARA O MESTRADO.			
Local de origem	SIMA / CHEFIA DE GABINETE			
Local de destino	SIMA / DIRETORIA TECNICA			
	•			

DESPACHO

Ciente;

Atendida a solicitação das Fls. 2, encaminhamos os autos para arquivamento.

WESLEY FRANS CHAVES FELISMINO

Chefia de Gabinete - SIMA

Maceió/AL, 28 de abril de 2022

A autenticidade deste documento pode ser conferida no site <u>https://autentica2.maceio.al.gov.br/AutenticaDocumento</u>, informando o código verificador: NGP408702022 e o Id do documento: 1387774

SIIMM assinatura eletrônica

Documento assinado eletronicamente por WESLEY FRANS CHAVES FELISMINO, CHEFE DE GABINETE - SIMA, matrícula 954536-0 em 28 de abril de 2022 às 07:48:53

Página 20

Bebedouro, n°, CEP 57018-330, Bebedouro, Maceió - AL Tel. 3312-5310, CNPJ 00.734.571/0001-50

Processo	6800.40870.2022	6800.40870.2022 Data de abertura 20/04/2022				
Interessado	LUCIANO JULIO DO	LUCIANO JULIO DOS SANTOS				
Assunto	SOL. COLABORAÇÃ	SOL. COLABORAÇÃO TÉCNICA PARA O MESTRADO.				
Local de origem	SIMA / DIRETORIA T	SIMA / DIRETORIA TECNICA				
Local de destino	SIMA / DIRETORIA T	SIMA / DIRETORIA TECNICA				
DESPACHO						

A Diretoria Técnica arquiva o processo ciente do atendimento através dos Termos de Doações de Materiais presente nas páginas 14 e 15.

José Aleksander Pinheiro Canuto Rocha

Diretor Técnico

Matrícula: 954592-1

Maceió/AL, 28 de abril de 2022

A autenticidade deste documento pode ser conferida no site <u>https://autentica2.maceio.al.gov.br/AutenticaDocumento</u>, informando o código verificador: KOT408702022 e o Id do documento: 1391740

Documento assinado eletronicamente por JOSE ALEKSANDER PINHEIRO CANUTO, DIRETOR DA DIRETORIA TECNICA - SIMA, matrícula 954592-1 em 28 de abril de 2022 às 09:52:10

Bebedouro, n°, CEP 57018-330, Bebedouro, Maceió - AL

Tel. 3312-5310, CNPJ 00.734.571/0001-50

Processo	6800.40870.2022 Data de abertura 20/04/2022			
Interessado	LUCIANO JULIO DOS SANTOS			
Assunto	SOL. COLABORAÇÃO TÉCNICA PARA O MESTRADO.			
Local de origem	SIMA / CHEFIA DE GABINETE			

TERMO DE ARQUIVAMENTO PROCESSUAL

Em 28/04/2022, certifico, para os devidos fins, que foi solicitado o arquivamento do processo supra, bem como que a parte interessada foi formalmente notificada, através de correspondência eletrônica (e-mail), expedida automaticamente pelo presente sistema, nos termos do disposto no art. 25 da lei municipal nº 6987 de 11/05/2020, para ciência da integralidade dos atos processuais e eventual apresentação de recurso no prazo legal, sob pena de arquivamento do processo. O arquivamento do presente processo ocorrerá em razão da ausência de manifestação da parte interessada no prazo legal.

FRANCISCA FERREIRA LOPES AUXILIAR - SERVICOS GERAIS 19745-9

A autenticidade deste documento pode ser conferida no site https://autentica2.maceio.al.gov.br/AutenticaDocumento, informando o código verificador: RKM408702022 e o Id do documento: 1395219

Documento assinado eletronicamente por FRANCISCA FERREIRA DO NASCIMENTO, AUXILIAR - SERVICOS GERAIS - SIMA, matrícula 19745-9 em 28 de abril de 2022 às 12:25:56

Sumário

1358291 - CapaProcesso	1
1358292 - PMM Iluminação_Luciano	2
1359174 - DESPACHO	11
1374531 - DESPACHO DT	12
1382863 - termoJuntada-27/04/2022-09:01	13
1382864 - SCAN_20220427_084018995	14
1382865 - SCAN_20220427_085416405	15
1383092 - termoJuntada-27/04/2022-09:16	16
1383093 - PROC LUCIANO JULIO	17
1383481 - Despacho DOE	18
1384397 - DESPACHO DT	19
1387774 - DESPACHO	
1391740 - Despacho DT	21
1395219 - termoArquivamento_6800.40870.2022	22

Apêndice B Termos de cooperação técnica realizado com os moradores

Neste apêndice consta o modelo dos termos de cooperação técnica dos noves moradores que possui um sistema de geração de energia através dos painéis fotovoltaicos que estão ligados na mesma rede de distribuição do logradouro. Os moradores que possui o sistema de Geração Distribuída (GD), eu Luciano Júlio, Audálio Júlio, José Rodrigues, José Lessa, Benedito Rodrigues, Paulo Assunção, Walkiria de Barros e Edinaldo Almeida, confirmaram por meio dos termos, que colabora com projeto de pesquisa do mestrado com objetivo de contribuir para o desenvolvimento tecnológico e científico brasileiro, em particular do estado de Alagoas, na área de Ciência da Computação, na linha de pesquisa em Engenharia de Sistemas Computacionais.

No entanto, os documentos não foram apensados a pesquisa, em função da Lei nº 13.709/2018 - Lei Geral de Proteção de Dados Pessoais, que regula as atividades de tratamento de dados pessoais e que também altera os artigos 7º e 16 do Marco Civil da Internet. Contudo, os documentos originais estão sob a guarda do autor desta pesquisa.

TERMO DE COOPERAÇÃO TÉCNICA ENTRE PESSOAS FÍSICAS

Eu, LUCIANO JÚLIO	, brasileiro, po	ortador da Carteira de Identio	dade nº expedida
pela SSP/AL, inscrito	no CPF sob o n°	, residente e domiciliado r	na R.
, CEP	, Marechal Deodoro	o/AL, portador do e-mail	e do número de
telefone (82)	, e a LUCIANO JÚLIO	, brasileiro	(a), portador (a) da Carteira
de Identidade nº	expedida pela SSP/	AL, inscrito no CPF sob o n°	, residente e
domiciliada na		, CEP , Ma	rechal Deodoro/AL, portador
(a) do e-mail	e do	número de telefone (82)	, resolvem celebrar o
and a state to see a state of a			

presente termo de cooperação, que se regerá pelas seguintes cláusulas:

CLÁUSULA PRIMEIRA – DO OBJETO

1.1. O presente Termo de Cooperação Técnica tem a finalidade de apoiar o projeto de pesquisa do mestrando Luciano Júlio dos Santos na área de Engenharia de Sistemas Computacionais, vinculado ao Instituto de Computação – IC, junto à Universidade Federal de Alagoas – UFAL, conforme apresentado no Anexo 01. O objetivo é realizar o controle para ligar e desligar o disjuntor do circuito de alimentação do inversor solar à rede de distribuição da concessionaria de energia local, por um período de 01 (um) dia, de modo a contribuir para uma coleta de dados na rede de distribuição, os quais contribuirão para a construção da dissertação do Mestrado. Este período poderá ser ressarcido a critério do colaborador pelo valor da capacidade de geração de um dia a ser pago em reais em função do valor do kWh gerado. O valor será pago no dia antecedente ao desligamento ou de forma acordada entre as partes. Sendo exposto no item 3.1 os termos da cooperação.

CLÁUSULA SEGUNDA – DO RESUMO DO ESTUDO

2.1. A pesquisa do mestrado tem como tema o "Monitoramento do desequilíbrio da tensão ocasionada pela injeção de energia solar advinda da geração distribuída na rede de baixa tensão: um estudo através da infraestrutura da iluminação pública no município de Marechal Deodoro", e já se encontra qualificada pela banca examinadora, conforme histórico escolar, no Anexo 02. O projeto utilizará relés de telegestão instalados em luminárias da iluminação pública para monitorar os níveis de tensão e do desequilíbrio da tensão entre as fases, quando ocorre ou não a injeção de energia através de fontes fotovoltaicas, através da aplicação de uma métrica existente adaptada à infraestrutura da iluminação pública. Esse estudo poderá proporcionar aos operadores do sistema de distribuição de energia informações em tempo real referentes às redes de distribuição em baixa tensão, através de um modelo de aquisição de dados de baixo custo viabilizada pela infraestrutura da iluminação pública, e, assim, permitirá o desenvolvimento de políticas públicas com a finalidade de aprimorar a qualidade da energia fornecida aos consumidores. No Anexo 03 consta o resumo do estudo que está em desenvolvimento. Corrobora-se ainda que o currículo Lattes do pesquisador está disponível no Anexo 04, cujo endereço de acesso é http://lattes.cnpq.br/0090210016054468, o qual apresenta a formação acadêmica, formação complementar, vínculos institucionais, áreas de atuação, produções, participações em bancas e orientações, eventos, congressos, exposições e feiras e outras informações relevantes.

CLÁUSULA TERCEIRA – DAS OBRIGAÇÕES DO PROPRIETÁRIO DO IMÓVEL COM GERAÇÃO DE ENERGIA FOTOVOLTAICA

3.1. Compete à Parte que possui o imóvel com geração de energia fotovoltaica:

 a) Facilitar, ao responsável pela pesquisa do mestrado, o acesso ao disjuntor do quadro de proteção do lado da tensão e corrente alternada (C.A.) do inversor de solar, acompanhando-o pessoalmente ou por representante indicado, durante o procedimento de desligamento e religamento deste dispositivo de proteção;

b) Comprometer-se a manter o disjuntor desligado por 24 (vinte quatro) horas, a partir da visita do responsável pela pesquisa do mestrado, no horário das 19:00h às 20:00h até o mesmo horário do dia seguinte, quando ocorrerá nova visita e será realizado o processo de religamento do disjuntor;

c) Comprometer-se a não realizar a cobrança, ao responsável da pesquisa, dos custos referentes ao período em que o sistema de geração fotovoltaico do imóvel não injetará energia em kWh na rede de distribuição, de forma que todos os procedimentos serão executados de forma gratuita com o objetivo de contribuir com a ciência brasileira.

CLÁUSULA QUARTA – DAS OBRIGAÇÕES DO RESPONSÁVEL PELA PESQUISA DO MESTRADO

4.1. Compete à Parte responsável pela pesquisa do mestrado:

a) Executar exclusivamente as manobras de desligamento e religamento do disjuntor do quadro de proteção do lado da tensão e corrente alternada (C.A) do inversor de solar, sob o acompanhamento do responsável do imóvel, ou por representante indicado por ele;

b) Realizar visitas para o desligamento e o religamento do disjuntor, durante o período noturno, entre os horários das 19:00h às 20:00h em dias consecutivos;

c) Informar com antecedência de 72 horas o dia em que serão realizados os procedimentos estabelecidos na cláusula terceira, item 3.1, através de ligação, e-mail ou por WhatsApp.

CLÁUSULA QUINTA - CONFIDENCIALIDADE

5.1. As partes se comprometem, por si, e seus representantes, em manter sigilo e confidencialidade sobre as discussões de temas estratégicos e sobre o conteúdo do projeto, no âmbito deste Termo que deverá ser celebrado. Esta obrigação permanecerá em vigor por 2 (dois) anos após o término deste Termo.

5.1.1. A obrigação de confidencialidade ora estabelecida não se aplica às informações que forem requeridas por autoridades competentes. Neste caso, obrigam-se as partes (i) a informar prontamente um ao outro o recebimento de ordem de autoridade competente para a divulgação; e (ii) a limitar-se a divulgar apenas as informações que forem efetivamente objeto do requerimento.

CLÁUSULA SEXTA – CITAÇÕES DA PESQUISA PARA AS REFERÊNCIAS DO PROJETO

6.1. A exceção do nome do proprietário do imóvel, o responsável pela pesquisa NÃO divulgará nas publicações em revista científica e na dissertação do mestrado qualquer dado pessoal, bem como o endereço da parte que contribuir com a pesquisa do mestrado na formalidade desta da cooperação técnica com base nas cláusulas primeira a e terceira deste termo.

CLÁUSULA SÉTIMA – DA VIGÊNCIA

7.1. O presente Termo de Cooperação entrará em vigor no dia seguinte à assinatura entre as partes e terá duração de 8 (meses) meses para a consecução de seu objeto, podendo ser prorrogado, por acordo das partes, mediante lavratura de Termo Aditivo.

CLÁUSULA OITIVA – DA EXTINÇÃO, RESCISÃO E DENÚNCIA

8.1. O presente acordo extinguir-se-á pelo decurso do prazo de vigência, após a realização dos serviços, podendo ainda ser desfeito por mútuo consenso, sendo mantida apenas a cláusula quinta de confidencialidade;

8.2. Este Termo também poderá ser extinto pela superveniência de norma legal que o torne formal ou materialmente inexequível;

8.3 Este Termo poderá ser denunciado ou rescindido por qualquer das partes, mediante comunicação formal, com antecedência mínima de 30 (trinta) dias.

CLÁUSULA NONA – RESULTADOS ESPERADOS

9. O avanço do conhecimento científico e/ou tecnológico no tema relacionado, corroborará para formação de recursos humanos de alto nível que contribuirá para o desenvolvimento científico e tecnológico do Estado de Alagoas, e do Brasil. Sendo fornecido por e-mail ou por WhatsApp um link para acessar a pesquisa após a conclusão do mestrado.

Marechal Deodoro/AL, 26 de março de 2022.

Luciano Júlio dos Santos Mestrando e responsável pela pesquisa

Responsável pelo imóvel que possui a geração através do sistema fotovoltaico

Pessoa indicada pelo responsável do imóvel que possui a geração através do sistema fotovoltaico

Testemunha

Testemunha

Apêndice C Cooperação técnica com P.M. de Marechal Deodoro

Neste apêndice consta o pedido referente a instalação de seis luminárias completas que foram instaladas na rede de distribuição da iluminação pública, cujo resumo dos materiais doados ao município são: braço de 2 metros galvanizado a fogo; parafusos, porca e arruelas; reatores com potencia de 100 W e fator de potência de 0,92; relés fotoelétrico com contatos para 1.000 VA, luminárias do tipo fechada com material a base de polietileno do fabricante *Schreder*, lâmpadas do tipo vapor de sódio de alta pressão com potência de 100 W do fabricante Avant; e cabos pp com duas vias para ligação interna da luminária a rede de distribuição.

Em resposta ao requerimento o Secretário de Iluminação o Sr. Thélio Barreto informa que mostrou-se desposto a colabora com o estudos, visando não somente a importância em somar com o processo educacional, mas também visando futuras melhorias para o município de Marechal Deodoro. Colocando a disposição equipe técnica necessária dentro das disponibilidades do setor.

No entanto, os documentos não foram apensados por completo a pesquisa, em função da Lei nº 13.709/2018 - Lei Geral de Proteção de Dados Pessoais, que regula as atividades de tratamento de dados pessoais e que também altera os artigos 7º e 16 do Marco Civil da Internet. Contudo, os documentos originais estão sob a guarda do autor desta pesquisa.

Requerimento nº 02/2022

A Sua Senhoria **THÉLIO BARRETO** Secretário de Iluminação Secretaria Municipal de Iluminação Pública Rua Dr. Taváres Bastos S/N, Centro CEP 57160-000 – Marechal Deodoro – AL

Senhor Secretário,

Eu, Luciano Júlio dos Santos, destaco a importância da vida pública ao longo do meu processo de qualificação. Possuo graduação em engenharia elétrica, cujo trabalho de conclusão de curso foi a teoria e prática referente à "Automação Industrial, o Braço Robótico" no ano de 2002, e devido ao caráter inovador para a época, foi exibido na TV Pajuçara, através do programa Informativo Educacional Jayme de Altavila. Complementei meus estudos com uma Pós-Graduação em Engenharia Ambiental, cujo trabalho de conclusão de curso foi a "Análise dos Impactos Ambientais na Iluminação Pública de Maceió", advindo da necessidade de condicionar e descartar adequadamente os resíduos sólidos gerados pela iluminação pública da capital, conforme consta no meu Currículo Lattes no Anexo 01, cujo endereço de acesso é http://lattes.cnpq.br/0090210016054468, o qual apresenta a minha formação acadêmica, formação complementar, vínculos institucionais, áreas de atuação, produções, participações em bancas e orientações, eventos, congressos, exposições e feiras e outras informações relevantes.

Atualmente estou matriculado no curso de Mestrado junto à Universidade Federal de Alagoas – UFAL, vinculado ao Instituto de Computação – IC na área de informática, em Engenharia de Sistemas Computacionais, conforme Anexo 02. A dissertação, com o tema "Monitoramento do desequilíbrio da tensão ocasionada pela injeção de energia solar advinda da geração distribuída na rede de baixa tensão: um estudo através da infraestrutura da iluminação pública no município de Marechal Deodoro", já foi qualificada pela banca examinadora, conforme histórico escolar, no Anexo 03. No Anexo 04 consta o resumo do estudo que está em desenvolvimento.

O projeto utilizará seis reles de telegestão desenvolvidos por mim, que serão instalados nas seis luminárias completas doadas por mim a este município de Marechal Deodoro, constantes em relação no Anexo 05. As luminárias da iluminação pública serão utilizadas como infraestrutura para os seis relés de telegestão que realizarão o monitoramento dos níveis de tensão e do desequilíbrio da tensão entre as fases, quando ocorre ou não a injeção de energia através de fontes fotovoltaicas. Para tanto, será empregada uma das métricas existentes e adaptada por mim à utilização da infraestrutura da iluminação pública. Esse estudo poderá proporcionar aos operadores do sistema de distribuição de energia informações em tempo real referentes às redes de distribuição em baixa tensão, através de um modelo de aquisição de dados de baixo custo viabilizada pela infraestrutura da iluminação pública, que, por sua vez, poderá gerar uma nova fonte de receita para os órgãos gestores da iluminação pública mediante a prestação de um serviço.

Assinado de forma digital LUCIANO JULIO DOS por LUCIANO JULIO DOS SANTOS:

DS:

Por essa razão, diante da complexidade do trabalho a ser desenvolvido junto ao Instituto de Computação – IC da UFAL, solicito ao senhor a cooperação técnica para a substituição de seis luminárias na Rua Afrânio Lopes, cuja localização constam no Anexo 06. A substituição dos equipamentos da iluminação pública (luminárias completas) será solicitada através de ofício com o dia e o horário especificados com antecedência mínima de 7 (sete) dias, e ocorrerá em comum acordo, para viabilizar o acompanhamento da substituição nos locais em especifico e orientar a equipe sobre os procedimentos elétricos para instalação e para a conexão dos pontos de iluminação junto à rede de distribuição em baixa tensão.

As atividades a serem desenvolvidas em função da colaboração técnica firmada serão acompanhadas por mim e por um responsável técnico da Prefeitura de Marechal Deodoro, designado pelo Secretário de Iluminação, e estão relacionadas a seguir:

- a) Substituição de 6 (seis) luminárias existentes do padrão l1 com braço de 1 (um) metro por luminária com braço de 2 metros de projeção, cuja lâmpada é do tipo vapor de sódio de 100W;
- b) Substituição das luminárias descritas na localização indicada no Anexo 6, cuja ligação da fase e neutro do circuito elétrico da luminária a rede de distribuição deverá ser conforme a letra dentro dos balões expostos no mesmo anexo;
- c) Instalação dos relés de telegestão do estudo, os quais possuem a mesma funcionalidade dos relés convencionais utilizados na iluminação pública, acrescidos de novas tecnologias, para realizar o monitoramento da tensão na rede de distribuição, após a substituição das luminárias nos postes da rede de distribuição;
- d) Manutenção por solicitação em caso de ser identificado algum defeito nos equipamentos, exceto dos relés de telegestão, após a instalação correspondente ao período de teste, para viabilizar a continuidade da pesquisa;
- e) Substituição dos relés de telegestão do estudo por relés (fotoelétricos) convencionais do tipo NF, utilizados na iluminação pública que serão fornecidos por mim, ao término do período de estudo, que será em até 4 (quatro) meses, quando será comunicado à Secretaria de Iluminação para que realize os procedimentos necessários.

Certos de sua atenção, coloco-me à disposição para esclarecimentos adicionais e aguardo posicionamento desta Secretária de Iluminação quanto à confirmação desta colaboração técnica, e caso confirmada será destacado no estudo a participação desta Secretária, bem como no artigo de publicação científica.

Atenciosamente,

Marechal Deodoro, 23 de maio de 2022.

Euciano-Holio dos Santos Engenheiro Eletricista Mestrando em Engenharia de Sistema Computacionais, IC-UFAL

	RELAÇÃO DOS MATERIAL DESTINADO A DOAÇÃO				
Itens	Descrição	Quantidade			
01	Luminária usada Opalo para lâmpada de 100W – Fabricante Schreder	06 un			
02	Braço de ferro galvanizado a fogo usado com projeção de 2 metros	06 un			
03	Reator para uso interno para potência de 100W, capacitor e ignitor, usados.	06 un			
04	Lâmpada do tipo vapor de sódio de alta pressão de 100W, usada.	06 un			
05	Relé foto elétrico do tipo NF, usado.	06 un			
06	Parafuso de aço galvanizado de 12" com porca e arruela quadrada, usado.	06 un			
07	Cabo PPP com seção de 2,5mm ² para conexão da luminária a rede de distribuição.	15 metros			

Anexo 05 - Relação dos materiais para doação

PREFEITURA MUNICIPAL DE MARECHAL DEODORO Secretaria de Iluminação Pública

Marechal Deodoro, 02 de agosto de 2022.

Assunto: Termo de aceite para contribuição do estudo através da infraestrutura da iluminação pública do município.

Prezado Sr. Luciano Júlio dos Santos,

Vimos, através do presente, diante da sua solicitação informar que a Prefeitura de Marechal Deodoro estará disponível para colaborar em seu estudo para conclusão de curso, visando não somente a importância em somar com o processo educacional, mas também visando futuras melhorias para o município. Dispomos também da equipe técnica necessária dentro das disponibilidades do setor. Certo que faremos uma parceria de sucesso, no aguardo para agendarmos o início da implantação.

Apêndice D Contrato firmado com a Hostinger

Neste apêndice consta o contrato disponível em: https://www.hostinger.com.br/ $_{>}$ contrato-de-hospedagem, Acessado em: 01 de agosto de 2022 e a tela inicial do painel de controle com a descrição básica dos serviços. A empresa Hostinger foi responsável em fornecer um servidor através de um contrato que dentre os serviços acordados junto a empresa constam: disponibilidade para o gerenciamento de bancos de dados no formato *MySQL* com suporte a linguagem *PHP* 5.0 ou superior, *SSL*, Proteção *hotlink* e Gerenciamento de *IP* (*Internet Protocol*).

A base de comunicação dos dados é realizada através do Protocolo *HTTP* no qual permite fornecer acesso aos dados que estão hospedados em um servidor na nuvem com capacidade de gerar conteúdo dinâmico, a qual permite a troca de dados entre o servidor e os relés de telegestão, e que pode ser acessado em qualquer navegador que execute os códigos *HTML*, *CSS* e *JavaScript*.

No entanto, os documentos não foram apensados por completo a pesquisa, em função da Lei nº 13.709/2018 - Lei Geral de Proteção de Dados Pessoais, que regula as atividades de tratamento de dados pessoais e que também altera os artigos 7º e 16 do Marco Civil da Internet. Contudo, os documentos originais estão sob a guarda do autor desta pesquisa.

				HBR	/ 2	2022-03-3
					A fatura foi p	aga em 2022-03
Com	prador:		Vendeo	lor:		
Empr CNPJ Nome Ender País:	esa: : : Luciano Júlio dos Santos reço: esta de la contecta de la contecta Brazil	o, AL, 57160-000	Empresa Endereço Florianóp País: Braz CNPJ: 20 Telefone:	: Hostinger Brasil Hos :: Rua Fernando Mac olis, SC, 88.010–510 il :158.286/0001–86	spedagem de Sites hado, 73, Søla 203	LTDA C Bairro Centro,
#	Item	Quantidade (Período)	Preço	Desconto	Subtotal
1	Hospedagem Premium	12 meses		R\$419.88	R\$228.00	R\$191.88
2	Ativação do Certificado SSL	1. 1.		R\$65.99	R\$65.99	R\$0.00

Total

R\$191.88

https://hpanel.hostinger.com/billing/view-invoice/36556372

/2022 09:10	Inicio hPanel				
H		Ø		(9 0)	-
Olá, Luc	siano Júlio			Q Pesquisar	
Luci Ganhe	'e com a gente! dinheiro recomendando a Hostinger para seus amigos, familiares e colegas.			Salba mais	
zyro	Construtor de Sites Zyro Crie um site lindo em minutos			Obter	
60	Resgate seu domínio grátis! Resgate seu domínio grátis a qualquer momento dada a contratação do plano Hospe até o seu vencimento.	idagem Prem	ium,	Rengutar do	minia
Hospe	dagem				
	Premium Shared Hosting Expira em 2023-03-30			Gerd	malar
Domír	io				
ww	Expira em 2022-11-17			Gers	mular
www	Expira em 2022-11-18			Bari	milar
Email					
	com.br			Deri	inic (éi
	com.br			Gur	melar

https://hpanel.hostinger.com

Apêndice E Contrato firmado com a Meta Telecom

Neste apêndice consta o contrato da pessoa física realizado com a empresa Meta Telecom Telecomunicações Ltda, a qual fornece serviços de conectividade gerenciada para telemetria dos sistema de telegestão e Internet das Coisas. O contrato descreve a prestação de serviço para um plano M2M, cuja descrição, quantidade e preço unitário por produto e serviço é: chip M2M utilizando a operadora Claro com franquia de 100 MB; quantidade de 7 (sete) chips; valor por chip R\$ 11,50, e; valor de R\$80,50 por mês para prestação dos serviço. Sendo utilizados apenas seis chips SIM Card do tipo M2M para instalação nos seis Relés de Telegestão (RT). A figura neste apêndice apresenta os sete chips adquiridos e o modelo do relé de telegestão com o adesivo a ser instalado na rede de distribuição.

No entanto, os documentos não foram apensados por completo a pesquisa, em função da Lei nº 13.709/2018 - Lei Geral de Proteção de Dados Pessoais, que regula as atividades de tratamento de dados pessoais e que também altera os artigos 7º e 16 do Marco Civil da Internet. Contudo, os documentos originais estão sob a guarda do autor desta pesquisa.

Luciano Júlio dos Santos

UCIANO JULIO DOS SANTOS	Luciano Júlio dos Santos	Referência: 2022
Rua	lucianojulios@	Orçamento criado em: 24 de Agosto
	+55-82-9	de 2022
7160-000 Marechal Deodoro -		Orçamento expira em: 31 de Agosto
AL.		de 2022
		Orçamento criado por: Djenifer
		Rodrigues
		@metatelecom.com.br
		+55-19-9
Comentários de Djenifer Rodr	igues	
Comentários de Djenifer Rodr Modalidade do envio: Próxima fatura	igues a - Aprox. R\$ 24,35	
Comentários de Djenifer Rodr Modalidade do envio: Próxima fatura Taxa de cancelamento (por simcard) Carência de estoque (total) : 30 dias	igues a - Aprox. R\$ 24,35 : R\$10,00	

6

Produtos e serviços

ltem e descrição	Quantidade	Preço unitário R\$11,50	Total R\$80,50
M2M CLARO 100MB	7		

Subtotais

Subtotal único	R\$80,50

Total R\$80,50

Termos de compra

TERMOS E CONDIÇÕES PARA A PRESTAÇÃO DE SERVIÇOS - PLANOS M2M E BANDA LARGA

Conforme disposto no Aceite Comercial em anexo, as partes, **CONTRATANTE e CONTRATADA**, doravante denominadas individualmente como "Parte" ou em conjunto como "Partes", na melhor forma de direito, resolvem firmar o presente **CONTRATO PARTICULAR DE PRESTAÇÃO DE SERVIÇOS**, doravante designado "Contrato", nos termos das cláusulas seguintes, que mutuamente outorgam, aceitam e se obrigam a cumprir, por si e seus sucessores:

CLÁUSULA PRIMEIRA - DO OBJETO

1. O objeto do presento Contrato é a prestação e disponibilização, pela **CONTRATADA à CONTRATANTE**, de Serviços de Gestão e Planos M2M e banda larga móvel a serem utilizados através de SIMCARDS das operadoras parceiras de Telecom, para utilização em sistemas de monitoramento, rastreamento, telemetria diversas e/ou equipamentos de aplicações IoT e/ou M2M.

CLÁUSULA SEGUNDA - DAS OBRIGAÇÕES

2. Ficam as partes responsáveis por cumprir as respectivas obrigações:

2.1 São obrigações da **CONTRATANTE:**

2.1.1 Fornecer à CONTRATADA as informações e especificações indispensáveis à realização do Serviço.

2.1.2 Responsabilizar-se por quaisquer indenizações em decorrência de danos ou prejuízos causados à CONTRATADA ou a

terceiros, por ação ou omissão sua ou de terceiros a ela relacionados, bem como pela inobservância ou infração de disposições

legais, e as prescrições contidas no presente Contrato e nos demais documentos aplicáveis. 2.1.3 Realizar pontualmente o pagamento das faturas mensais de prestação de serviço.

2.2 São obrigações da **CONTRATADA**:

2.2.1 Assistência em horário comercial, junto às operadoras de Telecom, em relação a possíveis ocorrências, informando à

CONTRATADA as causas e as providências tomadas no prazo informado.

2.2.1 Fornecer acesso à Plataforma de Gestão de SIMCARDS a CONTRATANTE.

CLÁUSULA TERCEIRA - DO SIGILO

3.1 À **CONTRATANTE** e aos seus empregados/prepostos é vedado, sob as penas da lei, prestar informação confidencial a terceiros sobre a natureza ou o andamento do ora contratado, bem como divulgar, através de qualquer meio de comunicação, dados e informes relativos à tecnologia adotada e à documentação que por acaso seus prepostos tenham conhecimento.

3.2 Ambas as partes se comprometem a guardar sigilo sobre toda e qualquer informação obtida em decorrência desse contrato, que já não seja de domínio público, salvo com expressa autorização da parte contrária, por escrito, inclusive após o encerramento desse contrato.

CLÁUSULA QUARTA - DOS PLANOS CONTRATADOS

4. A CONTRATANTE adquirirá Planos de dados M2M e banda larga disponibilizados pela CONTRATADA que incluem determinadas quantidades de Megabytes para utilização dentro do ciclo vigente de faturamento com a opção de planos INDIVIDUAL E COMPARTILHADO.

4.1 Relativos aos planos com franquia INDIVIDUAL:

4.1.1 Quando atingida a franquia/plano o tráfego será bloqueado até o início do próximo ciclo.

4.1.2 O volume de dados (Megabytes) incluído no Plano INDIVIDUAL contratado e não utilizado no respectivo ciclo vigente, não é acumulado para utilização no período subsequente e não pode ser compensado, transferido ou reaproveitado em outro pacote de dados e/ou plano de serviço.

4.1.3 A **CONTRATANTE** poderá solicitar a liberação do SIMCARD que consumiu 100% da franquia/plano INDIVIDUAL ainda dentro do ciclo vigente de seu bloqueio, por meio da plataforma de gerenciamento ou pela equipe de suporte, ocorrendo o pagamento do respectivo aumento da mensalidade, o upgrade do plano.

4.2 Relativos aos planos com franquia COMPARTILHADA:

4.2.1 As franquias COMPARTILHADAS não possuem proteção contra excedentes podendo gerar cobranças de PACOTE DE DADOS ADICIONAIS conforme o consumo.

4.2.2 O volume de dados (Megabytes) incluído no Plano COMPARTILHADO contratado pode ser compensado em outro pacote de dados do mesmo plano de serviço e da mesma operadora. Essa movimentação ocorre de forma automática conforme necessidades de consumo de cada SIMCARD.

4.2.3 Os Megabytes não utilizados no respectivo ciclo vigente, não é acumulado para utilização no período subsequente.

4.3 O ciclo de faturamento **inicia no vigésimo-primeiro dia do mês e encerrando no vigésimo dia do mês seguinte**, podendo ocorrer de forma proporcional (pro-rata). A cobrança do valor correspondente ao serviço contratado ocorrerá através de fatura

mensal, enviada ao cliente por e-mail, sempre nos primeiros cinco dias do mês. Em caso de não recebimento da fatura mensal, o cliente deverá entrar em contato solicitando, para que possa realizar o pagamento na data acordada.

4.4 Os valores dos serviços contratados estão descritos nos ANEXOS deste contrato.

4.5 As mensalidades poderão ser atualizadas a cada período de 12 meses, tendo por base a variação do IGP-M do período. Poderá ainda haver atualização caso, por parte da operadora dos SIMCARDS, ocorra aumento nas mensalidades.

4.6 Novas inclusões de SIMCARD poderão ser feitas neste contrato, mediante acordo comercial, em forma de ANEXOS.

CLÁUSULA QUINTA - DO PAGAMENTO DE MENSALIDADES

5.1 A **CONTRATANTE** fica ciente que a falta de pagamento relativo aos serviços ora contratados, até a data do seu vencimento, implicará na aplicação de multa moratória no valor de 2% (dois por cento) sobre a quantia em atraso, juros de 1% (um por cento) ao mês e correção monetária pelos índices do IGMP-FGV.

5.2 O atraso no pagamento de qualquer parcela, por prazo superior a 15 (quinze) dias, implicará na suspensão dos serviços até que o pagamento seja regularizado, indisponibilizando o acesso a Plataforma de Gestão e o bloqueio dos SIMCARDS contratados, como também podendo inscrever o débito junto a instituições de proteção ao crédito.

CLÁUSULA SEXTA - DO PRAZO DE VIGÊNCIA E RESCISÃO

6. O presente contrato será celebrado pelo prazo de 12 meses, renovando-se automaticamente por iguais períodos, desde que não ocorra manifestação escrita em contrário, com antecedência mínima de 30 dias do fim do próximo ciclo de faturamento.

CLÁUSULA SÉTIMA - DO CASO FORTUITO OU FORÇA MAIOR

7.1 Constatada a ocorrência de caso fortuito ou de força maior, ficarão suspensas, enquanto essa perdurar, as obrigações que as PARTES ficarem impedidas de cumprir.

7.2 A **CONTRATANTE** tem ciência que o serviço ora contratado poderá ser afetado ou temporariamente interrompido por razões técnicas, incluindo a efetivação de reparos, manutenção, substituição de equipamentos e problemas similares relacionados com as redes de telecomunicações e informática. Nestas hipóteses de interrupção do serviço também poderá ocorrer a interrupção dos controles oferecidos através da Plataforma de Gestão.

CLÁUSULA OITAVA - DAS DISPOSIÇÕES GERAIS

8.1 Não será responsabilidade da **CONTRATADA**, a deficiência ou interrupção de sinal dos SIMCARDS, **quando comprovada falha por parte da operadora**, sendo que, eventuais danos, perdas ou transtornos ocasionados à **CONTRATANTE**, deverão ser reivindicados os direitos diretamente junto a operadora respectiva.

8.2 A CONTRATANTE fica ciente que a eficiência dos SIMCARDS e seus efetivos sinais fica vinculada a existência de sinal (cobertura) da operadora, não tendo eficácia ou funcionamento nos locais onde não exista o referido sinal ou mesmo seja deficiente, também, que a utilização do SIMCARD é restrita ao território nacional, sendo vedada sua utilização fora do país.
8.3 A CONTRATADA é meramente intermediadora da relação entre a operadora de telefonia e a CONTRATANTE. Sua responsabilidade é a de gestão dessas relações, sendo, portanto, sua responsabilidade de meio e não de fim.

CLÁUSULA NONA - DO FORO

9. As **PARTES** elegem de comum acordo o Foro da Comarca de Piracicaba/SP como único para dirimir dúvidas oriunda do presente instrumento, com renúncia de qualquer outro.

ANEXO - DO PERÍDO DE TESTE CONCEDIDO VIA SUBSÍDIO

I - O CONTRATANTE terá 30 (trinta) dias corridos para avaliação da linha sem custo de cobrança de mensalidade referente a franquia de teste a contar da data efetiva de entrega dos simcards. Caso que, deve estar ciente que, após este prazo, iniciará a cobrança pro-rata da mensalidade proporcional ao tempo de uso.

II - Em caso de devolução/cancelamento: Identificando um possível defeito e/ou mau funcionamento dos simcards, o CONTRATANTE deverá abrir um chamado técnico nos canais oficiais de Suporte da CONTRATADA e, caso seja constatado pela CONTRATADA efetivamente que há defeito ou mau funcionamento dos simcards, após, com a autorização das partes contratantes, deverá ser formalizado através e-mail: contato@metatelecom.com.br o cancelamento e devolução que será sem custos dos simcards. Mas, deve o CONTRATANTE estar ciente que, sem este procedimento acima, será cobrado a taxa de cancelamento dos simcards.

Dúvidas? Entre em contato comigo

Djenifer Rodrigues @metatelecom.com.br +55-19-99

Telecom Brasil

documento por meio do IP 192.195.57.228 localizado em Maceió - Alagoas - Brazil.

documento por meio do IP 192.195.57.228 localizado em Maceió - Alagoas - Brazil.

Luciano Júlio dos Santos (E-mail: lucianojulios

12:17:00

12:23:21

24 ago 2022

Escaneie a imagem para verificar a autenticidade do documento Hash SHA256 do PDF original #9ca71f72275a3a4b9664e589f456fd2eee35afea285a308a19e4718bbdaed96b https://valida.ae/ee81d2e1ca7e08da24a4e79cdf19eccbb788c558db8620e33

) assinou este

META TELECOM GESTORA DE DADOS LTDA https://metatelecom.com.br/ CNPJ: 06.021.578/0001-00 | Inscrição Estadual: 206.767.494.118 | Inscrição Municipal: 4AK7704 ALAMEDA RIO NEGRO, 1030 - ALPHAVILLE CENTRO INDUSTRIAL E EMPRESARIAL/ALPHAV Barueri - SP - CEP: 06454-000 Telefone: (19) 9 Recibo de Prestação de Serviço nº 000000042 Emissão: Barueri (SP), 27 de dezembro de 2022. Cliente: LUCIANO JULIO DOS SANTOS CPF Objeto: Descrição Valor Total Simcard Conectividade - Gestão e suporte a conectividade 80,50 Total Bruto Descontos Total Líquido 80,50 0,00 80,50 Vencimento: dia 10/01/2023 no valor de R\$ 80,50 **Observações:**

Página 1 de 1

Fotos dos SIM Card adquiridos através do contrato com a empresa Meta Telecom para serem instalados nos relés de telegestão que utilizaram a infraestrutura da iluminação pública para coleta d criou este os dados.

Fonte: Autor

Apêndice F Resumo do desenvolvimento dos relés de telegestão

Neste apêndice consta algumas etapas de forma resumida realizadas para o desenvolvimento dos relés de telegestão por este autor, cuja aplicação será exclusivamente para validar a métrica a ser aplicada no Método Cigré (IEEE 1159, 2019) como proposta de monitoramento do Desequilíbrio da Tensão (DT) utilizando a Infraestrutura da Iluminação Pública (IIPu).

RELATÓRIO RESUMIDO DAS ATIVIDADES DE DESENVOLVIMENTO DO RELÉ DE TELEGESTÃO

O resumo foi dividido em cinco etapas descrevendo por fotos desde o processo de modelagem 3D para construção da caixa que condiciona o circuito eletrônico do relé de telegestão, do desenvolvimento da printed circuit boards (PCB) que foi fabricado pela JLCPCB e da solda dos componentes realizado por este autor:

1º ETAPA – Desenhos realizado através da ferramenta 3D do AutoCAD para modelagem da caixa do circuito do relé de telegestão. A Figura 01 apresenta uma perspectiva da caixa com uma vista superior e uma vista inferior com terminais elétricos. A Figura 02 apresenta as perspectivas da base da caixa e a segunda imagem da perspectiva da tampa da caixa. Por fim, a Figura 03 é uma perspectiva da peça desenvolvida para suporte da antena do GPS e do GPRS a ser instalada no interior da caixa do relé de telegestão.

com vista superior e inferior com os terminais da base e da tampa da caixa. elétricos.

FIGURA 03 - Perspectiva superior e inferior do suporte da antena do GPS e GPRS instalado no interior da caixa de passagem.

2º ETAPA – As Figuras 04, 05, 06, 07, 08 e 09, apresentam a tampa e a base da caixa do relé, incluindo o suporte das antenas do GPS e do GPRS. A ferramenta Ultimaker Cura foi utilizada para gerar os arquivos de impressão 3D a serem utilizados na impressora Ender 3 Pro.

FIGURA 04 – Visualização da tampa da caixa para impressão na impressora Ender 3 Pro.

FIGURA 05 – Visualização da tampa da caixa a ser impressa com suportes quando realizada através da impressora Ender 3 Pro.

FIGURA 06 – Visualização da base da caixa para impressão na impressora Ender 3 Pro.

FIGURA 07 – Visualização da base da caixa do relé de telegestão quando realizada através da impressora Ender 3 Pro.

FIGURA 08 – Visualização do suporte das antenas do GPS e GPRS a ser instalado na caixa do relé de telegestão para impressão na impressora Ender 3 Pro.

FIGURA 09 – Visualização do suporte das antenas do GPS e GPRS quando realizada através da impressora Ender 3 Pro.

3º ETAPA – As Figuras 10, 11, 12, 13 e 14, apresentam as vistas da tampa e da base da caixa do circuito eletrônico do relé de telegestão, e do suporte das antenas do GPS e GPRS após a impressão realizada através da impressora Ender 3 Pro:

FIGURA 10 – Visualização externa da tampa da caixa após a impressão realizada através da impressora Ender 3 Pro. O adesivo indicando que o equipamento foi utilizando para pesquisa de mestrado junto a universidade, no qual foi colocado posteriormente.

FIGURA 11 – Visualização interna da tampa da caixa após a impressão realizada através da impressora Ender 3 Pro. Os pinos dourados são utilizados para fixar a PCB através de parafusos a estrutura.

FIGURA 12 – Visualização interna da base da caixa após a impressão realizada através da impressora Ender 3 Pro com alguns componentes elétricos e eletrônicos já instalados.

FIGURA 13 – Visualização inferior da base da caixa após a impressão realizada através da impressora Ender 3 Pro com alguns componentes e terminais elétricos instalados.

FIGURA 14 - Perspectiva do suporte da antena do GPS e GPRS instalado no interior da caixa de passagem.

4º ETAPA – A Figura 15 apresenta um circuito PCB desenvolvido através da plataforma on-line EasyEDA para validar a métrica, através da infraestrutura da iluminação pública.

FIGURA 15 – Vista perspectiva do Circuito PCB do relé de telegestão desenvolvido para validação da métrica.

5º ETAPA – A Figura 16 apresenta a montagem dos componentes eletrônicos no PCB desenvolvido através da plataforma on-line EasyEDA para a seguir realizar os testes em laboratório para posterior aplicação em campo finde a validar a métrica posposta.

FIGURAS 16 – Resultado final das etapas com a conclusão da montagem dos relés de telegestão.

Apêndice G Relatório fotográfico simples das atividades

Neste apêndice consta um relatório fotográfico simples de forma resumida que demostra as etapas de testes dos relés de telegestão, apresenta o modelo do analisador de energia utilizado para validar os valores da métrica, mostra os pontos de iluminação que foram substituídos conforme necessidade do estudo, os quais são do tipo vapor de sódio, bem como, o seu funcionamento durante o período noturno, expõe a instalação do analisador de energia na rede de distribuição, e por fim, apresenta a plataforma WEB desenvolvida por este autor para controle, monitoramento e gestão dos pontos da iluminação pública (IPu).

RELATÓRIO FOTOGRÁFICO SIMPLES DAS ATIVIDADES DE TESTES DOS RELÉS DE TELEGESTÃO NAS LUMINÁRIAS, JUNTO COM O ANALISADOR DE ENERGIA E SUAS INSTALAÇÕES NA REDE DE DISTRIBUIÇÃO

Este resumo fotográfico tem como objetivo expor os procedimentos de testes dos relés de telegestão desenvolvendo por este autor, apresentar o analisador de energia utilizado no estudo e, por fim, mostrar as etapas de instalação e funcionamento na rede de distribuição.

FIGURA 01 - Perspectiva das luminárias com os relés de telegestão instalados acima.

FIGURA 02 – Testes individuais das luminárias acionadas de forma remota pelos relés de telegestão.

FIGURA 03 – Analisador de energia utilizado para realizar o monitoramento das tensões na rede de distribuição, bem como para calibrar um dos relés, assim como para verificar os erros de medição de todos os relés com relação a este analisador.

FIGURA 04 – Luminárias com os relés de telegestão ligadas no mesmo ponto de energia e na mesma fase do analisador de energia modelo PowerNET P-600 G4 do fabricante IMS.

FIGURA 05 – Substituição das luminárias na rede de distribuição conforme proposta do estudo. Imagem do segundo ponto de iluminação ligado a fase B.

FIGURA 06 – Substituição das luminárias na rede de distribuição conforme proposta do estudo. Imagem do quinto ponto de iluminação ligado a fase B. (Conexão realizada por conector do tipo cunha para evitar folga da ligação dos cabos a rede de distribuição.

na rede de distribuição ligada a fase A e instalação do analisador de energia modelo PowerNET P-600 G4 do fabricante IMS, conforme proposta do estudo.

FIGURA 07 – Substituição da quarta luminária FIGURA 08 – Imagem ampliada da instalação do analisador de energia modelo PowerNET P-600 G4 do fabricante IMS, conforme proposta do estudo.

FIGURA 09 - Instalação do analisador de energia no poste 07, aonde está instalado o 4 relé de telegestão da iluminação pública, no qual foi aplicada a métrica.

FIGURA 10 – Imagem do primeiro ponto de iluminação ligado a fase A.

FIGURA 11 – Imagem do segundo ponto de iluminação ligado a fase B e o próximo ponto de iluminação ligado a fase C.

FIGURA 12 – Imagem do quinto ponto de iluminação ligado a fase B e do próximo ponto de iluminação ligado a fase C..

FIGURA 13 – Medição realizada por trena com objetivo de verificar a distância entre os pontos de iluminação do estudo.

FIGURA 14 – Imagem dos três primeiros pontos de iluminação com lâmpadas do tipo vapor de sódio, ligado respectivamente nas fases A, B e C e ao fundo é possível identificar os últimos três pontos de iluminação.

FIGURA 15 – Imagem dos três últimos pontos de iluminação com lâmpadas do tipo vapor de sódio, ligado respectivamente nas fases A, B e C.

FIGURA 16 – Plataforma WEB desenvolvida por este autor para controle, monitoramento e gestão para iluminação pública.

Anexo A Tabela 9

Na tabela 9 as colunas [RL 1 (V)] até [(RL 6 (V)] exibem os valores das tensões coletadas pelos réles de telegestão, na sequência é exposto a coluna [Analisador (V)] os valores das tensões coletadas pelo analisador de energia, e posteriormente nas colunas [DF RL1 (V)] até [DF RL6 (V)] são expostos os valores da diferença da tensão dos relés em relação aos do analisador de energia. Todas as leituras de tensão dos equipamentos foram realizadas em um ambiente controlado pelo autor.

N°	RL 1 (V)	RL 2 (V)	RL 3 (V)	RL 4 (V)	RL 5 (V)	RL 6 (V)A	Analisador (V	7) Tempo (RL) (AE)	DF RL1 (V)	DF RL2 (V)	DF RL3 (V)	DF RL4 (V)	DF RL5 (V)	DF RL6 (V)
1	222,728	222,617	222,261	221,056	222,231	222,462	220,620	24/11/2022 00:40:00	2,108	1,997	1,641	0,436	1,611	1,842
2	222,121	222,163	221,806	220,337	221,947	221,994	220,060	24/11/2022 00:50:00	2,061	2,103	1,746	0,277	1,887	1,934
3	226,084	225,965	225,639	224,228	225,820	225,855	223,710	24/11/2022 01:00:00	2,374	2,255	1,929	0,518	2,110	2,145
4	226,774	226,659	226,292	224,862	226,469	226,507	224,470	24/11/2022 01:10:00	2,304	2,189	1,822	0,392	1,999	2,037
5	226,754	226,741	226,254	224,945	226,568	226,644	224,770	24/11/2022 01:20:00	1,984	1,971	1,484	0,175	1,798	1,874
6	221,733	221,570	221,203	219,818	221,462	221,424	219,740	24/11/2022 01:30:00	1,993	1,830	1,463	0,078	1,722	1,684
7	223,420	223,334	222,941	221,605	223,241	223,230	221,490	24/11/2022 01:40:00	1,930	1,844	1,451	0,115	1,751	1,740
8	222,799	222,602	222,227	220,881	222,544	222,523	220,820	24/11/2022 01:50:00	1,979	1,782	1,407	0,061	1,724	1,703
9	222,051	221,931	221,509	220,204	221,788	221,781	220,050	24/11/2022 02:00:00	2,001	1,881	1,459	0,154	1,738	1,731
10	222,380	222,289	221,642	220,530	221,951	222,174	220,440	24/11/2022 02:10:00	1,940	1,849	1,202	0,090	1,511	1,734
11	223,454	223,286	223,023	221,602	223,345	223,186	221,430	24/11/2022 02:20:00	2,024	1,856	1,593	0,172	1,915	1,756
12	223,370	223,293	222,871	221,441	223,147	223,080	221,390	24/11/2022 02:30:00	1,980	1,903	1,481	0,051	1,757	1,690
13	222,218	221,988	221,574	220,229	221,915	221,863	220,210	24/11/2022 02:40:00	2,008	1,778	1,364	0,019	1,705	1,653
14	224,253	224,154	223,732	222,363	224,087	224,057	222,300	24/11/2022 02:50:00	1,953	1,854	1,432	0,063	1,787	1,757
15	224,683	224,558	224,161	222,774	224,504	224,497	222,700	24/11/2022 03:00:00	1,983	1,858	1,461	0,074	1,804	1,797
16	223,182	223,039	222,623	221,272	222,976	222,990	221,290	24/11/2022 03:10:00	1,892	1,749	1,333	0,018	1,686	1,700
17	223,072	222,949	222,562	221,278	222,925	222,992	221,110	24/11/2022 03:20:00	1,962	1,839	1,452	0,168	1,815	1,882
18	222,772	222,509	222,175	220,865	222,590	222,528	220,750	24/11/2022 03:30:00	2,022	1,759	1,425	0,115	1,840	1,778
19	226,002	225,886	225,425	224,062	225,793	225,748	223,950	24/11/2022 03:40:00	2,052	1,936	1,475	0,112	1,843	1,798
20	224,667	224,563	224,094	222,800	224,494	224,409	222,740	24/11/2022 03:50:00	1,927	1,823	1,354	0,060	1,754	1,669
21	223,565	223,327	222,904	221,573	223,256	223,229	221,540	24/11/2022 04:00:00	2,025	1,787	1,364	0,033	1,716	1,689
22	227,209	227,042	226,581	225,229	226,936	225,084	223,700	24/11/2022 04:10:00	3,509	3,342	2,881	1,529	3,236	1,384
23	223,421	223,271	222,872	221,512	223,209	223,172	221,480	24/11/2022 04:20:00	1,941	1,791	1,392	0,032	1,729	1,692
24	224,088	223,893	223,486	222,142	223,854	223,818	222,050	24/11/2022 04:30:00	2,038	1,843	1,436	0,092	1,804	1,768
25	225,412	225,282	224,778	223,398	225,121	225,190	223,370	24/11/2022 04:40:00	2,042	1,912	1,408	0,028	1,751	1,820
26	225,213	225,156	224,682	223,276	225,037	224,959	223,420	24/11/2022 04:50:00	1,793	1,736	1,262	0,144	1,617	1,539
27	223,769	223,621	223,213	221,865	223,566	223,529	221,790	24/11/2022 05:00:00	1,979	1,831	1,423	0,075	1,776	1,739
28	221,867	221,773	221,381	220,055	221,761	221,708	219,930	24/11/2022 05:10:00	1,937	1,843	1,451	0,125	1,831	1,778
29	224,846	224,593	224,242	222,853	224,670	224,553	222,690	24/11/2022 05:20:00	2,156	1,903	1,552	0,163	1,980	1,863
30	225,552	225,402	225,118	223,698	225,351	225,347	223,670	24/11/2022 05:30:00	1,882	1,732	1,448	0,028	1,681	1,677
31	227,250	226,884	226,544	225,094	226,826	226,793	224,890	24/11/2022 05:40:00	2,360	1,994	1,654	0,204	1,936	1,903
32	227,180	226,607	226,578	224,807	226,736	226,394	224,360	24/11/2022 05:50:00	2,820	2,247	2,218	0,447	2,376	2,034

Anexo A - Tabela 9

LEGENDA: RL corresponde a Relé, seguido da respectiva numeração que varia de 1 a 6, (V) corresponde à tensão monitorada em Volts; Tempo RL corresponde ao registro de tempo dos relés; Analisador (V) corresponde à tensão monitorada pelo analisador de energia em Volts; Tempo AE corresponde ao registro de tempo do analisador de energia. Fonte: Elaborado pelo autor.

Anexo B Tabela 10

Na tabela 10 as colunas [RL 1A (V)] até [(RL 6C (V)] exibem os valores das tensões após a aplicação dos fatores de correção, na sequência é exposto nas colunas de [M.Fase A (V)] até [M.Fase C (V)], cujos valores das tensões são obtidos após a aplicação do métodos de cálculo descrito na Seção 4.4.2, conforme Figura 19. Em seguida são expostos nas colunas de [M.Fase AB(V)] até [M.Fase CA(V)] os valores das tensões entre as fases, calculados por meio das equações de circuitos polifásicos, expressas na Seção 4.2. Por fim, são utilizados os dados no Método Cigré, cujas equações são demostradas na Seção 4.1, ademais, os resultados são apresentados nas colunas [β] e [DT%] o Desequilibro da Tensão.

Tabela 10:	Valores das tensões	coletadas pelos seis	relés após 24h d	e funcionamento.	Os dados conti	dos na tabela co	rrespondem a	a 32 dos
288 válidos	5.							

Nº	Tempo	RL 1A (V)	RL 2B (V)	RL 3C (V)	RL 4A (V)	RL 5B (V)	RL 6C (V)	M.Fase Van (V)	M.Fase V _{bn} (V)	M.Fase $V_{cn}(V)$	Fases AB (V)	Fases BC (V)	Fase CA (V)	β	DT%
1	30/11/2022 17:55:01	229,310	227,515	223,470	221,588	225,099	218,773	221,588	225,489	220,235	223,564	222,908	220,914	0,333367437	0,715263217
2	30/11/2022 18:00:01	225,884	223,738	220,686	219,438	221,471	213,834	219,438	221,837	215,966	220,647	218,960	217,723	0,333373263	0,773957133
3	30/11/2022 18:05:01	225,333	222,539	220,418	219,144	217,862	214,462	219,144	218,615	216,315	218,880	217,474	217,744	0,333343764	0,395549278
4	30/11/2022 18:10:01	232,188	229,715	226,847	226,087	225,497	220,713	226,087	226,177	222,622	226,132	224,420	224,374	0,333350996	0,514731071
5	30/11/2022 18:15:01	231,871	229,260	226,444	225,447	224,002	220,280	225,447	224,849	222,198	225,148	223,535	223,840	0,333346352	0,441913995
6	30/11/2022 18:20:01	231,908	229,155	227,359	225,785	221,601	222,129	225,785	222,818	223,756	224,316	223,289	224,777	0,333343598	0,392403394
7	30/11/2022 18:30:01	231,556	228,293	227,158	228,174	217,945	222,202	228,174	219,612	223,744	224,016	221,707	225,992	0,333414807	1,105620519
8	30/11/2022 18:35:01	231,909	228,538	225,583	229,397	219,092	218,127	229,397	220,614	220,447	225,134	220,530	225,055	0,333455984	1,356627633
9	30/11/2022 18:40:01	230,875	229,084	226,417	225,908	223,673	222,729	225,908	224,545	223,876	225,229	224,211	224,899	0,333338074	0,266680268
10	30/11/2022 18:45:01	231,530	228,871	226,892	226,765	223,003	223,636	226,765	223,948	224,649	225,370	224,300	225,715	0,333342870	0,378217297
11	30/11/2022 18:50:01	231,623	228,947	227,263	226,840	223,223	223,615	226,840	224,145	224,751	225,505	224,448	225,803	0,333342191	0,364512537
12	30/11/2022 18:55:01	231,610	229,10	226,216	224,643	223,994	222,654	224,643	224,818	223,763	224,731	224,292	224,204	0,333334738	0,145137697
13	30/11/2022 19:00:01	232,202	228,567	226,761	228,904	218,489	222,724	228,904	220,112	223,980	224,637	222,071	226,482	0,333419807	1,139050418
14	30/11/2022 19:05:01	231,785	229,046	225,747	226,742	223,114	221,140	226,742	224,069	222,573	225,418	223,325	224,687	0,333353201	0,545922387
15	30/11/2022 19:10:01	231,686	228,896	226,144	225,514	223,316	222,259	225,514	224,215	223,468	224,867	223,843	224,498	0,333338085	0,266972177
16	30/11/2022 19:15:01	231,981	229,172	225,480	226,200	224,833	219,997	226,200	225,532	221,703	225,866	223,642	223,985	0,333358695	0,616810700
17	30/11/2022 19:20:01	231,678	229,370	226,243	220,018	225,104	221,847	220,018	225,792	223,215	222,961	224,514	221,634	0,333370496	0,746664084
18	30/11/2022 19:25:01	231,421	228,787	225,894	224,868	224,080	220,883	224,868	224,838	222,442	224,853	223,650	223,665	0,333341790	0,356173547
19	30/11/2022 19:30:01	231,803	229,008	225,712	226,578	224,249	219,542	226,578	225,016	221,462	225,801	223,260	224,064	0,333363178	0,669111350
20	30/11/2022 19:35:01	231,997	229,223	225,679	225,822	226,248	219,833	225,822	226,727	221,652	226,276	224,233	223,766	0,333364777	0,686806830
21	30/11/2022 19:40:01	231,893	228,495	224,916	226,519	224,855	218,003	226,519	225,442	220,154	225,983	222,845	223,405	0,333383090	0,863980660
22	30/11/2022 19:45:01	231,541	228,956	224,705	225,595	225,565	216,934	225,595	226,111	219,352	225,853	222,809	222,539	0,333393770	0,952216206
23	30/11/2022 19:50:01	231,868	229,634	224,837	226,469	227,610	216,203	226,469	227,936	218,890	227,206	223,550	222,776	0,333432575	1,220271097
24	30/11/2022 19:55:01	231,677	229,293	224,380	225,691	227,050	216,528	225,691	227,412	218,971	226,556	223,311	222,407	0,333417966	1,126860613
25	30/11/2022 20:00:01	232,370	229,464	225,503	227,563	224,694	217,813	227,563	225,462	220,206	226,520	222,881	223,975	0,333395026	0,962064863
26	30/11/2022 20:05:01	232,255	229,328	225,552	225,954	226,916	217,792	225,954	227,304	220,207	226,632	223,840	223,136	0,333393857	0,952897949
27	30/11/2022 20:10:01	231,106	229,948	225,884	222,068	228,094	218,784	222,068	228,393	220,993	225,297	224,784	221,532	0,333406886	1,050494442
28	30/11/2022 20:15:01	232,133	230,081	225,557	224,310	228,549	217,897	224,310	228,796	220,281	226,586	224,659	222,322	0,333413634	1,097634709
29	30/11/2022 20:20:01	231,800	229,720	226,075	221,557	225,196	219,911	221,557	225,925	221,829	223,773	223,905	221,693	0,333360725	0,641016472
30	30/11/2022 20:25:01	231,317	229,656	226,651	220,185	228,087	220,139	220,185	228,340	222,165	224,373	225,316	221,182	0,333416405	1,116418088
31	30/11/2022 20:30:01	231,980	229,907	226,252	223,841	228,361	218,643	223,841	228,610	221,011	226,263	224,907	222,439	0,333399429	0,995804382
32	30/11/2022 20:35:01	231,113	228,661	225,482	225,135	223,811	217,138	225,135	224,592	219,735	224,864	222,203	222,484	0,333371612	0,75779256

LEGENDA: Relé (RL); Numeração do relé e letra da fase (1A), (2B), (3C), (4A), (5B) e (6C); Métrica para as fases (M.Fase V_{Van}), (M.Fase V_{Van}) ou Métrica das Fases A, B e C; Beta (β); e o Desequilibro da Tensão (DT). Fonte: Elaborado pelo autor

Anexo C Tabela 11

Na tabela 11 as colunas $[V_{an} (V)]$ até $[(V_{cn} (V)]$ exibem os valores das tensões coletadas pelo analisador de energia. Na sequência é exposto nas colunas de $[V_{ab} (V)]$ até $[V_{ca} (V)]$, os valores calculados por meio das equações de circuitos polifásicos, expressas na Seção 4.2. Por conseguinte, são utilizados os dados no Método Cigré, cujas equações são demostradas na Seção 4.1, em que os resultados são apresentados nas colunas [β] e [DT%] o Desequilibro da Tensão.

Nº	Tempo	V_{an} (V)	V_{bn} (V)	V_{cn} (V)	V_{ab} (V)	V_{bc} (V)	$V_{ca}\left(\mathbf{V}\right)$	β	DT(%)
1	30/11/2022 17:55:00	221,270	224,890	221,450	223,102	223,190	221,360	0,333352397	0,534761476
2	30/11/2022 18:00:00	218,500	221,310	216,540	219,918	218,964	217,527	0,333360219	0,635071131
3	30/11/2022 18:05:00	218,680	218,080	216,880	218,381	217,482	217,786	0,333337245	0,242222526
4	30/11/2022 18:10:00	225,320	225,480	223,200	225,400	224,349	224,268	0,333340372	0,324941238
5	30/11/2022 18:15:00	224,710	224,120	222,590	224,416	223,359	223,658	0,333338604	0,281169294
6	30/11/2022 18:20:00	224,440	222,070	223,800	223,264	222,940	224,121	0,333339965	0,315390216
7	30/11/2022 18:30:00	227,200	217,920	223,840	222,705	220,939	225,539	0,333429719	1,202583503
8	30/11/2022 18:35:00	228,530	219,090	220,160	223,959	219,627	224,462	0,333459147	1,374017692
9	30/11/2022 18:40:00	224,400	223,700	224,370	224,051	224,036	224,385	0,333334023	0,101729622
10	30/11/2022 18:45:00	226,040	223,180	225,160	224,624	224,177	225,601	0,333342682	0,374481507
11	30/11/2022 18:50:00	225,900	223,100	225,080	224,513	224,097	225,491	0,333342366	0,368091568
12	30/11/2022 18:55:00	223,820	223,830	224,220	223,825	224,025	224,020	0,333333564	0,058874194
13	30/11/2022 19:00:00	227,940	218,310	224,330	223,281	221,381	226,157	0,333436297	1,242951351
14	30/11/2022 19:05:00	225,770	222,990	222,880	224,393	222,935	224,339	0,333345423	0,425858568
15	30/11/2022 19:10:00	225,430	223,160	223,460	224,304	223,310	224,451	0,333340147	0,319687098
16	30/11/2022 19:15:00	225,230	224,790	221,800	225,010	223,310	223,535	0,333348487	0,476777166
17	30/11/2022 19:20:00	219,080	224,910	223,420	222,052	224,169	221,282	0,333373559	0,776821951
18	30/11/2022 19:25:00	223,960	223,920	222,140	223,940	223,035	223,056	0,333338095	0,267249145
19	30/11/2022 19:30:00	225,630	223,940	221,000	224,790	222,485	223,351	0,333357479	0,601843989
20	30/11/2022 19:35:00	224,440	225,630	221,330	225,037	223,511	222,901	0,333354857	0,568221729
21	30/11/2022 19:40:00	225,410	224,270	219,940	224,842	222,137	222,725	0,333369551	0,737105044
22	30/11/2022 19:45:00	225,470	225,160	218,630	225,315	221,967	222,129	0,333397274	0,979435062
23	30/11/2022 19:50:00	226,130	226,950	218,230	226,541	222,718	222,285	0,333431200	1,211791330
24	30/11/2022 19:55:00	224,610	226,370	218,780	225,495	222,672	221,752	0,333401391	1,010483343
25	30/11/2022 20:00:00	226,680	224,400	219,720	225,549	222,097	223,281	0,333388127	0,906661114
26	30/11/2022 20:05:00	224,960	226,390	219,820	225,678	223,178	222,435	0,333384780	0,878533355
27	30/11/2022 20:10:00	221,180	227,540	220,980	224,428	224,332	221,080	0,333397761	0,983158835
28	30/11/2022 20:15:00	223,310	227,630	220,120	225,501	223,969	221,732	0,333397023	0,977508268
29	30/11/2022 20:20:00	219,820	227,680	221,640	223,854	224,721	220,736	0,333411424	1,082420855
30	30/11/2022 20:25:00	219,200	227,450	222,100	223,439	224,823	220,664	0,333413263	1,095097365
31	30/11/2022 20:30:00	222,990	227,770	220,700	225,418	224,319	221,854	0,333392244	0,940112396
32	30/11/2022 20:35:00	224,240	223,000	219,290	223,623	221,168	221,806	0,333362595	0,662540718

LEGENDA: Tensões entre as fases e neutro: V_{an} , V_{bn} e V_{cn} ; Tensões entre as fases após aplicação das equações polifásicas: V_{ab} , V_{bc} e V_{ca} ; C); Beta (β); e o Desequilibro da Tensão (DT) %.

Anexo D Tabela 12

Na tabela 12 constam 32 amostras das 2016 correspondente ao monitoramento dos perfis das tensões coletadas pelos seis relés de telegestão durante o período de 7 dias, e os resultados obtidos por intermédio do métodos de calculo proposto, cujos resultados são aplicados no método Cigré para mensurar o Desiquilíbrio de Tensão (DT).

Tabela 12: Monitoramento dos níveis das tensões utilizando a Infraestrutura da Iluminação Pública (IIPu) durante o período de 7 dia	as ou até
adquirir 2016 leituras válidas. Os dados contidos na tabela corresponde a 32 dos 2016 válidos.	

Nº	Tempo	RL 1A (V)	RL 2B (V)	RL 3C (V)	RL 4A (V)	RL 5B (V)	RL 6C (V)	M.Fase A (V)	M.Fase B (V)	M.Fase C (V)	Fases AB (V)	Fases BC (V)	Fase CA (V)	β	DT(%)
1	18/12/2022 00:00:01	222,778	219,299	217,400	208,583	215,588	214,981	208,583	216,186	215,733	212,486	215,96	212,249	0,333417898	1,126403497
2	18/12/2022 00:05:01	221,807	219,322	217,496	206,514	213,778	217,357	206,514	214,672	217,400	210,711	216,049	212,167	0,333483270	1,500022760
3	18/12/2022 00:10:01	222,777	219,188	217,210	210,550	213,721	216,465	210,550	214,602	216,697	212,605	215,657	213,690	0,333379885	0,835685866
4	18/12/2022 00:15:01	221,733	219,488	218,264	207,952	214,214	217,309	207,952	215,064	217,606	211,598	216,346	212,943	0,333450484	1,325848399
5	18/12/2022 00:20:01	222,466	218,279	218,191	210,085	210,202	217,939	210,085	211,503	218,017	210,798	214,834	214,161	0,333424244	1,167919584
6	18/12/2022 00:25:01	222,534	218,612	217,525	211,507	210,876	216,389	211,507	212,123	216,743	211,815	214,470	214,173	0,333374435	0,785241453
7	18/12/2022 00:30:01	223,327	218,612	217,693	210,788	214,520	213,500	210,788	215,179	214,805	213,018	214,992	212,825	0,333361455	0,649506964
8	18/12/2022 00:35:01	223,160	219,265	218,197	210,821	212,220	215,469	210,821	213,355	216,318	212,099	214,852	213,622	0,333370371	0,745401318
9	18/12/2022 00:40:01	223,526	219,482	218,124	211,855	216,902	213,837	211,855	217,318	215,171	214,639	216,252	213,532	0,333369412	0,735687582
10	18/12/2022 00:45:01	223,898	220,722	218,126	209,961	217,876	213,672	209,961	218,334	215,058	214,271	216,715	212,556	0,333417862	1,126163741
11	18/12/2022 00:50:01	223,835	220,998	218,786	210,937	216,762	215,714	210,937	217,444	216,670	214,265	217,058	213,861	0,333391842	0,936902165
12	18/12/2022 00:55:01	223,743	221,093	218,188	214,439	212,866	214,613	214,439	214,191	215,725	214,315	214,962	215,085	0,333336626	0,222253275
13	18/12/2022 01:00:01	224,431	221,154	219,224	214,013	213,803	215,535	214,013	214,988	216,683	214,502	215,840	215,361	0,333342148	0,363617118
14	18/12/2022 01:05:01	222,618	219,916	217,411	210,476	212,751	215,108	210,476	213,905	215,825	212,211	214,871	213,201	0,333368656	0,727944690
15	18/12/2022 01:10:01	223,939	221,075	218,162	213,753	213,317	214,400	213,753	214,567	215,571	214,161	215,071	214,668	0,333337338	0,245107920
16	18/12/2022 01:15:01	224,440	221,114	219,185	213,185	215,915	216,270	213,185	216,752	217,177	214,991	216,965	215,209	0,333355777	0,580240009
17	18/12/2022 01:20:01	224,175	220,967	218,318	213,802	212,277	213,694	213,802	213,677	215,133	213,740	214,409	214,471	0,333336515	0,218444949
18	18/12/2022 01:25:01	224,560	220,898	217,652	214,716	213,313	211,047	214,716	214,535	213,102	214,626	213,822	213,914	0,333337088	0,237316203
19	18/12/2022 01:30:01	224,926	221,793	218,022	216,470	213,465	213,165	216,470	214,807	214,676	215,643	214,741	215,579	0,333338177	0,269547860
20	18/12/2022 01:35:01	224,695	221,429	218,269	213,661	212,793	214,180	213,661	214,184	215,453	213,923	214,821	214,563	0,333337460	0,248798786
21	18/12/2022 01:40:01	224,940	222,282	218,077	214,145	217,099	213,967	214,145	217,934	215,246	216,065	216,603	214,698	0,333351710	0,525042938
22	18/12/2022 01:45:01	225,719	222,299	220,045	215,033	213,440	217,352	215,033	214,867	218,190	214,950	216,548	216,629	0,333350360	0,505382530
23	18/12/2022 01:50:01	225,303	222,310	217,935	215,298	216,552	214,138	215,298	217,479	215,319	216,397	216,407	215,309	0,333340911	0,337155123
24	18/12/2022 01:55:01	224,917	221,865	219,124	216,301	213,156	216,002	216,301	214,559	216,974	215,435	215,776	216,638	0,333340668	0,331704180
25	18/12/2022 02:00:01	224,853	222,597	218,429	213,072	217,575	215,250	213,072	218,384	216,239	215,777	217,320	214,673	0,333367060	0,711301472
26	18/12/2022 02:05:01	225,437	223,326	218,580	216,392	213,928	215,246	216,392	215,442	216,283	215,919	215,864	216,338	0,333334613	0,138524839
27	18/12/2022 02:10:01	225,672	222,245	218,839	214,337	220,714	214,929	214,337	220,960	216,146	217,724	218,593	215,247	0,333389935	0,921500845
28	18/12/2022 02:15:01	225,052	221,799	218,617	216,648	214,081	212,946	216,648	215,324	214,711	215,989	215,018	215,686	0,333338048	0,265923151
29	18/12/2022 02:20:01	224,936	222,323	217,800	212,872	216,231	211,828	212,872	217,213	213,687	215,075	215,471	213,280	0,333359567	0,627329564
30	18/12/2022 02:25:01	225,421	222,742	218,939	214,962	215,574	213,936	214,962	216,729	215,493	215,851	216,113	215,228	0,333337281	0,243342996
31	18/12/2022 02:30:01	225,696	222,315	219,182	217,142	216,970	214,333	217,142	217,831	215,842	217,488	216,843	216,495	0,333338127	0,268150818
32	18/12/2022 02:35:01	225,461	222,315	219,833	215,188	214,183	216,725	215,188	215,493	217,692	215,341	216,601	216,451	0,333342336	0,367473031

LEGENDA: Relé (RL); Numeração do relé e letra da fase (1A), (2B), (3C), (4A), (5B) e (6C); Métrica para as fases (M.Fase A), (M.Fase B) e (M.Fase C); Beta (β); e Fator de Desequilibro da Tensão (DT)%.

Fonte: Elaborado pelo autor