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RESUMO

Para 2-variedades com bordo convexo e não vazio, provamos um resultado de regulari-
dade para varifolds estacioários V de dimensão um, os quais são Z2-quase minimizantes
em aneis. Essa regularidade diz que V é uma rede finita de geodésicas com fronteira
livre. Usando essa regularidade, podemos deduzir algumas propriedades de V, como uma
estimativa para a densidade em dimensão um. Juntamente com o Teorema Min-Max e as
p-varreduras dadas por variedades algébricas reais, fomos capazes de calcular as primeiras
p-larguras da bola unitária B2 e de regiões fechadas planas cujo bordo é uma elipse com
excentricidade suficientemente baixa. Essas p-varreduras nem sempre são ótimas. Con-
tudo, nos casos que consideramos elas são quase ótimas.

Keywords: Rede de geodésicas com fronteira livre. P -varreduras. P -larguras.



ABSTRACT

For 2-manifolds with non-empty convex boundary, we prove a regularity result for one
dimensional stationary varifolds V with free boundary, such that are Z2-almost minimizing
in annuli. That regularity says that V is a free boundary finite geodesic network. Using
that regularity we can deduce some properties of V, as an estimate for the one-dimensional
density. Together with the Min-Max Theorem and the p-sweepouts given by real algebraic
varieties, we were able to calculate the first p-widths of the unit ball B2 and of planar full
ellipses close to B2. Those p-sweepouts are not always optimal. However, in our situations
they are almost optimal.

Keywords: Free boundary geodesic networks. P -sweepouts. P -widths.
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1 INTRODUCTION

Almgren-Pitts min-max theory

Minimal surfaces have been an object of study for centuries in the fields of geometry,

analysis and partial differential equations. The solution of the Plateau problem in 1930

stimulated several research activities in related problems, as the free boundary problems

for minimal surfaces. One of the mathematicians that studied related problems was

Almgren [6] that introduced the concepts of varifolds, rectifiable varifolds and integral

varifolds. Essentially, the set of integral varifolds of dimension k, for 0 ă k ď n ` 1,

on a Riemannian manifold Mn`1, n ą 0, is the set IVkpMq such that each element

V P IVkpMq is a finite union of k-dimensional submanifolds with multiplicity, where

we consider a measure defined by integration of the Hausdorff measure Hk over each

submanifold, endowed with the weak convergence topology of measures. We can define

a first variation of varifolds and we say that it is stationary if its first variation vanishes.

When the varifold is a surface, its first variation coincides with the usual first variation

of area formula. In this case, in particular, its support is a minimal surface possibly with

multiplicity and self intersections. The notion of area for a varifold V over a measurable

set A is given by the weight }V }pAq.
In the work of Almgren, the study of variational calculus for minimal surfaces is

generalized in the sense that it considers any dimension and codimension, no curvature

hypothesis, and includes the cases with fixed or free boundary. In that work he proposed a

free boundary problem for manifolds possibly with non-empty boundary: to find a smooth,

embedded k-dimensional minimal submanifold Σ Ă Mn`1 solution for the free boundary

problem, and such that BΣ Ă BM. In the case with empty boundary, he found a non-trivial

and general weak solution that is an integral stationary varifold V. The regularity for the

codimension-one case was proved by Pitts [31] for 2 ď n ď 5. Pitts introduced the concept

of almost minimizing, and he shown that V can be chosen to be almost minimizing and

then the support of V is given by a smooth embedded minimal hypersurface. Essentially,

the regularity comes from the fact that almost minimizing varifolds are locally stable

almost everywhere. Later Schoen and Simon [34] extended that result for n ě 6.

The Almgren-Pitts min-max theory is a Morse-type theory which may explain better

a manifold and its hypersurfaces. For example, some important and surprising applica-
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tions are the solution of the famous Willmore conjecture by Marques and Neves [23], the

Yau’s conjecture by Marques and Neves [25] and Song [36], the Weyl law for the Volume

Spectrum by Liokumovich, Marques and Neves [22], and the Freedman, He and Wang con-

jecture by Agol, Marques and Neves [1]. The particularities, comparing with the Morse

theory, is the use of integral n-cycles with coefficients in Z2, and the functional mass M,

which is a notion of volume. Roughly speaking, the space of integral n-cycles with coeffi-

cients in Z2 is the space of compact n-dimensional hypersurfaces in M without boundary

and without orientation. Another differences is that the Almgren-Pitts min-max theory

works with varifolds, which allows degenerations. Also, it works with homotopy instead of

homology, thus it is necessary to consider different variations to obtain the critical points

(varifolds).

Essentially, the Almgren-Pitts min-max theory [31] says that: if rΦs denotes a certain

homotopy class of a map Φ from a cubical subcomplex X Ă Im, for some m P N, into the

space of integral n-cycles, and defining the width of rΦs by

LprΦsq “ inf
ΨPrΦs

sup
xPX

MpΨpxqq,

then for 2 ď n ď 5 and LprΦsq ą 0, there exists a closed embedded minimal hypersurface

Σ (possibly with multiplicity) satisfying:

LprΦsq “ VolpΣq.

A similar result was extended by Schoen and Simon [34] for all n ě 2. Also, recently

Marques and Neves [24] and [26] obtained from this theory a characterization of the Morse

index for minimal hypersurfaces obtained from a homotopy class of p-parameters.

In the case BM ‰ H, the deformations that we consider are deformations given by

vector fields on M which are tangential to BM. This is because the free boundary minimal

hypersurfaces are critical points to the area functional with respect to deformations in M

that preserves BM. In this set, we call the stationary varifolds of stationary varifolds with

free boundary, but this notation does not mean that the varifold has the same properties

as a free boundary minimal surface Σ. In fact, in the regular case we have that Σ meets

the boundary BM orthogonally along its boundary BΣ. On the other hand, any constant

multiply of a connected component of BM is a stationary varifold with free boundary,
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even though it can be nothing like a free boundary minimal hypersurface in M.

We say that a varifold V is an almost minimizing varifold with free boundary on a

relatively open set U Ă M if we can approximate it by a varifold induced from a cycle

T such that for any deformation of T by a discrete family supported in U, and with the

mass not increasing too much, then at the end of the deformation the mass can not be

deformed down too much. The main difference here, comparing with the definition for

empty boundary, is that we are working with relative cycles, so in that approximation the

induced varifolds have no mass on BM.

In contrast with higher dimensions, where to show the regularity of a stationary va-

rifold V is used the almost minimizing property, in the one-dimensional case the interior

regularity does not depend on this property. In fact, as showed by Allard and Almgren

[4], one dimensional integral stationary varifolds are given by a geodesic network in any

compact set contained in the interior of M, that is, the varifold is a finite union of geodesic

segments such that the singularities are given by their possible stationary junctions. How-

ever, to obtain the free boundary property, we assume the almost minimizing property in

annuli (Main Theorem A).

Sweepouts and width

In the space of flat chains we can define three different topologies: the mass norm, the

flat norm and the F-distance. In fact, since the space of k-currents is the dual space of

the space of differential k-forms, it is naturally endowed with the weak topology and has

a boundary operator. A similar notion to area in the space of currents is given by the

mass norm MpT q of a current T. When T is induced by a manifold, the mass norm is

exactly the definition of area. Also, this norm induces a topology that is stronger than the

weak topology. The flat distance (or area-distance) between two k-currents T1, T2 is the

minimal area of any pk` 1q-current whose boundary is T1 ´T2. The space of flat k-chains

is given by the closure under the flat distance over the set of k-rectifiable currents, where

the latter are essentially currents whose support is given by k-rectifiable sets.

The flat chains with no boundary are called of flat cycles, and we denote by ZkpM ;Z2q
the space of integral k-cycles with coefficients in Z2. Roughly speaking, this space is

the space of compact k-dimensional submanifolds in M without boundary and without

orientation.
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We are interested in calculating the volume of cycles for certain families of planar

curves with k-parameters in a planar full ellipse M2 “ E2 Ă R2. In the simplest case

where E2 is the unit ball B2, and we take an 1-parameter family of smooth curves that

sweep B2 out, we have that one of that curves have to pass through the origin, in particular

the length of that curve is at least 2. On the other hand, if our family is given by vertical

lines in the unit ball, we have that the maximum length will be 2. Denoting by S the

set of all 1-parameter families of curves in the unit ball which sweep B2 out, and by C a

curve in a family S P S, we obtain

W pB2q “ inf
SPS

sup
CPS

LpCq “ 2,

where LpCq is the length of C in B2. We call the min-max estimate above of a width for

B2. An analogous can be made for higher dimensions, taking families of surfaces Σ and

the area instead of curves and length, respectively. Also, for the precise definition of the

problem above it is necessary that BΣ Ă BM.

For Mn`1, n ą 0, such that BM “ H, the problem that we will consider is the

min-max problem for continuous families of mod 2 n-cycles such that each family is a

p-sweepout of M, for some p P N. By a continuous family we mean that this family is

given by a map Φ : X Ñ ZnpM ;Z2q which is continuous in the flat topology, where

X Ă Im is a cubical subcomplex for some m P N. And by a p-sweepout we mean that

the p-th cup power of Φ˚pλq is nonzero, where λ is the generator of H1pZnpM ;Z2qq, given

by the Almgren isomorphism [5] and the Universal Coefficient Theorem [16, Section 3.1].

Roughly speaking, the geometric meaning of a family of cycles be a p-sweepout is that for

any choice of p points in M, there exists a cycle Φpxq that passes through these points.

We will see a more precisely definition in the next section, also we will consider these

families without concentration of mass to avoid currents (cycles) such that the mass is

accumulated in points. Similar considerations apply when M has non-empty boundary,

but in this case we use the space of the relative mod 2 n-cycles Zn,relpM, BM ;Z2q, which

is the space given by a quotient in the space of integral flat n-chains with coefficients in

Z2 and boundary lying on BM. Essentially, when we take relative cycles we forget the

part of the cycle lying on BM. The relative cycles was used by Almgren [5] and its use is

motivated by the fact that, in the min-max problem, the cycles need to have its boundary

lying on BM.
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Our definition of relative cycles on M is identical to the definition of cycles when M

has empty boundary. So, we will consider the space of relative cycles for the general case.

We denote by PppMq the set of all p-sweepouts with no concentration of mass, and

we define the p-width of M as

ωppMq “ inf
ΦPPppMq

suptMpΦpxqq : x P dmnpΦqu,

where dmnpΦq is the domain of each Φ (the domain is not fixed).

Clearly, ωppMq ď ωp`1pMq for all p.

Gromov [14] and later Guth [15] estimated the growth of the p-widths. Precisely, there

exist positive constants c and C depending only on pMn`1, gq such that

cp
1

n`1 ď ωppMq ď Cp
1

n`1 .

The upper bound arises from constructing a particular sweepout of small mass using

the fact that the coefficients are in Z2. And the lower bound is due to the fact that any p-

sweepout must divide any p disjoint balls in half, so applying the isoperimetric inequality

for each ball is obtained this lower bound. The inequality above was an important tool

used by Marques and Neves [25] to prove the existence of infinitely many embedded

minimal hypersurfaces in certain compact Riemannian manifolds.

Main results and related results

The main goal of this thesis is to calculate the low p-widths for the unit ball B2 Ă R2

and for perturbations of B2, which are given by planar full ellipses E2 Ă R2 that are

sufficiently C8-close to B2. Our results are inspired in the results of Aiex [2], which say

that

Theorem 1. [2, Theorem 5.2] If S2 is the round 2-sphere of radius 1, then

(i) ω1pS2q “ ω2pS2q “ ω3pS2q “ 2π;

(ii) ω4pS2q “ ω5pS2q “ ω6pS2q “ ω7pS2q “ ω8pS2q “ 4π.

Also, given an ellipsoid E2 Ă R
3, take W1,W2,W3 as the one-dimensional varifolds with

multiplicity one and induced from the three principal closed geodesics in E2, respectively.
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Consider the varifolds given by the combinations of those varifolds: W4 “ 2W1,W5 “
W1 ` W2,W6 “ 2W2,W7 “ W1 ` W3,W8 “ 2W3,W9 “ W2 ` W3. Then,

Theorem 2. [2, Theorem 5.6] If E2 is an ellipsoid which is sufficiently C8-close to the

round metric in S2, then

(i) ωipE2q “ }Wi}pE2q for i “ 1, 2 or 3;

(ii) ωjpE2q “ }Wl}pE2q for j “ 4, ¨ ¨ ¨ , 8 and for some l “ 4, ¨ ¨ ¨ , 9 without repetition.

As we see in item (ii) above, one of the j-widths for j “ 4, ¨ ¨ ¨ , 8 has multiplicity

two, in other words we have an example of a unstable min-max critical 1-varifold with

multiplicity and smooth embedded support. So, working with min-max critical curves

is a special case, since for min-max critical hypersurfaces this fact should not happen

as claims the Multiplicity One Conjecture for closed manifolds by Marques and Neves

[24], which was proved recently in dimension three by Chodosh and Mantoulidis [7], also

other authors made partial solutions as Zhou [39]. Moreover, many of the recent results

involving min-max techniques are not applicable for curves. So, to obtain the results

above, we will need to adapt some tools from the min-max techniques for the set of

curves. In fact, as we are working in the case with boundary, we need some results about

regularity with free boundary for varifolds. One of our main results gives a regular-type

result. Precisely:

Main Theorem A. Let M2 be a compact Riemannian manifold with non-empty strictly

convex boundary. If V P IV1pMq is a stationary varifold such that it is Z2-almost mini-

mizing in small anulli with free boundary, then V is a free boundary geodesic network.

For us, free boundary have a specific meaning: V BM “ 0 as an 1-varifold and the

varifold tangent VarTanpV, pq R TppBMq for all p P supportpV q X BM.

This result will be useful, because the varifolds given by the Min-Max Theorem satisfy

those hypotheses. So, the p-widths are reached by free boundary geodesic networks, and

we will obtain a finite classification of free boundary geodesic networks, when M is a

planar full ellipse E2 close to B2. Indeed, to classify the free boundary geodesic networks

with low mass in E2, we use an upper bound for the density as a function of the mass, so

we forget certain junctions that can not happen. Finally, we use an interior result from

Aiex [2, Theorem 4.13], which says that if a geodesic network is Z2-almost minimizing in

annuli at interior of M, then the density in the interior points is an integer number.
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The Theorem A is founded in the Section 3.4. Below we give an idea of the proof.

Idea of the proof of Theorem A: By the interior regularity result due to Allard and

Almgren [4] we know that V is a geodesic network finite in every compact K Ă M̊.

Near to BM, we will use Fermi coordinates, since the half ball and the half sphere have

good properties in these coordinates. The convexity will be crucial to obtain a weak

regularity result for replacements, which will be important to show that the interior of

each geodesic segment of V will be in M̊. We consider replacements on overlapping annuli

centered at boundary points, and by a maximum principle we can glue continuously

those replacements. We do the following important observation: if a varifold is Z2-almost

minimizing in an open ball in M̊, then the support of each respective varifold tangent

will be a straight line. Using this observation, we can glue smoothly the replacements.

It will not difficult to see that in a neighborhood of BM there will be a finite number of

geodesic segments of spt}V }, which are in M̊ and each segment has endpoints touching

BM. Finally, we apply the Constancy Theorem in MzBM to see that the support of V is

a free boundary geodesic network.

Our main results for k-widths are very similar to the results above. The main difference

is that we will work with manifolds with boundary. More precisely, we proved that

Main Theorem B. The low p-widths of B2 are given by

(i) ω1pB2q “ ω2pB2q “ 2;

(ii) ω3pB2q “ ω4pB2q “ 4.

Also, if E2 is a planar full ellipse C8-close to B2 with small diameter d and large

diameter D, then

(iii) ω1pE2q “ d and ω2pE2q “ D;

(iv) ω3pE2q, ω4pE2q P t2d, d ` D, 2Du such that ω3pE2q ‰ ω4pE2q. In particular, one of

those widths is reached by an one-varifold with multiplicity two.

Again, from (iv) we obtained an example of min-max critical varifold with multiplicity.

We do not know any development in a Multiplicity One Conjecture in the case with

boundary. But, again the case for curves is a special case, which allows multiplicity. The

Theorem B above is founded in the Section 4.3.
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Idea of the proof of Theorem B: We use the p-sweepouts defined in Guth [15], whose

images are given by real algebraic varieties. We be able to get a good upper estimate

for the mass of those cycles. By the Min-Max Theorem there will be a varifold V that

reaches the p-width, and such that it satisfies the hypotheses of Theorem A, so V will

have regularity properties. Those regularity properties together with an upper bound

for the density will be enough to obtain a finite number of possible values for the first

p-widths. It will be crucial to use the fact that E2 is close to B2, then by continuity the

respective p-widths will be close. Finally, for low mass, we will see that the widths of E2

are all different from each other, then it will create ‘gaps’ which will enable us to calculate

presicely the first widths of B2 and E2, even though some of those p-sweepouts are not

optimal.

In the case of the sphere M “ S2 in Theorem 1 above, similar p-sweepouts given by

algebraic varieties are optimal in the sense that

ωppMq “ suptMpΦpxqq : x P dmnpΦqu.

In contrast, in our case the p-sweepouts for B2 are not optimal if p “ 3, 4 in Theorem B.

Actually, as we will see in the Appendix, for p “ 3, 4 the p-sweepout is almost optimal. We

believe that this type of p-sweepout is not optimal for all p ě 3, and the error increases.

However, the regularity of Theorem A will be enough to classify the varifolds with low

mass (Theorem 3.7 and Corollary 3.9). In particular, we will deduce gaps of values for

the p-widths, so we will not need optimal p-sweepouts a priori.

Other important result is the thesis of Nurser [29], which calculates the first widths of

S3 :

ω1pS3q “ ω2pS3q “ ω3pS3q “ ω4pS3q “ 4π,

ω5pS3q “ ω6pS3q “ ω7pS3q “ 2π2,

and gives estimates for ω9pS3q and ω13pS3q. In general, for spheres Sn for all n ě 3, we

know that ωppSnq “ VolpSn´1q for p “ 1, ¨ ¨ ¨ , n ` 1. This result was proved by Gaspar

and Guaraco [12] using a notion of width in the context of the Allen-Cahn equation and

the energy functional associated. A more recent result was done in the thesis of Lima

[21], where he calculates that ω1pRP3q “ ω2pRP3q “ π2 and gives estimates for ω9pRP3q,
where RP

3 is the three-dimensional real projective space.
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A more general and open question is to find a general formula for the width of a certain

manifold Mn`1. In fact, so far this problem seems to be very hard. A recent result in this

direction was the proof by Liokumovich, Marques and Neves [22] of the Weyl law for the

volume spectrum tωppMqu. Precisely, they proved:

Theorem 3. [22] Given pMn`1, gq a compact Riemannian manifold (with possible non-

empty boundary). There exists a constant apnq ą 0 such that

lim
pÑ8

ωppMqp´ 1

n`1 “ apnqvolpMq n
n`1 .

This formula is very similar to the Weyl law for eigenvalues. While for eigenvalues

we know how to calculate the constant of the Weyl law in many cases, for the volume

spectrum it is not know any example so far, even in our case of the unit disk.

Using the theorem above, Irie, Marques and Neves [17] proved the density of minimal

surfaces for closed manifolds Mn`1 with generic metric and 2 ď n ď 6. Using that theorem

again, Marques, Neves and Song [27] extended this result, showing that there exist an

equidistribution of minimal surfaces in that case.



17

2 PRELIMINARIES

In this section, we summarize some definitions and results that we will use in the next

sections.

Since we are assuming that the Riemannian manifold M has non-empty boundary,

it will be useful consider Fermi coordinates at the points of BM. In fact, the geometric

properties of the half-ball and half-sphere in those coordinates will be crucial to prove our

regularity result.

From geometric measure theory we will talk about currents, flat chains, relative flat

cycles and varifolds. Since we are supposing that M can have non-empty boundary, we

will take more care in these definitions.

We will also talk about some notions of homotopy, definitions and results from the

Almgren-Pitts Theory. In the case with boundary, we follow some modifications due

to Liokumovich, Marques and Neves [22] and Marques and Neves [25]. We will do a

version of the Min-Max Theorem similar to Pitts [31, Theorem 4.10] and Li and Zhou [19,

Theorem 4.21], following the necessary modifications to our case. Roughly speaking, that

theorem proves the existence of almost minimizing varifolds, moreover it says that there

exists always such a varifold that reaches the width of a chosen homotopy class. The main

application is to use this theorem for p-widths as done in the Corollary 2.23, which will

be important to calculate the p-widths in the next sections, since our p-sweepout does

not always reach the p-widths.

2.1 Manifolds with Boundary and Fermi Coordinates

Here we follow the notations of [19]. When Mn`1, n ą 0, is a compact Riemannian

Manifold with nonempty boundary BM, we can always extend M to a closed Riemannian

manifold ĂM with the same dimension such that M Ă ĂM ([30]). Also, by the Nash’s

Theorem, we can fix an isometric embedding ĂM ãÑ RQ for some Q P N. We will denote

by Brppq Ă RQ the open Euclidean ball of radius r centered at p P RQ, and by rBrppq the

open geodesic ball in ĂM of radius r centered at p. For 0 ă s ă r we define the following

open annuli:

As,rppq :“ BrppqzClospBsppqq and rAs,rppq :“ rBrppqzClosp rBsppqq,

where ClospSq denotes the closure of the set S.
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We consider the following spaces of vector fields:

XpMq :“ tX P XpRQq : Xppq P TpM for all p P Mu

and

XtanpMq :“ tX P XpMq : Xppq P TppBMq for all p P BMu.

Definition 2.1. (Relative Topology) Given any subset A Ă M, where M is equipped

with the subspace topology, the interior relative of A, intMpAq, is defined as the set of

all p P M such that there exists a relatively open neighborhood U Ă A of p. The exterior

relative of A will be the set intMpMzAq. And the relative boundary of A, BrelA, is the

subset of M such that is neither in the relative interior nor exterior of A.

Definition 2.2. (Relative Convexity) A subset Ω Ă M is said to be a relatively convex

(respect. relatively strictly convex ) domain in M if it is a relatively open connected subset

in M whose relative boundary BrelΩ is smooth and convex (respect. strictly convex) in

M.

Definition 2.3. (Fermi coordinates) Given p P BM and suppose that px1, ¨ ¨ ¨ , xnq is the

geodesic normal coordinates of BM in a neighborhood of p. Take t “ distMp¨, BMq, which

is a smooth map well-defined in a relatively open neighborhood of p in M. The Fermi

coordinates system of pM, BMq centered at p is given by the coordinates px1, ¨ ¨ ¨ , xn, tq.
Also, the Fermi distance function from p on a relatively open neighborhood of p in M is

defined by

rr :“ rrppqq “ |px, tq| “
b
x21 ` ¨ ¨ ¨x2n ` t2.

Definition 2.4. Given p P BM, we define the Fermi half-ball and half-sphere of radius r

centered at p respectively by

rB`
r ppq :“ tq P M : rrqpxq ă ru, rS`

r ppq :“ tq P M : rrqppq “ ru.

The geometric properties of the Fermi half-ball and half-sphere can be summarized in

the following proposition:

Proposition 2.5. ([19, Lemma A.5]) There exists a small constant rFermi ą 0, depending

only on the isometric embedding M Ă RQ, such that for all 0 ă r ă rFermi
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(i) rS`
r ppq is a smooth hypersurface meeting BM orthogonally;

(ii) rB`
r ppq is a relatively strictly convex domain in M ;

(iii) Br{2ppq X M Ă rB`
r ppq Ă B2rppq X M.

Remark 2.6. The convexity in [19] is assumed to be strictly convex. Also, the property

(iii) above will imply that many properties that hold for small open sets in the Fermi

coordinates also hold for small open sets in the Euclidean coordinates, and vice versa.

We want to define the following annuli neighborhood in the Fermi coordinates:

As,tppq :“ rB`
t ppqz rB`

s ppq

for p P BM, and 0 ă s ă t. Also, when p P M̊, we require that t ă distMpp, BMq.

2.2 Currents, Flat Chains and Relative Flat Cycles

In this section, we will define the main tools to deal with flat chains, whose classical

reference is Federer [11, Section 4]. See also Morgan [28, Section 4]. As we are in the case

with boundary, we also follow the treatment given in Liokumovich, Marques and Neves

[22], Guth [15] and Li and Zhou [19].

In the ambient space RQ, let us define Dk “ tC8 differential k-forms with compact

support}, we define the space of k-dimensional currents Dk as being the dual space of

Dk. The space Dk is naturally endowed with the weak topology: Ti á T ô Tipξq Ñ
T pξq, @ξ P Dk.

The support of a current T, denoted by sptpT q, is the smallest closed set C Ă RQ such

that

psptpξqq X C “ H ñ T pξq “ 0.

When k ě 1, the k-currents can be interpreted as a generalization of the k-dimensional

oriented submanifolds N having locally finite Hk-measure. Indeed, given such N with

orientation given by a k-vector field η (ηx “ ˘η1 ^ ¨ ¨ ¨ ^ ηk for all x P N, where η1, . . . , ηk

is an orthonormal basis for TxN), there exists a corresponding k-current |N | defined by

|N |pξq “
ż

N

ξxpηxq dHk, ξ P Dk. (1)
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A subset R Ă RQ is said to be a (countably) k-rectifiable subset if R “ R0 Y ` Y8
i“1

FipRiq
˘
, where HkpR0q “ 0, Fi : Ri Ñ RQ is Lipschitz, and each Ri Ă Rk is bounded.

As shown in Simon [35, Section 11.6], each Hk-measurable k-rectifiable subset R Ă RQ

has approximate tangent space almost everywhere, so we can get a current as (1). Also,

we can add a measurable function θ : R Ñ R with
ş
R

}θ}dHk ă 8 and define

rR, η, θspξq “
ż

R

ξxpηxqθpxq dHk, ξ P Dk. (2)

These currents are actually equivalency classes vR, η, θw which identify triples that define

the same current. Each class is said to be a rectifiable k-current. If θ : R Ñ Z`, we

said that each class is an integer-multiplicity rectifiable current and θ is the multiplicity

function.

We define the mass norm MpT q of a T P Dk by

MpT q “ sup
}ξ}˚ď1, ξPDk

T pξq,

where }ξ}˚ “ sup
x

sup
ξPΛkTxM, xξ,ξyx“1

xξ, ξyx. For rectifiable currents,

MprR, η, θsq “
ż

R

|θ| dHk.

In particular, for submanifolds N as above we have that Mp|N |q “ AreapNq.
Also, motivated by (1) and the Stoke’s theorem

` ş
N
dξ “

ş
BN
ξ, when N has smooth

boundary
˘

the boundary BT P Dk´1 of a current T P Dk is defined such that

T pdξq “ BT pξq, ξ P Dk´1.

Note that when N has smooth boundary, we have that |BN | “ B|N |.
The space of rectifiable (flat) chains with coefficients in a complete normed abelian

group pG, } }q is a more general space containing certain types of currents.

The group of Lipschitz k-chains with coefficients in G is defined by

LkpRQ;Gq “
! Iÿ

i“1

θivfip∆iqw : I ă 8, θi P G,∆i is a k-simplex in R
k,

and fi : ∆i Ñ R
Q is Lipschitz

)
.



21

Where vfip∆iqw is the rectifiable current vfip∆iq, ηi, 1w.
Given T P LkpRQ;Gq, we can always find a representation

ř
i θivfip∆iqw of T such

that fip∆iq are non-self-overlapping and we define the mass norm of T by MpT q “
ř

i }θi}Mprfip∆i, ηi, 1qsq. In other words:

MpT q “ inf
! ÿ

i

}θi}Mprfip∆i, ηi, 1qsq : T “
ÿ

i

θivfip∆iqw
)
.

We define the group of the rectifiable flat k-chains, RkpRQ;Gq, as the M-completion

of LkpRQ;Gq. In the space LkpRQ;Gq we can define a boundary map B : LkpRQ;Gq Ñ
Lk´1pRQ;Gq as in the singular homology theory. The flat norm F of T P LkpRQ;Gq is

defined by

FpT q “ inftMpAq ` MpBq : T “ A` BB,A P LkpRQ;Gq, B P Lk`1pRQ, Gqu.

The F -completion of LkpRQ;Gq is the group of flat k-chains with coefficients in G,

denoted by FkpRQ;Gq. The boundary map B : LkpRQ;Gq Ñ Lk´1pRQ;Gq admits a unique

continuous extension B : pFkpRQ;Gq,Fq Ñ pFk´1pRQ;Gq,Fq.
The group of integral flat k-chains in RQ with coefficients in G is given by

IkpRQ;Gq “ tT P RkpRQ;Gq : BT P Rk´1pRQ;Gqu.

The groups above can be defined on M taking the groups on RQ restricted to the

elements with support on M.

The min-max constructions considered by Almgren [5] for equivalents classes are made

for relative cycles that are integral cycles. We follow Liokumovich, Marques and Neves

[22] approach, although we could work more generally with rectifiable cycles not necessary

integrals (see Li and Zhou [19, Section 3.1]). The space of flat cycles restricted to integral

chains is given by

ZkpM ;Gq “ tT P IkpM ;Gq : BT “ 0u.

We also consider the space

ZkpM, BM ;Gq “ tT P IkpM ;Gq : sptpBT q Ă BMu

and the space of equivalent classes of relative cycles by the quotient
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Zk,relpM, BM ;Gq “ ZkpM, BM ;Gq{IkpBM ;Gq.

Then the support of a class rT s P Zk,rel,pM, BM ;Gq is given by sptprT sq “ Ş
TPrT s sptpT q.

Also the mass norm and flat norm in the space of relative cycles are defined, respec-

tively, by

MprT sq “ inf
TPrT s

MpT q, FprT sq “ inf
TPrT s

FprT sq,

for rT s P Zk,rel,pM, BM ;Gq.
We will consider the space of relative flat cycles endowed with the flat norm F . When

it is endowed with the topology of the mass norm, we denote it by ZkpM, BM ;M;Gq.
Note that each rT s P Zk,relpM, BM ;Gq has a unique canonical representative k-chain

T 0 P rT s such that T 0 BM “ 0, in particular, MprT sq “ MpT 0q and sptprT sq “ sptpT 0q,
see [19, Lemma 3.3]. Also, it follows that FprT sq ď MprT sq. This canonical representative

is obtained take T 0 “ S pMzBMq for any S P rT s. We will keep the notation simple and

we denote rT s by T and for us G “ Z2.

When BM “ H we have that Zk,relpM, BM ;Gq is identical to ZkpM ;Gq.
The theorem below is an extension of the classical Federer-Fleming Compactness The-

orem for integral flat cycles.

Theorem 2.7. (Compactness Theorem [22, Theorem 2.3]). The set

tT P Zk,relpM, BM ;Gq : MpT q ď Lu

is compact in the flat topology for all L ą 0.

Another extended theorem is the follow about the lower semicontinuity of the mass

norm with respect to flat topology in Zk,relpM, BM ;Gq.

Theorem 2.8. (Lower Semicontinuity, [22, Proposition 2.4]). If tTiu Ă Zk,relpM, BM ;Gq
is a sequence converging to T in the flat topology then

MpT q ď lim inf
iÑ8

MpTiq.

2.3 Varifolds

Here we follow Pitts [31] and Simon [35].
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Let U Ă RQ be an open set. The Grassmannian bundle of k-planes over U is defined

by GkpUq “ tpx, Sq : x P U and S is an k-dimensional subspace of RQu.
The space of k-dimensional varifolds in U , VkpUq, is such that V P VkpUq if V is a

Radon measure on GkpUq and is equipped with the weak topology. The weight }V } of a

varifold V P VkpUq is a Radon measure given by

}V }pAq “ pV AqpGkpUqq “ V
`
GkpUq X tpx, Sq : x P Au

˘
whenever A Ă U.

The mass of V P VkpUq is defined by MpV q “ }V }pUq, and the support of V, spt}V },
is the smallest closed subset C Ă RQ such that V pRQzCq “ 0.

Given a varifold V P VkpUq and x P spt}V }, we denote by VarTanpV, xq Ă VpRQq
as the set of the varifold tangents of V at x [35, Definition 42.3], which is a natural

generalization of tangent planes for smooth surfaces. When the density is positive, this

set is not empty [3, 3.4].

The Pitts’ F-metric on VkpUq is such that F : VkpUq ˆ VkpUq Ñ R` and

FpV,W q “ suptV pfq ´ W pfq : f P C0

c pGkpUqq, |f | ď 1,Lippfq ď 1u.

This metric induces precisely the usual weak topology on the set tV P VkpUq :

}V }pUq ď Lu, for each constant L ą 0.

If R Ă U is k-rectifiable and θ is a Hk-integrable non-negative function on R, we denote

by V “ υpR, θq P VkpUq to be the rectifiable k-varifold associated to R with multiplicity

function θ defined by

ż

GkpUq

ϕpx, Sq dV px, Sq “
ż

R

θpxqϕpx, TxRq dHk @ϕ P C0

c pGkpUqq,

where TxR is the approximate tangent space of R in x. If θ assumes only positive integers

values, we say that υpR, θq is an integral varifold.

We denote by RVkpUq and IVkpUq the spaces of k-dimensional rectifiable varifolds in

U and k-dimensional integral varifolds in U , respectively.

Given an integer-multiplicity rectifiable k-current T “ rR, θ, ηs, we can define an

associated k-varifold |T | “ υ
`
R, θ

˘
P IVk. If T is a k-chain with coefficients in Z2, |T | P IVk

denotes the varifold induced by the support of T.
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Conversely, given a k-varifold V P VkpUq we can define the natural k-current

|V |pωq “
ż

GkpUq

ωxpSq dV px, Sq ω P Dk.

Let U, U 1 Ă RQ be open sets. Given V P VkpUq and a C1 map f : U Ñ U 1 with

f |psupportpV qq proper. The pushfoward varifold of V by f, denoted by f7V, is defined

by: for any Borel set A Ă RQ,

f7V “
ż

F´1pAq

JSfpxq dV px, Sq,

where F px, Sq “ pfpxq, dfxpSqq and JSfpxq “
a

detrpdfx|Sq˚ ˝ pdfx|Sqs (see [35, §39]).

2.3.1 Varifolds in manifolds with boundary

We denote by RVkpMq and IVkpMq the sets of k-dimensional rectifiable varifolds and

integral varifolds in RQ with support contained inM and equipped with the weak topology,

respectively. Also VkpMq will be the closure of RVkpMq in the weak topology.

Given V P VkpMq, let X P XtanpMq be a generator of a one-parameter family of

diffeomorphisms φt of RQ with φ0pMq “ M, we have that the first variation of V along

the vector field X is given by ([35, 39.2])

δV pXq :“ d

dt

ˇ̌
ˇ̌
t“0

Mppφtq7V q.

Definition 2.9. Let U Ă M be a relatively open subset. A varifold V P VkpMq is said

to be stationary in U with free boundary if δV pXq “ 0 for any X P XtanpMq compactly

supported in U.

Note that a free boundary minimal submanifold is also stationary with free boundary.

However, the reverse may not be true. Indeed, as we commented at the introduction,

any constant multiple of a connected component of BM is a stationary varifold with free

boundary, even though it can be nothing like a minimal hypersurface in M.

By the relative topology we will consider the k-dimensional density, ΘkpV, xq, of a

stationary varifold V P VkpMq as the density restricted to M, that is, given x P M, we

take

ΘkpV, xq :“ lim
ρÑ0

}V }pBρpxq X Mq
ρk|Bk| ,
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where |Bk| is the volume of the k-dimensional unit Euclidean ball Bk. For a fixed x, define

the function

Θk
xpV, ρq :“ }V }pBρpxq X Mq

ρk|Bk| .

In the case BM “ H, we have Bρpxq Ă M and it is known that the function above for

stationary varifolds satisfies the monotonicity formula [35, Sections 17 and 40]: Θk
xpV, ρq

is non-decreasing in ρ. A similar monotonicity formula for the case BM ‰ H can be found

in [19, Theorem 2.3]. Also, it is well known that any tangent varifold of a stationary

varifold is a stationary Euclidean cone and Θk
xpC, ρq “ ΘkpV, xq for any C P VarTanpV, xq

and for all ρ ą 0. We will write that as Θk
xpC,8q “ ΘkpV, xq.

2.4 Cell Complex

Here we follow the notations of Marques and Neves [23, Section 7].

For each m P N, we denote by Im the m-dimensional cube Im “ r0, 1sm.

For each j P N, Ip1, jq denotes the cube complex on I1 whose 1-cells and 0-cells

(vertices) are, respectively,

r0, 3´js, r3´j, 2 ¨ 3´js, ¨ ¨ ¨ , r1 ´ 3´j, 1s and r0s, r3´js, ¨ ¨ ¨ , r1 ´ 3´js, r1s.

We denote by Ipm, jq the cell complex on Im:

Ipm, jq “ Ip1, jq b ¨ ¨ ¨ b Ip1, jq pm timesq.

Then a cell α “ α1 b ¨ ¨ ¨ b αm of Ipm, jq is a q-cell if and only if αi is a cell of Ip1, jq for

each i, and
řm

i“1
dimpαiq “ q. By abuse of notation a q-cell α will be identified with its

support: α1 ˆ ¨ ¨ ¨ ˆ αm.

We denote by Ipn, jqp the set of all p-cells in Ipm, jq.
Let X Ă Ipm, jq be a subcomplex (cubical subcomplex), the cube complex Xpjq is

the union of all cells of Ipm, jq whose support is contained in some cell of X. The set

of all q-cells in Xpjq is denoted by Xpjqq and we say that two vertices x, y P Xpjq0 are

adjacent if there is a 1-cell α P Xpjq1 containing both x and y.

Given i, j P N, the map npi, jq : Xpiq0 Ñ Xpjq0 is defined as follows: npi, jqpxq is the

element in Xpjq0 that is closest to x.
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Definition 2.10. The fineness of a map φ : Xpjq0 Ñ Zn,relpM, BM ;Z2q is defined by

fpφq “ suptMpφpxq ´ φpyqq; x, y are adjacent vertices in Xpjq0u.

2.5 Homotopy

In the following we define the notions of homotopy with fineness follows Marques and

Neves [25].

Definition 2.11. Let φi : Xpkiq0 Ñ Zn,relpM, BM ;Z2q, i “ 1, 2. We say that φ1 is

X-homotopic to φ2 in Zn,relpM, BM ;M;Z2q with fineness δ if we can find k3 P N and a

map

ψ : Ip1, k3q0 ˆ Xpk3q0 Ñ Zn,relpM, BM ;Z2q,

such that

(i) fpψq ă δ;

(ii) ψpri´ 1s, xq “ φipnpk3, kiqpxqq, i “ 1, 2.

Definition 2.12. We say that a sequence of mappings

φi : Xpkiq0 Ñ Zn,relpM, BM ;Z2q

is an pX,Mq-homotopy sequence of mappings into Zn,relpM, BM ;M;Z2q, if each φi is

X-homotopy to φi`1 in Zn,relpM, BM ;M;Z2q with fineness δi and

(i) limiÑ8 δi “ 0;

(ii) suptMpφipxqq; x P Xpkiq0, i P Nu ă 8.

Definition 2.13. Let S1 “ tφ1
i uiPN and S2 “ tφ2

i uiPN be pX,Mq-homotopy sequences of

mappings into Zn,relpM, BM ;M;Z2q. We say that S1 is homotopic with S2 if there exists

a sequence tδiuiPN such that

(i) φ1
i is X-homotopic to φ2

i in Zn,relpM, BM ;M;Z2q with fineness δi;

(ii) limiÑ8 δi “ 0.
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The relation “homotopy with” is an equivalence relation on pX,Mq-homotopy se-

quences of mappings into Zn,relpM, BM ;M;Z2q. So we can define the pX,Mq-homotopy

classes of mappings into Zn,relpM, BM ;M;Z2q. We denote the set of all equivalence classes

by rX,Zn,relpM, BM ;M;Z2qs7.

2.6 Min-Max Definitions

Let Π P rX,Zn,relpM, BM ;M;Z2qs7. For each S “ tφiuiPN P Π, we define

LpSq “ lim sup
iÑ8

maxtMpφipxqq; x P dmnpφiqu.

Definition 2.14. The width of Π is defined by

LpΠq “ inftLpSq : S P Πu.

We say that S P Π is a critical sequence for Π if LpSq “ LpΠq, and the critical set

CpSq of a critical sequence S is given by

CpSq “ KpSq X tV P VnpMq : }V }pMq “ LpSqu,

where

KpSq “
!
V P VnpMq : V “ lim

jÑ8
|φijpxjq| as varifolds, for some subsequence

tφiju Ă S and xj P dmnpφijq
)
.

From Marques and Neves [23, Theorem 15.1] (See also Pitts [31, 4.1 (4)]) we know

that there exist critical sequences for each class Π, and from [31, 4.2 (2)], CpSq is compact

and non-empty.

Definition 2.15. Let X Ă Im be a cubical subcomplex. For p P N and 0 ď k ă n`1, we

say that a continuous map in the flat topology Φ : X Ñ Zk,relpM, BM ;Z2q is a p-sweepout

if the p-th cup power of Φ˚pλkq is nonzero in Hppn`1´kqpX ;Z2q, where λk is the generator

of Hn`1´kpZk,relpM, BM ;Z2q;Z2q.

Obviously, a pp ` 1q-sweepout is a p-sweepout.
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Remark 2.16. In the above definition we used the fact thatHn`1´kpZk,relpM, BM ;Z2q;Z2q
has a generator λk. This is consequence of Almgren Isomorphism Theorem [5], Hurewicz

Theorem and Universal Coefficients Theorem (see Liokumovich, Marques and Neves [22,

Section 2.5]). More precisely,

Hn`1´kpZk,relpM, BM ;Z2q;Z2q “ Z2 “ t0, λku.

Also, the pullback map Φ˚ is the map

Φ˚ : Hn`1´kpZk,relpM, BM ;Z2q;Z2q Ñ Hn`1´kpX ;Z2q,

defined by Φ˚pσqp¨q “ σpΦp¨qq for σ P Hn`1´kpZk,relpM, BM ;Z2q;Z2q.

Remark 2.17. Geometrically, if a map Φ : X Ñ Zk,relpM, BM ;Z2q is a p-sweepout, then

for each point x P M there exists a cycle Φptq, for some t, such that it passes through the

point x ([22], Section 2.5). For the case k “ n, another consequence noted by Gromov

[13] and a consequence of Lusternik-Schnirelmann Theory [9, p. 2-3] is that if U1, . . . , Up

are disjoint open sets in M , then there exists a cycle Φpsq, for some s, that separates each

Ui into two sets of equal area. In particular and roughly speaking, for every set of points

tx1, . . . , xpu Ă M , we can find a cycle Φprq, for some r, so that tx1, . . . , xpu Ă Φprq.

Definition 2.18. A flat continuous map Φ : X Ñ Zk,relpM, BM ;Z2q has no concentration

of mass if

lim
rÑ0

supt}Φpxq}pBrppqzBMq : x P dmnpΦq, p P Mu “ 0.

The set of all p-sweepouts with no concentration of mass is denoted by Pk
p pMq.

Definition 2.19. The p-width of M (of dimension k) is given by

ωk
ppMq “ inf

ΦPPk
p pMq

suptMpΦpxqq : x P dmnpΦqu.

For the case k “ n, we just write PppMq and ωppMq.
As showed by Gromov [14] and later by Guth [15], there exist positive constants c and

C depending only on pMn`1, gq such that

cp
1

n`1 ď ωppMq ď Cp
1

n`1 (3)
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for all p P N.

2.7 Min-Max Theorem

In this section we will talk about the existence of Z2-almost minimizing varifolds with

free boundary. The main theorem will be consequence of Pitts [31], Marques and Neves

[23] and Liokumovich, Marques and Neves [22].

Definition 2.20. Let U Ă M be a relatively open subset, we say that a varifold V P Vk

is Z2-almost minimizing in U with free boundary if for every ǫ ą 0 we can find δ ą 0 and

T P Zk,relpM, BM ;Z2q with FpV, |T |q ă ǫ and such that the following property holds true:

if T “ T0, T1, . . . , Tm P Zk,relpM, BM ;Z2q with

‚ supportpT ´ Tiq Ă U for i “ 1, . . . , m;

‚ FpTi ´ Ti´1q ď δ for i “ 1, . . . , m and

‚ MpTiq ď MpT q ` δ for i “ 1, . . . , m

then MpTmq ě MpT q ´ ǫ.

Roughly speaking, it means that we can approximate V by a varifold induced from a

current T such that for any deformation of T by a discrete family supported in U, and

with the mass not increasing too much (parameter δ), then at the end of deformation the

mass cannot be deformed down too much (parameter ǫ).

A varifold V P VkpMq is said to be Z2-almost minimizing in annuli with free boundary

if for each p P supportpV q there exists r ą 0 such that V is Z2-almost minimizing in the

annuli M X As,rppq “ M X BrppqzBsppq for all 0 ă s ă r. If p R BM, we require that

r ă distpp, BMq. By Proposition 2.5 (iii), this definition with respect to As,rppq or As,rppq
is equivalent.

As shown in Pitts ([31], Theorem 3.3), if V P VkpMq is Z2-almost minimizing in

a relatively open set U Ă M with free boundary, then V is stationary in U with free

boundary.

When BM “ H, we do not need use the expression ‘with free boundary’.

In the following, we talk about the existence of such varifolds. First of all, we can

do a tightening process to a critical sequence S P Π so that every V P CpSq becomes a

stationary varifold with free boundary. For the case without boundary this is proved in

[31] and [23]. For the case with boundary, we discuss the proof below.
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Theorem 2.21. Let Π P rX,Zn,relpM, BM ;M;Z2qs7. For each critical sequence S˚ P Π,

there exists another critical sequence S P Π such that CpSq Ă CpS˚q and each V P CpSq
is stationary in M with free boundary.

Proof. The proof of this result is essentially the same as [23, Theorem 8.5]. The only

modifications are the use of Theorems 13.1 and 14.1 of [23], as noted in [19, Theorem

4.17]. In place of [23, Theorem 14.1] we use [22, Theorem 2.11]; and a compatible version

of [23, Theorem 13.1] follows from [22, Lemma A. 1] in the same way that the [23, Theorem

13.1] follows from [23, Lemma 13.4].

With the tightening process above we can prove the existence of a Z2-almost mini-

mizing varifolds with free boundary such that it reaches the width of a chosen pX ;Mq-
homotopy class Π P rX,Zn,relpM, BM ;M;Z2qs7. For BM “ H, it was first proved by Pitts

[31, Theorem 4.10] with maps in cubical domains for 1 ď k ď n and later by Marques and

Neves [25, Theorem 2.9] for cubical subcomplex domains when k “ n. For the case with

boundary, a version for cubical domains was proved by Li and Zhou [19, Theorem 4.21].

We present below a version for the case BM ‰ H and take maps in cubical subcomplex

domains when k “ n.

Theorem 2.22. For any Π P rX,Zn,relpM, BM ;M;Z2qs7, there exists V P IVnpMq such

that

(i) }V }pMq “ LpΠq;

(ii) V is stationary in M with free boundary;

(iii) V is Z2-almost minimizing in small annuli with free boundary.

Proof. Using the previous theorem, we can follow the same procedure in the proof of [31,

Theorem 4.10] (see also [19, Theorem 4.21]). To prove that V is Z2-almost minimizing in

small annuli with free boundary on BM, just do as in the proof of [19, Theorem 4.21].

When BM “ H, as noted by Aiex [2, Theorem 4.4], if we take Φ : X Ñ ZkpM ;Z2q a

p-sweepout with no concentration of mass and define ΠΦ the class of all flat continuous

maps Ψ : X Ñ ZkpM ;Z2q with no concentration of mass that are flat homotopic to Φ

and define

LpΠΦq “ inf
ΨPΠΦ

sup
xPX

MpΨpxqq,
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then the same conclusion of the theorem above is still true.

We present the most useful result for us of this section.

Corollary 2.23. For p P N and each ǫ ą 0, we can find V P IVnpMq such that

(i) ωppMq ď }V }pMq ď ωppMq ` ǫ;

(ii) V is stationary in M with free boundary;

(iii) V is Z2-almost minimizing in small annuli with free boundary.

Proof. Note that the results in Section 3.3 of Marques and Neves [25] can be extended

for compact manifolds (with or without boundary) from the results in Section 2 of Lioku-

movich, Marques and Neves [22]. So we can use the results from Section 3.3 of [25].

By definition we can find Φ : X Ñ Zn,relpM, BM ;Z2q a p-sweepout with no concentra-

tion of mass such that suptMpΦpxqq : x P dmnpΦqu ď ωppMq ` ǫ. From 3.6 of [25] there

exists an pX,Mq-homotopy sequence of mappings S “ tφiuiPN P Π associated. By 3.7 and

3.9 (ii) of [25] we can extended this sequence to a sequence tΦiuiPN of maps continuous in

the mass norm and homotopics to Φ in the flat topology for large i. Moreover

LpΠq ď LpSq “ lim
iÑ8

sup suptMpΦipxqq : x P Xu ď sup
xPX

MpΦpxqq.

As Φ is a p-sweepout and Φi is flat continuous and homotopic to Φ for large i, then

Φi is also a p-sweepout for large i with no concentration of mass by 3.5 of [25]. Also from

3.9 (i) of [25] we have that trΦiuiPN P PppMq for each rS “ trφiuiPN P Π and for large i.

Together with the above inequality we conclude that

ωppMq ď LpΠq ď sup
xPX

MpΦpxqq ď ωppMq ` ǫ.

The remaining items are deduced from the above theorem.



32

3 ONE DIMENSIONAL STATIONARY VARIFOLDS

In this section we will talk about results related to one dimensional stationary varifolds.

In that case, we have a classical result about interior regularity due to Allard-Almgren

[4] which says that those varifolds are geodesic networks. Our main result about free

boundary geodesic networks is used to give an upper bound for the density. When M

is the unit ball B2 Ă R
2, or a planar full ellipse E2 Ă R

2 sufficiently close to B2, we

will be able to classify the free boundary geodesic networks, provided they are Z2-almost

minimizing in annuli and has mass bounded by 6. Also we will prove our main theorem

about regularity (Main Theorem A), which it will be important to show that the varifold

obtained in the Min-Max Theorem is a free boundary geodesic network.

3.1 Free Boundary Geodesic Networks

We now define in this section certain 1-dimensional stationary varifolds whose support

is given by geodesic segments. We follow the notations of Aiex [2].

Definition 3.1. Let U Ă M be a relatively open set. A varifold V P IVpMq is called

a free boundary geodesic network in U if there exist geodesic segments tα1, . . . , αlu Ă M̊

and tθ1, . . . , θlu Ă Z` such that

(i) V U “
lÿ

i“1

vpαi X U, θiq;

(ii) The set of junctions is the set ΣV “ Yl
i“1pBαiq X U. If p P ΣV , then there exist

geodesic segments tαi1 , . . . , αimu Ă M̊ for some m “ mppq and we require m ě 3 for

p P M̊. Each geodesic segment is parameterized by arc-length with initial point p,

mÿ

k“1

θik 9αikp0q “ 0, if p P ΣV X M̊, and (4)

mÿ

k“1

θik 9αikp0q K BM, if p P ΣV X BM. (5)

A junction p P ΣV X M̊ is said to be singular in M̊ if there exist at least two geodesic

segments with θik 9αikp0q ‰ ´θik1
9αik1

p0q, and regular in M̊ otherwise. In other words, an

interior regular junction belong to the intersection of longer geodesic segments. When

p P ΣV X BM, we said that it is regular if 9αikp0q K BM for every αi such that p P αi. A
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triple junction is a point p P ΣV such that it belongs to exactly three geodesic segments

with multiplicity 1 each. Obviously a triple junctions is not regular in M̊.

We can deduce the following properties as did in [2]:

Proposition 3.2. (Proposition 3.2 and Corollaries 3.3 and 3.4 of [2]). Let V be as above.

(i) V is stationary in U ;

(ii) Θ1pV, xq “
sÿ

k“1

θik
2

for x P
sŞ

k“1

vpαik X U, θikq;

(iii) If Θ1pV, xq ă 2 for all x P spt}V } X M̊, then every p P ΣV X M̊ is a triple junction;

(iv) If Θ1pV, xq ď 2 for all x P spt}V }XM̊, then either ΣV XM̊ contains a triple junction

or all junctions are regular in M̊ and the geodesic segments of each junction have

multiplicity one;

(v) If Θ1pV, xq ď 1 for x P spt}V } X BM, then a junction on x is given by a geodesic

segment with multiplicity one or two and orthogonal to BM, or by two geodesic

segments with multiplicity one each and with the same angles with respect to BM.

3.2 Upper Bound for the Density

Now we prove the main property for us about free boundary geodesic networks. We

do similar results to Proposition 3.6 and Theorem 3.7 from Aiex [2], but in a different

way.

Lemma 3.3. Consider M2 a compact region in R2 with non-empty boundary and V P
IV1pMq a free boundary geodesic network. For each pi P ΣV X BM, let

Fi “
mÿ

k“1

θik 9αikp0q,

as in the Definition 3.1 (ii).

(ii) For M2 “ B2 we have that
ř
i

|Fi| “ }V }pMq.

(ii) If M2 Ñ B2 in the manifold sense, then
ÿ

i

|Fi| Ñ }V }pMq. More precisely, let

ε ą 0. For M2 sufficiently close to B2, depending only on a parameter C ą 0, we

have
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ˇ̌
ˇ}V }pMq ´

ÿ

i

|Fi|
ˇ̌
ˇ ă ε (6)

for every free boundary geodesic network V P IV1pMq with }V }pMq ă C.

Proof. Denote by Ji the i-th junction of V. Each segment of V is determined by two

junctions Ji and Jj . Denote that segment by αi,j. Also we have two angles φi,j and φj,i

associated, which are the intern angles of the respective junctions in the triangle given by

the origin O and the junctions Ji and Jj (see Figure 1). Note that, in those notations, we

have αi,j “ αj,i.

Figure 1

O

Jj

Ji

Jl
ψl,k

φl,k

Jk

αi,j

ri rj

φi,j
φj,i

b

b

b

b
b

Source: Own construction

Suppose that each segment αi,j has multiplicity θi,j, for some θi,j P N. Note that

ÿ

i,j

θi,j cospφi,jq “ 0, (7)

for all i or j fixed such that Ji P M̊, or Jj P M̊, respectively. Indeed, cospφi,jq is the

projection of 9αi,jp0q (recall that | 9αi,jp0q| “ 1) on the straight line that passes through O

and Ji. So, the condition (4) concludes.

Let ri be the distance from the origin O to the the junction Ji. The length |αi,j| of

each αi,j is given by

|αi,j| “ pri cospφi,jq ` rj cospφj,iqq.
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Using this and (7),

}V }pMq “
ÿ

i,j

θi,j|αi,j | “
ÿ

i,j

θi,jri cospφi,jq “
ÿ

k,l

θk,lrl cospφl,kq for Jl P BM. (8)

For Jl P BM, let ψl,k be the angle between the segment αl,k and the normal to BM at

Jl (see Figure 1). Thus,

|Fl| “
ÿ

k

θl,k cospψl,kq.

If M “ B2, then rl “ 1 and φl,k “ ψl,k for all l, k such that Jl P BM. So,

}V }pB2q “
ÿ

l

|Fl|.

For M close to B2, we have rl « 1 and φl,k « ψl,k for all l, k such that Jl P BM. Then,

}V }pMq “ p1 ˘ ε1q
ÿ

l

|Fl|

for some ε1 ą 0, which depends only on the approximation M « B2. Note that, as

}V }pMq ă C, we see by the above expression that
ř

l |Fl| ă C1 “ C1pCq for some

constant C1 ą 0. Therefore, taking ε1 “ ε{C1, we obtain

ˇ̌
ˇ}V }pMq ´

ÿ

l

|Fl|
ˇ̌
ˇ ď ε1

ÿ

l

|Fl| ă ε1C1 “ ε.

Note that, when V is a smooth free boundary submanifold of M, the above result is an

immediate consequence of the Divergence Theorem. Furthermore, we can find the same

formula (8) applying the Divergence Theorem at each segment of V along of the position

vector.

From the above theorem we have the following upper bound for the density. Compare

with Aiex [2, Theorem 3.7].

Theorem 3.4. Let V P IV1pB2q be a free boundary geodesic network. If }V }pB2q ă m`1

for some integer positive m, then

(i) Θ1pV, xq ď m

2
for all x P intpB2q.

(ii) Θ1pV, xq ď m

4
for all x P BB2.
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Futhermore, let V P IV1pM2q be a free boundary geodesic network and 0 ă ε ă m` 1

such that }V }pM2q ă m`1´ε, where M2 is a compact region of R2 with convex boundary,

sufficiently close to B2 and satisfying (6) for C “ m ` 1 ´ ε. Then, the conclusions piq
and piiq above are still true for M2 in place of B2.

Proof. We can extend the geodesic network V P IV1pM2q for a varifold rV P V1pR2q (not

necessary a geodesic network) in the followings way: for each pi P ΣV X BM we take the

semi-straight line ri starting in pi with direction ´Fi “ ´ řm

k“1
θik 9αikp0q and multiplicity

|Fi|. Then rV is a stationary varifold on R2.

Let x P spt}V }, di “ distppi, xq, and φi be the angle between ÝÝÝÑ
pi ´ x and ri at pi. Also,

consider d0 as the minimal value of s such that Bspxq contains M. See Figure 2.

Figure 2

M

b

x

Bspxq

bpi

di

b

φi

ri

V

Source: Own construction

As M has convex boundary, we have that each ri does not intersect M in R2zM. So,

for s ě d0 we obtain the following expression for the monotonicity formula:

Θ1

xpsq “ }rV }pBspxqq
2s

“
}V }pMq ` ř

i

|Fi|
´
di cospφiq `

a
d2i cos

2pφiq ´ pd2i ´ s2q
¯

2s

Consider first the case M2 close to B2 and }V }pMq ă m ` 1 ´ ε. By the expression

above Θ1
xpsq Ñ 1

2

ř
i |Fi| for s Ñ 8. And by the above theorem we know that

ř
i |Fi| is
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close to }V }pMq, so for s large

Θ1prV , xq ď Θ1

xpsq ă m` 1 ´ ε

2
ă m

2
` 1

2
.

Where we used the fact that the function Θ1
xpsq is non-decreasing for each x fixed, so

Θ1px, rV q ď Θ1
xpsq for all s ą 0.

(i) If x P spt}V } X M̊, then Θ1px, V q “ Θ1px, rV q ă m{2 ` 1{2. By the property piiq of

3.2, we actually have that Θ1px, V q ď m{2.
(ii) If x P spt}V } X BM, then Θ1px, V q “ Θ1px, rV q{2 ă m{4 ` 1{4. Again, by the

property piiq of 3.2, we actually have that Θ1px, V q ď m{4.
For the case M2 “ B2 and }V }pB2q ă m` 1, just take ε “ 0 in the above expressions.

3.3 Free Boundary Geodesic Networks with Low Mass

In this section we describe the free boundary geodesic networks with low mass when

M2 is the unit ball B2 or a full ellipse E2 sufficiently close to B2.

We will need the following important theorem from Aiex [2]:

Theorem 3.5. ([2], Theorem 4.13). Given V P IV1pMq a geodesic network with free

boundary and p P ΣV X M̊ . If V is Z2-almost minimizing in annuli with free boundary at

p, then

Θ1pV, pq P N.

Remark 3.6. This theorem is proved in [2] for closed manifolds but it still holds for

manifolds with boundary, provided that p is a junction of V in the interior of M , as

established above. Indeed, the only care are the use of the Constancy Theorem, the

Compactness Theorem for relative flat cycles and the lower semi-continuity of M. The

last two are proved for the context with boundary in Liokumovich, Marques and Neves

[22]: Theorem 2.3 and Proposition 2.4, respectively. Also, if we consider the open sets

in Section 4 from [2] as open sets in the interior of M , then the Constancy Theorem

is still applicable in the situations that appear in [2, Section 4]. Finally, to prove the

Theorem 4.13, this author uses the theorems of Section 4 for any sufficiently small open

ball containing p.
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For k ě 3, let Pk be a regular k-sided polygon inscribed in the unit circle. Here

P2 will be a diameter of the unit ball B2. Clearly, for k ě 2 we have that Pk and rPk

are distinguished by a rotation. Also, note that P2, P2 ` rP2, P3, P4 and P5 are the only

ones such that the perimeter |Pk| is smaller than 6, whose values are 2, 4, 3
?
3, 4

?
2 and

10 sinp
a
π{5q, respectively.

More generally, we will use the term closed k-polygon, k ě 3, to denote a periodic bil-

liard trajectory inside of a domain Ω with boundary BΩ, which is obtained by k reflexions

on Ω.

Theorem 3.7. Let V P IVpB2q be a free boundary geodesic network and Z2-almost mi-

nimizing in annuli with free boundary in B2. If 0 ă }V }pB2q ă 6, then V “ Pk for some

k “ 2, . . . , 5, or V “ P2 ` rP2.

Proof. From Theorem 3.4 we know that Θ1pV, xq ď 5{2 for x P M̊, and Θ1pV, xq ď 5{4 for

x P BM. Now using Proposition 3.2 (ii) and Theorem 3.5, we deduce that Θ1pV, xq “ 1

or 2 for x P M̊ , and Θ1pV, xq “ 0.5, or 1 for x P BM. Therefore, Proposition 3.2 (iv)

says that all junctions of V in M̊ are regular and the geodesic segments of each junction

have multiplicity one. Also, Proposition 3.2 (iv) and (v) say that each segment of V

has multiplicity one or two and touches BM orthogonally, or has multiplicity one and

touches BM making a reflexion generating another segment with multiplicity one also. As

}V }pB2q ă 6, we claim that: if V touches BM orthogonally in some point, we have that

V will be a diameter pV “ P2q or two diameters pV “ P2 ` rP2q of B2 (see Figure 3 (a));

and if V does a reflexion in some point of BM, then V will be a regular polygon Pk for

some k “ 3, 4 ou 5 (see Figure 3 (b), (c) and (d)).

Figure 3

(a) (b) (c) (d)

P3 P4 P5

P2

rP2

O b

Source: Own construction

In fact, for k ě 6 we have |Pk| ě |P6| “ 6. From five reflexions, we can have non-convex
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closed polygons with self-intersection as in the Figure 4 (a) and (b). As a closed k-polygon

in B2 has all the sides with the same length, we have that each side is tangent to the

same circle Ck concentric with BB2 (see Figure 4 (c)), in particular the perimeter of that

k-polygon is at least |Ck|. A regular convex k-polygon in B2 gives a unique round around

Ck, and a non-convex (closed) k-polygon in B2 gives at least two rounds around Ck. So,

if the radius of Ck is bigger than 0.5, then the perimeter of a non-convex k-polygon is

bigger than 2 ¨2 ¨0.5π ą 6. Otherwise, if the radius of Ck is less or equal to 0.5 (see Figure

4 (d)), then each side of a non-convex k-polygon is bigger than 1.7, and so the perimeter

is bigger than 5 ¨1.7 ą 6, since for non-convex k-polygons we have k ě 5. Therefore, there

is not candidates for V in the set of non-convex k-polygons.

Figure 4

(a) (b) (c) (d)

b bb b

Source: Own construction

Remark 3.8. In the theorem above the case V “ P2 ` rP2 is the only possibility for V to

have multiplicity, which occurs if P2 “ rP2.

A similar result holds replacing B2 by a planar full ellipse E2 sufficiently close of B2.

We denote by PE
k , for k ě 3, the closed convex polygon (not necessary regular) inscribed

in E2 defined by k reflexions on k different points of BE2. Here, PE
2 will be the smallest

or the largest diameter of E2. Cleary, as E2 is close to B2, we have that PE
k is close to

Pk. That polygons PE
k are examples of closed billiard trajectories in ellipses (Poncelet

polygons). We will see more properties of polygons in the proof below.

Corollary 3.9. Let E2 be a planar full ellipse and 0 ă R ă 6 be a real number. For

E2 sufficiently close to B2, depending only in the parameter R, the following is true: if

V P IV1pE2q is a free boundary geodesic network such that it is Z2-almost minimizing

in annuli with free boundary in E2 and 0 ă }V }pE2q ă R, then V “ PE
k for some

k “ 2, . . . , 5, or V “ PE
2

` rPE
2
.
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Proof. Consider E2 an planar full ellipse which boundary is given by an ellipse x2{a2 `
y2{b2 “ 1 for a ą b with focus F1, F2 P Ox (see Figure 5 (a)). Let d and D the values of

the smallest and largest diameters of E2, respectively. So, d “ 2b and D “ 2a. Also, here

we will always consider E2 sufficiently close to B2, so d « D « 2, for example.

Take E2 « B2 such that it satisfies (6) from Lemma 3.3 for C “ 6 ´ R. So we can

use the Theorem 3.4 for C “ 6 ´ R “ 5 ` 1 ´ ε for some ε ą 0 and, as in the proof

of the theorem above, applying Proposition 3.2 and Theorem 3.5 we get: all junctions

of V in M̊ are regular and the geodesic segments of each junction have multiplicity one;

each segment of V has multiplicity one or two and touches BM orthogonally, or has

multiplicity one and touches BM making a reflexion generating another segment with

multiplicity one also. Therefore, V could be the smallest or the largest diameters of E2,

since they touch BE2 orthogonally (see Figure 5 (a)). Also, V could be PE
2 ` rPE

2 , and

then }V }pE2q “ 2d, d ` D or 2D, since d « D « 2 and }V } ă R ă 6. We could have V

as in the Figure 5 (b): a segment touching BE2 orthogonally at A1, making a reflexion

at p0, bq P BE2 with respect to BE2, generating another segment which will be touch

orthogonally BE2 at A2 “ p´xpA1q, ypA1qq. This can always happen for a ąą b. However,

for E2 close to B2 we have a, b « 1, and the cases V “ PE
2

or V “ PE
2

` rPE
2

are the only

possibility such that V touches BM orthogonally in some point and }V }pE2q ă R. Indeed,

considering pa sinptq, b sinptqq the polar coordinates on BE2 for t P r0, 2πq, and taking

without loss of generality (by symmetry ) A P BE2 such that A “ pa sinptAq, b sinptAqq for

tA P p3{4π, 2πq, we claim that if a segment AB Ă E2 touches BM orthogonally at A, then

AB is not orthogonal to BE2 at B P BE2, and the segment BC, reflexion of AB at B, is

also not orthogonal to BE2 at C (See Figure 5 (c)). In fact, the equation of the straight

line which is perpendicular to BE2 at A is given by

y “ a tanptAq
b

x` sinptAq
ˆ
b ´ a2

b

˙
.

We will require that a2 ď 2b2, which is a condition satisfied for E2 « B2, since

a, b « 1. Take x “ 0 above, we see that this condition implies that ypIq ă b, where I is

the intersection of AB with Oy (Figure 5 (c)).

In an ellipse we have the following fact: if AB is orthogonal to BE2 at A, then AB

bisects the angle =F1AF2. In particular, AB passes through F1F2 and, since ypIq ă b,

we have tB P pπ{2, πq, where B “ pa sinptBq, b cosptBqq. Also, if AB was orthogonal to
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Figure 5
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BE2 at B, the equation of the straight line through B will be the same as above, which

implies that tanptAq “ tanptBq and sinptAq “ sinptBq, which contradicts the fact that

tA P p3{4π, 2πq and tB P pπ{2, πq. So, AB is not orthogonal to BE2 at B and there exists

BC, reflexion of AB at B. Remember from billiard theory in ellipses that, if a segment

in E2 passes through F1F2, then all the segments in that billiard trajectory (segments

reflected at BE2) pass through F1F2 (see for example [18, Theorem 4]). So BC passes

through F1F2.

Supposing thatBC is orthogonal to BE2 at C, the same argument applied for AB could

be apply to BC to get that tC P p3{4π, 2πq and tC ‰ tA, where C “ pa sinptCq, b cosptCqq.
Taking the equations of the straight lines that are perpendicular to A and C, respectively,

we would have that they intersect at B “ pa cosptBq, b sinptBqq, then

a tanptAq
b

a cosptBq ` sinptAq
ˆ
b ´ a2

b

˙
“ a tanptCq

b
a cosptBq ` sinptCq

ˆ
b ´ a2

b

˙

6
a2

b
cosptBqptanptAq ´ tanptCqq `

ˆ
b2 ´ a2

b

˙
psinptAq ´ sinptCqq “ 0.

As tA, tC P p3{4π, 2πq, tA ‰ tB and cosptBq, pb2 ´ a2q ă 0, we see that the left side of

the last expression above is not equal to zero. Therefore, BC is not perpendicular to BE2

at C and there will be another reflexion CD at C (see Figure 5 (c)).

Supposing that V ‰ PE
2

and V ‰ PE
2

` rPE
2
, there exists a segment of V which is not

orthogonal to BE2. By the properties of billiard trajectories in ellipses ([18, Theorem 4]),

we know that if some segment passes through F1F2, then all the segments will be pass

through F1F2. Moreover, by the above arguments, there will be at least three segments

that pass through F1F2. We consider E2 « B2 such that the length of each of these



42

segments is at least R{3, since the length of each of these segments tending to 2 as E2

tends to B2 and R ă 6. So, there is not a segment of V that passes through F1F2 for

every V with }V }pE2q ă R. Since any segment that is orthogonal to BE2 have to pass

through F1F2, we see that V is a closed k-polygon. Also, as the segments of V do not pass

through F1F2, we have by [18, Theorem 4] that all the segments of that closed k-polygon

is tangent to the same ellipse BpE 1
kq, where E 1

k is a planar full ellipse inside of E2 and with

the same focus of E2. The Poncelet theorem (see for instance [32, Theorem 4]) says that

if a closed k-polygon P is tangent to BE 1
k, then any other polygon Q that is tangent to

BE 1
k is also a closed k-polygon with the same perimeter of P. Moreover, for each k ě 3

there exists a unique E 1
k such that all the convex closed k-polygons PE

k have its trajectory

tangent to BpE 1
kq (see for example [33, Section 4]). In particular for a fixed k ě 3, all the

polygons PE
k have the same perimeter. In the Figure 6 (a), (b) and (c) we see examples

of PE
3
, PE

4
and PE

5
, respectively. Also, we see E 1

1
, E 1

2
and E 1

3
, respectively.

Figure 6
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Note that, due to uniqueness existence of each E 1
k for PE

k , we have that |BpE 1
kq| ă

|BpE 1
k`1

q| for E 1
k and E 1

k`1
associated to PE

k and PE
k`1

, respectively. Indeed, let A P BE2

and take a segment starting at A and tangent to BpE 1
kq. This segment generates a billiard

trajectory that is always tangent to BpE 1
kq ([18, Theorem 4]), so by the Poncelet theorem

this billiard trajectory is also a k-polygon rPE
k . In the same way we obtain a pk`1q-polygon

rPE
k`1

through A and tangent to BpE 1
k`1

q. As the intern angle of rPE
k`1

at A is bigger than

the intern angle of rPE
k at A, we see that E 1

k`1
is bigger than E 1

k (see Figure 7 (a)).

We also require E2 « B2 such that 2D ă |PE
3 |, |PE

4 |, |PE
5 | ă 6, |PE

k | ą R for k “
6, ¨ ¨ ¨ , 11, and |BpE 1

12
q| ą 6 since |Pk| ą |P6| “ 6 for k ą 6, and |C12| ą 6. As |PE

k | ą
|BpE 1

kq| ą |BpE 1
k´1

q|, we have that |PE
k | ą R for all k ě 6. So the only candidates for V in

the set of closed convex k-polygons are PE
3
, PE

4
and P 5

E (Figure 6).
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Finally, with the same argument as in the proof of the theorem above, we see that all

closed non-convex polygons in E2 have perimeter bigger than 6, so there is not candidates

for V in that set. Indeed, the estimates there are strictly, so for E2 « B2 and replace Ck

by E 1
k with average radius approximately 0.5, we conclude that the perimeters are bigger

than 6. Compare the Figures 4 (c) and 7 (c). In the Figure 7 (b) below, we have an

example of a closed non-convex 5-polygon.

Figure 7
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Source: Own construction

Remark 3.10. As we saw above, for a fixed k ě 3, all the polygons PE
k have the same

perimeter. So, the corollary above says more: there are only six possibles values for

}V }pE2q : d, d` D, 2D, |PE
3

|, |PE
4

| or |PE
5

|.

3.4 Replacement and Regularity

The regularity of one dimensional stationary integral varifolds for open sets was proven

by Allard and Almgren ([4], Section 3). As noted by Aiex ([2], Theorem 3.5), the regular

structure described in [4] is exactly our definition of geodesic network. Precisely:

Theorem 3.11. ([4]; [2], Theorem 3.5). Let M be a Riemannian manifold, U Ă M̊ open

and K Ă U compact. If V P IV1pMq is a stationary varifold in U, then V K is a geodesic

network.

Definition 3.12. Let T P ZkpM ;Z2q and U Ă M be a relatively open subset. We say

that T is locally mass minimizing in U if for every p P sptpT q XU there exists rp ą 0 such

that Brpppq X M Ă U and for all S P ZkpM ;Z2q such that sptpT ´ Sq Ă Brpppq X M we

have

MpSq ě MpT q.
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The definition above is equivalent if we take Fermi half-balls rB`
rp

ppq instead of Eu-

clidean balls Brpppq restricted to M.

The following theorem is about replacements of almost minimizing varifolds, which is

one of the most important property of this kind of varifolds. Roughly speaking, we can

replace an almost minimizing varifold V by another almost minimizing varifold V ˚, which

has better regularity properties.

Theorem 3.13. Let U Ă M be a relatively open set, K Ă U compact and V P VkpMq
be an Z2-almost minimizing varifold in U with free boundary. There exists V ˚ P VkpMq
such that

(i) V ˚ pMzKq “ V pMzKq;

(ii) }V ˚}pMq “ }V }pMq;

(iii) V ˚ is Z2-almost minimizing in U with free boundary;

(iv) V ˚ P IVpU X M̊q;

(v) V ˚ U “ limiÑ8 |Ti| as varifolds for some tTiu P Zk,relpM, pMzUq Y BM ;Z2q such

that each T 0
i is locally mass minimizing in intMpKq.

Proof. The proof follows as in Proposition 5.3 from [19], replacing Lemmas 3.10 and 3.7

by Theorem 2.3 and Proposition 2.4 from [22], respectively. See also Theorems 3.11 and

3.13 from [31] to get (iv) from (iii).

The varifold V ˚ in the above theorem is called of a replacement of V in K.

In the next lemma we will prove a weak regularity for varifolds that are Z2-almost

minimizing with free boundary in an open set. As we will see in the Theorem A, we have

actually a more strong regularity in the one-dimensional case. Restrict to M̊, that strong

regularity was expected since V is Z2-almost minimizing, thus V is stationary and then

holds the interior regularity (Theorem 3.11).

Lemma 3.14. (Weak Regularity of Replacements) Under the same hypotheses of Theorem

3.13, assume that BM is strictly convex and take V an one-dimensional varifold. Then

spt}V ˚}XintMpKq is a free boundary geodesic network (possibly infinite) without junctions

in pK X M̊qzBrelK, such that each geodesic segment has to touch BrelK Y BM, and they

can only touch BM X intMpKq orthogonally.



45

Proof. From [2, Proposition 4.6] we know that if T is an one-cycle that is locally mass

minimizing in an open set W Ă M̊ and Z Ă W is compact, then T Z is a geodesic

network (finite) such that each geodesic segment has endpoints in BZ and those segments

do not intersect each other, since the coefficients are in Z2. So, for a relatively compact

K Ă M and T 0
i locally mass minimizing in intMpKq (as in Theorem 3.13, (v)), we have

that T 0
i intMpKq is given by geodesic segments without intersecting each other and each

segment that touches BM X intMpKq is orthogonal to BM, in particular |T 0
i | intMpKq

is a free boundary geodesic network (possibly infinite). Indeed, as T 0
i is locally mass

minimizing, each segment of T 0
i that touches BM is locally the shortest path, so it is

orthogonal to BM (see Figure 8 (a)).

Figure 8
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Source: Own construction

As V ˚ is given by the limit as in the Theorem 3.13 (v), we using the properties from

geodesics and the fact that BM is strictly convex to see that V ˚ is given by geodesic

segments that can only touch BM X intMpKq orthogonally. In fact, the strict convexity

implies that any geodesic segment can only touch BM only in its endpoints. So, given

a limit segment α that touches BM at p P BM, we have that there exists a sequence of

geodesic segments converging to α such that each segment of that sequence touches BM
in a neighborhood of p. Therefore, α will be orthogonal to BM at p (see Figure 8 (b)).

Moreover, as the segments of T 0
i do not intersect each other, we get that in the limit the

geodesic segments of V ˚ can have multiplicity, but two distinct segments can not intersect

each other.

We called the result above of weak regularity, because we do not know if the number of

geodesic segments could be infinite. However, the above result is true for any codimension.

Let p P R2 and let C P VpR2q be a varifold such that C “ řl
i“1

vpri, miq for some
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l, m1, ¨ ¨ ¨ , ml P N, and each ri is some semi-straight line from p. We will call C of a cone

with vertex at p.

The next proposition will be very important to prove our main result about regularity

(Theorem A). Essentially, we will use it to glue replacements on overlapping annuli (see

Step 2 in the proof of Theorem A)

Proposition 3.15. Let C P IV1pR2q be a stationary cone with vertex at the origin 0 P R2,

and such that it is Z2-almost minimizing in B2p0q Ă R2. Then C “ vpr,mq, for some r a

straight line passing through the origin 0, and for some m P N.

Proof. We will use the following fact: as C is Z2-almost minimizing in B2p0q, then each

varifold tangent is also an integral and stationary varifold on TxR
2 ” R2 such that it is

Z2-almost minimizing in any bounded open subset of R2 [31, Theorems 3.11 and 3.12(1)].

As C is a cone, we have C “ řl

i“1
vpri, miq for some l, m1, ¨ ¨ ¨ , ml P N, and each ri is

some semi-straight line from the origin 0. So,

Θ1pC, 0q “ Θ1

0
pC,8q “

lÿ

i“1

mi

2
.

By Theorem 3.5 we actually have that Θ1pC, 0q “ k for some k P N.

It is sufficient to prove the result restricted to B2p0q, that is, to prove that C is a

straight line with possibly with multiplicity on B2p0q. We will prove it by induction on

Θ1
0pC,8q. Indeed, the result is obvious for Θ1

0pC,8q ď 1. Suppose that Θ1
0pC,8q “ k`1,

and that the result is true for Θ1
0
pC,8q ď k, k ě 1. Let C˚ be a replacement of C on

B1p0q, we know that C˚ is integral, stationary and Z2-almost minimizing in B2p0q. Also,

}C˚}pB2p0qq “ }C}pB2p0qq, C˚ pB2p0qzB1p0qq “ C pB2p0qzB1p0qq, and together with

the monotonicity formula we get

Θ1

ypVarTanpC˚, yq,8q “ Θ1pC˚, yq ď Θ1

ypC˚,8q “ Θ1

0pC,8q,

where y P BB1p0q X spt}C˚}.
We have two cases: Θ1pC˚, yq “ Θ1

ypC˚,8q for some y P BB1p0q X spt}C˚}, or

Θ1pC˚, yq ă Θ1
ypC˚,8q for any y P BB1p0q X spt}C˚}. In the first case, C˚ will be a

cone with vertex at y. This implies that C “ mry, for some m P N and ry is the straight

line that passes through y and the origin, since C˚ pB2p0qzB1p0qq “ C pB2p0qzB1p0qq
(see Figure 9).
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Figure 9

y
ry

B1p0q

B2p0q

0

b

b

b

Source: Own construction

In the second case, Θ1
xpVarTanpC˚, yq,8q ď k for any y P BB1p0q, since Θ1

0
pC,8q “

k ` 1. So, as VarTanpC˚, yq is Z2-almost minimizing in B2p0q, we can use the induction

hypothesis for each y to get that VarTanpC˚, yq “ myry for some my P N and ry is the

straight line that passes through y and the origin. As C˚ does not have junctions in B1p0q
(previous Lemma), we conclude that C˚ “ C and then C “ mr for some m P N, and r is

a straight line through the origin (see Figure 9).

The next result is a boundary maximum principle for stationary varifolds with free

boundary in codimension one case.

Theorem 3.16. (Boundary maximum principle [19, Theorem 2.5]). Let U Ă Mn`1 be

a relatively open subset and V P VnpMq be stationary with free boundary in U. Suppose

N ĂĂ U is a relatively open connected subset in M such that

(i) BrelN meets BM orthogonally, if BrelN X BM ‰ H;

(ii) N is relatively strict convex in M ;

(iii) spt}V } Ă N.

Then we have spt}V } X BrelN “ H.

Proof. It follows from the interior maximum principle of White [38, Theorem 1] and the

boundary maximum principle for stationary varifolds with free boundary of Li-Zhou [20,
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Theorem 1.4].

Now we will prove our main theorem about regularity of stationary Z2-almost mini-

mizing with free boundary.

Main Theorem A. Let M2 be a compact Riemannian manifold with non-empty strictly

convex boundary. If V P IV1pMq is a stationary varifold with free boundary such that it

is integral in M and Z2-almost minimizing in small anulli with free boundary, then V is

a free boundary geodesic network.

Proof. Here we follow similarly to the proof of [19, Theorem 5.2] and [8, Proposition 6.3],

with the necessary modifications.

Given p P spt}V } XM̊, we know by the Theorem 3.11 that in a compact neighborhood

around p we have that V is a geodesic network. So, assume that p P spt}V } X BM and

fix r ą 0 such that

r ă 1

4
mintrFermi, ramppq, rortppqu, (9)

where ramppq ą 0 is such that V is Z2-almost minimizing in As,tppq with free boundary for

all 0 ă s ă t ă ram, and rortppq ą 0 is such that two distinct geodesics that are orthogonal

to BM X rB`
δ ppq do not intersect each other in rB`

δ ppq for all 0 ă δ ă rortppq.
Note that, as a consequence of the maximum principle (Theorem 3.16), we have the

following: if W P V1pMq is stationary in rB`
r ppq with free boundary for p P spt}W } and r

as above, then

spt}W } X rS`
t ppq ‰ H for all 0 ă t ď r. (10)

In fact, suppose that there exists rt1 P p0, rs such that spt}W } X rS`
rt1

ppq “ H, then spt}W
rB`

rt1ppq} Ă rB`
rt2ppq for some 0 ă rt2 ă rt1. By the maximum principle (Theorem 3.16) we

conclude that spt}W rB`
rt1

ppq}X rS`
rt2

ppq “ H and we could repeat this argument indefinitely,

which contradicts the fact that p P spt}W }. Using the same argument and suppose only

that W ‰ 0 in rB`
r ppq for some p P BM, we conclude that there exists 0 ă rt ă r such that

spt}W } X rS`
t ppq ‰ H for all 0 ă rt ă t ď r. (11)

Step 1: Constructing successive replacements on two overlapping annuli.
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Fix any 0 ă s ă t ă r. As r ă p1{4qram and V is Z2-almost minimizing in Ars,ram{2ppq
with free boundary for all 0 ă rs ă t ă ram{2, we can use the Theorem 3.13 to get a first

replacement V ˚ of V on K “ As,tppq. The Lemma 3.14 says that

Σ1 :“ spt}V ˚} X As,tppq

is a free boundary geodesic network (possibly infinite). By Theorem 3.13 (iv) we have

that V ˚ is still Z2-almost minimizing in Ars,ram{2ppq with free boundary for all 0 ă rs ă
t ă ram{2, so we can apply again the Theorem 3.13 to get a second replacement V ˚˚ of

V ˚ on K “ As1,s2ppq for 0 ă s1 ă s ă s2 ă t. Again,

Σ2 :“ spt}V ˚˚} X As1,s2ppq

is a free boundary geodesic network (possibly infinite). Let us consider the following

choices: we fix any s1 P p0, sq, and we choose s2 P ps, tq such that VarTanpΣ1, xq is a

straight line transversal to rS`
s2

ppq for all x P p rS`
s2

ppqzBMq, and pα X rS`
s2

ppqqzBM ‰ H
for every geodesic segment α P Σ1. Indeed, fixing s2 P ps, tq, we know by the regularity

of replacements (Lemma 3.14) that VarTanpΣ1, xq is a straight line for any x P As,tppq.
Also, we will have only a finite number of geodesic segments tαiu Ă Σ1 in As,rtppq for

any 0 ă s ă rt ă t. Too see the last one, note that any geodesic segment (with possible

multiplicity) αi P Σ1 XAs,tppq has to touch rS`
t ppq. Indeed, by the Lemma 3.14 each αi has

to touch rS`
s ppq Y rS`

t ppq Y pBM XAs,tppqq and it can only touch BM XAs,tppq orthogonally.

Using that any two orthogonal geodesic segments to BM do not intersect each other in

rB`
r ppq, together with the fact that rS`

s ppq is strictly convex and orthogonal to BM, we

conclude that if αi P Σ1 touches BM X As,tppq, then αi X rS`
s ppq “ H, unless αi touches

rS`
s ppq X BM (see Figure 10). Also, if αi does not touch rS`

t ppq, then its endpoints can

not be on BM X As,tppq, because αi would be a stationary varifold with free boundary,

contracting (11). Then, any αi that touches rS`
s ppq or BM X As,tppq, should touch rS`

t ppq.
Therefore, if there were an infinite number of geodesic segments tαiu Ă Σ1 in As,rtppq, then

there would be an infinite number of geodesic segments from rS`
rt ppq to rS`

t ppq, contradicting

the fact that Σ1 has finite mass. Thus the set tαiu is finite. Finally, using again the strict

convexity of rS`
s2

ppq, each geodesic segment that is tangent to rS`
s2

ppq can not touch rS`
rs2ppq
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for all 0 ă rs2 ă s2. So, by the finitude of the geodesic segments and by (10), we can

choose 0 ă s2 ă t as requested. See Figure 10.

Figure 10
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Note that each αi Ă Σ1 have to touch rS`
t ppq at points in M̊, since rS`

t ppq is orthogonal

to BM.

Step 2: Gluing Σ1 and Σ2 across rS`
s2

ppq.

As before, any geodesic segment (with possible multiplicity) βi P Σ2 X As,s2ppq has to

touch rS`
s2

ppq in points belonging to M̊. Since V ˚˚ is stationary and integral in As1,tppq,
we have by the interior regularity (Theorem 3.11) that each x P spt}V ˚˚} X M̊ X As,tppq
belongs to a finite number of geodesic segments (including multiplicity). In particular,

if x P spt}V ˚˚} X M̊ X rS`
s2

ppq then x belongs to Σ1 X Σ2, since each geodesic segment of

Σ1 touches rS`
s2

ppq transversally. So, Σ1 and Σ2 glue continuously across rS`
s2

ppq. Note that

spt}V ˚˚} X rS`
s2

ppq “ Σ1 X rS`
s2

ppq “ Σ2 X rS`
s2

ppq Ă M̊. As we will see below, that gluing

is actually C1. To prove this, we will show that the varifold tangent VarTanpV ˚˚, xq is a

straight line for every x P spt}V ˚˚} X rS`
s2

ppq, that is, x is not a junction.

In fact, as x P M̊, we can choose by the interior regularity an open neighborhood

U Ă M̊ of x such that V ˚˚ U “ řl
i“1

υpαi X U,miq for some l, m1, ¨ ¨ ¨ , ml P N and

tα1, ¨ ¨ ¨ , αlu geodesic segments in M from x to BU. So, VarTanpV ˚˚, xq “ řl
i“1

υpri, miq Ă
R

2, where each ri is a semi-straight line from the origin 0 P R
2 (see Figure 11). In other

words, VarTanpV ˚˚, xq P IV1pR2q is a stationary cone satisfying the Proposition 3.15,

then VarTanpV ˚˚, xq will be a straight line with possible multiplicity.
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Figure 11

rS`
s2

ppq
Σ1

x

Σ2

U

(b)

b

b b

b

Source: Own construction

Step 3: Unique continuation up to the point p.

By Step 2 and property (i) (Theorem 3.13) of replacements, we can extend Σ2 to rΣ2

in As1,tppq such that rΣ2 “ Σ1 on As,tppq, rΣ2 is given by geodesic segments possibly with

multiplicity and without interior junctions that can only touch As1,tppqXBM orthogonally,

rΣ2 As,s2ppq has a finite number of geodesic segments, and each geodesic segment of rΣ2

has to touch rS`
t ppq. Using (10), we can continue to take replacements in this way for all

0 ă s1 ă s. For each 0 ă s1 ă s as before, denote rΣ2 by Σs1 . If 0 ă s1
1

ă s1 ă 0, then we

have that Σs1
1

“ Σs1 on As1,tppq. Thus

Σ :“
ď

0ăs1ăs

Σs1

in rB`
t ppq is given by geodesic segments possibly with multiplicity and without interior

junctions that can touch BM X p rB`
t ppqztpuq orthogonally only, and each geodesic segment

of Σ has to touch rS`
t ppq. Moreover, Σ rB`

rt ppq has a finite number of segments for all

0 ă rt ă t. See Figure 12.

Claim: spt}V } “ Σ in the punctured ball rB`
s ppqztpu.

Proof of Claim: Consider the set

T V
p “

!
y P spt}V } : VarTanpV, yq is a straight line or

a semi-straight line transversal to rS`
rrppyqppq

)
.
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Figure 12
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We know by [8, Lemma B.2] (see also [19], Claim 3, p. 42) that the set T V
p is a dense

subset of spt}V } X rB`
s ppq.

Given y P T V
p X p rB`

s ppqztpuq, let ρ “ rrppyq. Take V ˚ the replacement of V in As,tppq
and V ˚˚ the replacement of V ˚ in Aρ,s2ppq for s2 P ps, tq chosen as in Step 1. By the

property (i) from Theorem 3.13, we have V ˚˚ “ V ˚ “ V in rB`
ρ ppq, then

y P spt}V } X rB`
ρ ppq X rS`

ρ ppq “ spt}V ˚˚} X rB`
ρ ppq X rS`

ρ ppq.

Since spt}V ˚˚} “ Σ in Aρ,tppq and VarTanpV ˚˚, yq is transversal to rS`
ρ ppq, we have by (10)

and above that y P Σ. Thus, T V
p X p rB`

s ppqztpuq Ă Σ, and hence spt}V }Xp rB`
s ppqztpuq Ă Σ.

The last one is deduced using that T V
p is a dense subset of spt}V } X rB`

s ppq, and the fact

that Σ is compact in rB`
s ppq.

To see the converse inclusion Σ Ă spt}V } in rB`
s ppq, note that by the Constancy

Theorem [35, Theorem 41.1], we have spt}V } X p rB`
s ppqztpuq “ Σ in MzBM. For y P

Σ X BM X p rB`
s ppqztpuq, we know that VarTanpΣ, yq is a straight line perpendicular to

TypBMq, which implies that y is a limit point of Σ X M̊ and thus y P spt}V }. Therefore,

spt}V } X p rB`
s ppqztpuq “ Σ.

Step 4: V is a free boundary geodesic network

From the interior regularity (Theorem 3.11) and the Step 3, V is a geodesic network

(finite) in rB`
s ppq and a free boundary geodesic network (finite) in p rB`

s ppqztpuq. In particu-

lar, Θ1pV BM, pq “ 0. So, if there exist geodesic segments at p, as in the Figure 12, then

those segments must satisfy (5), and then V is a free boundary geodesic network (finite)

in rB`
s ppq.
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Varying p P BM, we see that V is a free boundary geodesic network (not necessarily

finite) on M. Given any compact K Ă M̊, the interior regularity says that V K has a

finite number of geodesic segments. So, we only need to show that there exists a compact

K Ă M̊ such that V pMzKq has also a finite number of geodesic segments. Indeed,

take a cover of BM by open balls rB`
s ppq as in the previous steps, extract a finite cover

t rB`
j ppjqulj“1

, and define K :“ Mz
` Yl

j“1
rB`
j ppjq

˘
. This finishes the proof.

Remark 3.17. We believe that in the above theorem the stationary condition is enough

for V to be a geodesic network finite in MzBM, like in the case without boundary ([4]).

In a general case, if we suppose noting about the boundary and V is just stationary in

M, then we believe that V is given by the union of a geodesic network finite V1 in MzBM
with another geodesic network finite V2 on BM , this last one considered as a varifold in

BM (the geodesics of V2 are geodesic on BM, not necessary geodesic on M.)
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4 THE WIDTH OF A FULL ELLIPSE

In this section we will prove our main theorem about p-widths: we will calculate the

first p-widths of B2 and E2, where E2 is a planar full ellipse C8-close to B2. As in Aiex [2],

we will take the p-sweepouts from Guth [15, Section 6]. We will consider some adaptations

to get a convenient upper bound for the mass of the cycles. Also, we will need to take

a better estimate than that given by the Cauchy-Crofton Formula. Indeed, to calculate

the widths of the unit sphere in [2], the Cauchy-Crofton Formula given a sharp estimate,

which does not happen in our case. Fortunately, by our regularity results, we do not need

a sharp estimate a priori, but we will give a sharp estimate in the appendix.

4.1 Planar Cauchy-Crofton Formula

In this section we follow Do Carmo [10, Section 1.7 C].

Let E be the set of straight lines in the plane. A straight line r in the plane is

determined by the distance ρ ě 0 from r to the origin of the coordinates and by the angle

θ, 0 ď θ ă 2π, which a half-line starting at the origin and normal to r makes with the x

axis (see Figure 13). The equation of r in terms of these parameters is given by

x cospθq ` y sinpθq “ ρ.

We refer to r as above by rρ,θ.

Figure 13

rρ,θ

θ

ρ

0
b

Source: Own construction

Given a piecewise C1 curve C : ra, bs Ñ R2, let npρ, θq be the number of intersection

points (with multiplicity) of the stratight line rρ,θ with C. The function npρ, θq is finite
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almost everywhere. The Cauchy-Crofton formula [10, Theorem 3, p. 41] states that the

length LpCq of C is given by

LpCq “ 1

2

ż
2π

0

ż

R`

npρ, θqdρdθ. (12)

4.2 A Sweepout for B2

The sweepout that we will use to calculate the p-widths is given by a map whose image

is given by real algebraic varieties. The properties of this map can be found in Guth [15,

Section 6].

Let Qi : R
2 Ñ R denote the following polynomials for i “ 1, . . . , 4 :

Q1px, yq “ x, Q2px, yq “ y, Q3px, yq “ x2 and Q4px, yq “ xy.

Also, put Ap “ span p1 Yp
i“1

Qiq zt0u and define the relation Q „ λQ, for λ ‰ 0 and

Q P Ap. The quotient pAp,„q can be identified with RP
p and by this identification we

can define the map Fp : RPp Ñ Z1,relpB2, BB2;Z2q, which send a class rQs to the real

algebraic variety defined by Qpx, yq “ 0 restricted to B2, considered as a mod 2 relative

Lipschitz cycle (see [15, Section 6]).

As proved in [15, Section 6], Fp is a flat continuous map and it defines a p-sweepout.

Also, in the next lemma we will use the Cauchy-Crofton formula to prove that Fp has no

concentration of mass, thus Fp P PppB2q.

Lemma 4.1. The map Fp : RPp Ñ Z1,relpB2, BB2;Z2q has no concentration of mass for

p “ 1, . . . , 4.

Proof. Without loss of generality, consider P0 “ pp0, 0q P B2 for p0 ě 0, and the ball

BrpP0q for small r ą 0.

If p0 ą 0, note that for θ P r0, π{2s the straight line rρ,θ intersects BrpP0q if and

only if ρ P rp0 cospθq ´ r, p0 cospθq ` rs (see Figure 14 paqq. On the other hand, if θ P
pπ{2 ` sin´1pr{p0q, πs, then rρ,θ does not intersect BrpP0q X B2 for all ρ (see Figure 14

pbqq.
For p “ 1, . . . , 4, we have that FpprQsq is an algebraic variety of degree at most 2, so

FpprQsq intersects rρ,θ at most 2 times. By the Cauchy-Crofton Formula and symmetry,
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Figure 14

(a) (b)

b
p0

b θ b b
p0

θ

Source: Own construction

we obtain

}FpprQsq}pBrpP0qzBB2q ď 2

2

ż π{2`sin´1pr{p0q

0

ż p0 cospθq`r

p0 cospθq´r

2dρdθ

“ 4r

ˆ
π

2
` sin´1

ˆ
r

p0

˙˙
.

In the same way we have that }FpprQsq}pBrpP0qzBB2q ď 4rπ, when p0 “ 0. Then, in

all the cases we conclude that }FpprQsq}pBrpP0qzBB2q Ñ 0 as r Ñ 0.

In the following, we estimate an upper bound for }FpprQsq}, p “ 1, . . . , 4. In other

words, we estimate the maximum length of the algebraic variety FpprQsq. By the defini-

tions above, FpprQsq is degenerate or is the restriction to B2 of a straight line, or of two

straight lines, or of a parabola, or of a hyperbola. Actually, FpprQsq is a quadratic curve

which is not an ellipse, since we excluded the polynomial Q5px, yq “ y2. In the Appendix

we will give a sharp upper bound for }FpprQsq}, p “ 1, ¨ ¨ ¨ , 4.

Lemma 4.2. For any rQs P RP
p we have that }FpprQsq} ď 2, p “ 1, 2, and }FpprQsq} ă

4.52, p “ 3, 4.

Proof. Clearly, for p “ 1, 2 the algebraic variety FpprQsq is degenerate or the restriction

to B2 of a straight line, thus }FpprQsq} ď 2 for p “ 1, 2 and for all rQs P RP
k.

For p “ 1, . . . , 4 note that if FpprQsq is degenerate or the intersection to B2 of a straight

line, or two straight lines, then }FpprQsq} ď 4. Also, this estimate holds when FpprQsq is
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the restriction to B2 of a hyperbola H such that each branch of the hyperbola intersects

B2. Indeed, if we take Brp0q for r large, each arm of the branches tends to their respective

asymptotes, so the length of the two asymptotes restricted to Brp0q is bigger than the

length LpHq of this hyperbola restricted to Brp0q, then LpHq ď 4r in Brp0q (see Figure

15 (a)). Decreasing r, we note that the reduction of length is at least the reduction of 4r,

since there exist four points in H X BB2 during the reduction r Ñ 1`. We conclude that

LpHq ď 4 in B2.

Figure 15

(a) (b) (c)
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Source: Own construction

In the other cases (hyperbolas with a unique branch intersecting B2, or parabolas

intersecting B2), we choose an orientation such that the axis of symmetry of the curve is

orthogonal to x-axis. Hence, FpprQsq will be a convex downward curve intersected with

B2 and we have two cases: there exist two points A,C in the intersection of the curve with

BB2 such that ypAq, ypCq ą 0; or there exists at most one such point. In the first case, as

in the examples of the Figure 15 (b), take B “ pxpAq,´ypAqq, D “ pxpCq,´ypCqq P BB2

(AB and CD are perpendicular to x-axis), and the circular arc BD. The length of this

convex curve in B2 is at most the length of AB`BD`CD. Let α (resp. β) be the angle

between OA (resp. OC) and x-axis for α, β P p0, π{2s, then

LpFpprQsqq ď AB ` CD ` BD “ 2 sinpαq ` 2 sinpβq ` π ´ pα ` βq ă 4.52. (13)

In the second case, as in the example of the Figure 15 pcq, where does not exist A or C

as in the first case, we take α “ 0 or β “ 0 in the above estimate, respectively. Without
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loss of generality suppose β “ 0, then

LpFpprQsqq ď 2 sinpαq ` π ´ pαq ă 3.83, (14)

for α P r0, π{2s.

4.3 The First Widths of B2 and E2

In this section we will prove our main result about k-widths: we will calculate the low

p-widths of the unit ball B2, and of full ellipses C8-close to B2.

The next theorem is similar to Aiex [2, A.1] and a weaker version of the results in

Marques and Neves [25].

Theorem 4.3. Let M2 be a Riemannian manifold with non-empty strictly convex boun-

dary. If ωppMq “ ωp`1pMq for some p, then there exist infinitely many free boundary

geodesic networks whose masses tend to ωppMq.

Proof. As proved in [2, Proposition A.1], the proof follows from [25, Theorem 6.1] for the

case without boundary. For our case take the following modifications: note that the results

of [25, Section 3.3] can be extended from the results of [22, Section 2]; the conclusion of

[25, Proposition 4.8] holds for free boundary geodesic networks in consequence of Theorem

2.22 and Theorem A ; take Theorem 2.21 in place of [25, Proposition 2.4]; for the sets S

and T we take the supports on free boundary geodesic networks.

As spt}V } is a geodesic network with free boundary, we can use the Constancy Theo-

rem in [25, Claim 6.2] as in [2, Proposition A.1]. Finally, [25, Theorem 2.8] follows from

Theorem 2.22, as noted in the proof of Theorem 4.21 from [19], and the conclusion about

the masses follow from the fact that the infinitely many free boundary geodesic networks

are taken from the proof of [25, Proposition 4.8].

Now, we will prove our Main Theorem B. Compare with Theorems 5.2 and 5.6 from

[2].

Main Theorem B. For B2 we have

(i) ω1pB2q “ ω2pB2q “ 2;
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(ii) ω3pB2q “ ω4pB2q “ 4.

Also, if E2 is a full ellipse C8-close to B2 with small diameter d and large diameter

D, then

(iii) ω1pE2q “ d and ω2pE2q “ D;

(iv) ω3pE2q, ω4pE2q P t2d, d ` D, 2Du such that ω3pE2q ‰ ω4pE2q. In particular, one of

those widths is reached by a 1-varifold with multiplicity two.

Proof. piq Let p “ 1, 2 and take the p-sweepout Fp P PppB2q. By Lemma 4.2 we know

that }FpprQsq} ď 2 for all rQs P RP
p, thus ω1pB2q, ω2pB2q ď 2.

Now, given ǫ ą 0 we can find by the Corollary 2.23 a special varifold V such that

0 ă ωppB2q ď }V }pB2q ď ωppB2q` ǫ ď 2` ǫ. By Theorem A and Theorem 3.7 we actually

have that V is a diameter of B2 and }V }pB2q “ 2. Therefore, ω1pB2q “ ω2pB2q “ 2.

piiiq Still consider p “ 1, 2. As E2 is close to B2, we deduce by continuity (as did in

[2, Proposition 5.4 (iv)]) that ωppE2q is close to ωppB2q. Then, ωppE2q ď 2 ` δ for some

small δ ą 0. By the same argument above using Corollary 2.23, Theorem A and Corollary

3.9, we conclude that the only possible values for ω1pE2q and ω2pE2q are d or D. Finally,

by Theorem 4.3 and Corollary 3.9 we know that ω1pE2q ‰ ω2pE2q, then ω1pE2q “ d and

ω2pE2q “ D.

piiq As ω2pE2q “ D, by the same argument above we have that ω2pE2q ‰ ω3pE2q. It

follows from Corollary 3.9 that ω3pE2q ě 2d “ 4 ´ δ for some small δ ą 0. Therefore,

by continuity ω3pB2q ě 4 ´ ǫ for some small ǫ ą 0, which implies by Theorem 3.7 that

ω3pB2q ě 4 (two diameters). Now, by Lemma 4.2 we obtain 4 ď ω3pB2q, ω4pB2q ă 4.52 ă
(length of P3q, and so by Theorem 3.7 we actually have that 4 ď ω3pB2q, ω4pB2q ď 4,

which concludes this case.

pivq We use again the continuity and Corollary 3.9 to conclude that the only possible

values to ω3pE2q and ω4pE2q are 2d, d`D or 2D. Finally, by Theorem 4.3 and Corollary

3.9 we know that ω3pE2q ‰ ω4pE2q.

Remark 4.4. An alternative way to see that ω3pB2q ą 2, without using Theorem 4.3,

is to use the Lusternik-Schnirelmann theory as in Guth [15], p. 1923-24. Indeed, we can

take three disjoint balls Bi in B2zBB2 with radius 0.4 each ball. Each 3-sweepout Φ of



60

B2 is also an 1-sweepout of B2, in particular it is an 1-sweepout of each Bi. Lusternik-

Schnirelmann theory says that Φ contains a cycle such that its mass is at least the sum of

the first width of each Bi. By the item (i) above we know that the first width of a ball is

equal to the diameter of that ball, so ω3pB2q ě 3ˆ 0.8 ą 2. Therefore, we could calculate

the widths above of B2 without use Theorem 4.3. However, we could not determine the

widths above of E2.

Remark 4.5. For p “ 1, 2, note that Fp is an optimal p-sweepout in the sense that

ωppB2q “ suptMpFpprQsqq : rQs P dmnpFpqu.

The estimate obtained in the Lemma 4.2 is not enough to know if Fp is also an optimal

p-sweepout for p “ 3, 4. Actually, in the Appendix we calculate that

4 ă suptMpFpprQsqq : rQs P dmnpFpqu « 4.0027,

for p “ 3, 4. So, Fp is almost an optimal p-sweepout for p “ 3, 4.

Remark 4.6. Notice how similar is our result comparing with the results in Aiex [2,

Theorems 5.2 and 5.6] about the p-widths for the unit sphere and the ellipsoid in R
3. In

fact, as in that work, we obtained in (iv) above an example of a min-max critical varifold

with multiplicity. So, as in the closed case [2], we see that in the case with boundary the

Multiplicity One Conjecture [24] is also false for min-max critical curves.



61

5 FURTHER WORKS

Both in the case of the sphere, both in the case of the unit ball, we note certain

standards for the values of the widths, so we could conjecture a general formula for the

width of the unit ball in a similar way as suggested in [2, Section 6] for S2. Unfortunately,

we did not proof a general formula for the widths of the unit ball. Indeed, the sweepout

that we used does not guarantee good estimates that are sufficient to calculate the higher

widths.

With some more care, we can use the Lusternik-Schnirelmann inequality [22, Section

3] and the Theorem 3.7 to get that 3
?
3 ď ω5pB2q ď 6 and then, by Theorem 3.7, we can

estimate that ω5pB2q “ 3
?
3, 4

?
2, 10 sinpπ{5q, or 6. We expected that ω5pB2q “ 6, if we

could prove a more strong regularity theorem than Theorem A. However, so far we did

not conclude the details of that argument.

As we commented in Remark 3.17, we expected that holds a more general theorem

than Theorem A: if Mn`1 is a Riemannian manifold and V P IV1pMq is a stationary

varifold, then V is a geodesic network finite Σ1 in MzBM union with another geodesic

network finite Σ2 in BM, this last one considered as a varifold in BM, that is, the geodesics

of Σ2 are geodesics on BM, not necessary geodesics on M.

If we have a general formula for the widths, automatically we deduce the constant in

the Weyl law for the volume spectrum. But, since to find a general formula seems difficult,

it is to be expected that it will be possible to deduce that constant without finding a such

formula.

Finally, to find the maximum length of a real algebraic curve of degree d ą 0 restricted

to B2 can be a little complicated, even in the case with degree two, as we did in the

Appendix. Moreover, the result did not follow the intuition of [15, p. 1974]. For higher

degree, or for a general degree, we do not know the way to calculate these maximum

length.
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APPENDIX

In the Lemma 4.2 we calculated an upper bound for the length of FpprQsq for

p “ 1, . . . , 4. Note that we did not calculate a sharp upper bound. In this appendix we

will do it, that is, we will calculate the maximum length of a parabola or a hyperbola

restricted to B2, since the others cases were did in the Lemma 4.2. As we will see, this

sharp upper bound will imply that Fp is not an optimal p-sweepout of B2 for p “ 3, 4.

The length of a real algebraic curve C can be bounded in terms of its degree using

the Cauchy-Crofton formula (12). In fact, if that curve has degree d, then it intersects

a straight line at most d times, so by (12) the length of C restricted to B2 is at most

d ¨ areapB2q “ πd. Obviously, this upper bound is not sharp. For example, if d “ 1

we have that C is a straight line and the length of the intersection of a straight line

with B2 is at most 2. It is intuitive, and it was conjectured in Guth [15, p. 1974], that

the sharp upper bound is similar to the case d “ 1, that is, LpC X B2q ď 2d for all

d P N. Contradicting that result, we will see that for d “ 2 we can find C such that

LpC X B2q ą 4. Our counterexample in the case d “ 2 is a parabola P pxq such that its

length in B2 is bigger than any other parabola restricted to B2, and LpP pxq X B2q ą 4.

Moreover, }FpprQsq} ď LpP pxq XB2q for p “ 1, . . . , 4. See the arguments below.

Theorem. Let Lmax such that LpP pxq X B2q ď Lmax for any parabola P pxq. Then

}FpprQsq} ď Lmax for p “ 1, . . . , 4 and all rQs P RP
p. Furthermore, that estimate is

sharp and Lmax „ 4.0027.

Proof. By the proof of Lemma 4.2, we know that if FpprQsq is not the restriction to B2

of a hyperbola with a unique branch intersecting B2, or is not the restriction to B2 of a

parabola, then }FpprQsq} ď 4 for i “ 1, ¨ ¨ ¨ , 4. So we focus on these two exceptional cases

to improve the estimate (13). We will use the fact that in these cases the curvature of

the curve FpprQsq “ γpxq is strictly increasing in the direction of the axis of symmetry,

and it has at most four points in the intersection with BB2. Also, as in Lemma 4.2, we

choose an orientation such that the axis of symmetry of that curve is orthogonal to x-axis,

then the curve will be downward convex with vertex V such that, γpxq is increasing for

x ą xpV q, and decreasing for x ă xpV q. We will fix a such curve with Lpγ X B2q ą 0,

and by translation we will find the positions such that the length of that curve restricted

to B2 increases, next we will change the parameters of that curve to get the maximum
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length in B2.

First of all, suppose that V R B2. As Lpγ X B2q ą 0, then when γ X B2 is connected

there will be one point A P BB2 where the curve goes inside B2, and another pointD P BB2

where the curve goes outside. Consider xpAq ă xpDq and, because of symmetry, we can

assume without loss of generality that xpV q ă xpAq. For x ą xpV q the curve is strictly

increasing, so ypAq ă ypDq. If ypAq ď 0, the estimate (14) says that Lpγ X B2q ă 3.83.

For the case ypAq ą 0, we have that ypAq ă 1 and LpγXB2q is bounded by |AE| ` |DE|,
where E “ pxpDq, ypAqq, see Figure A1 (a). Let β be the clockwise angle between the

x-axis and OD, and let α be the angle between OA and the x-axis. So α P p0, π{2q,
β P p0, πq, and

Lpγ X B2q ď |AE| ` |DE| “ cospαq ` cospβq ` sinpβq ´ sinpαq ă 2.42. (A1)

Figure A1
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Is not difficult to see that to get the maximum length of γ X B2 by translations, it is

necessary that V P B2. We will see this fact in the next case below, and we could have

done this in the previous case, however the estimate above is enough for what we need.

Suppose now the case V R B2 and γXB2 is not connected. As the intersection γXBB2

has at most four points and Lpγ X B2q ą 0, we have two possibilities for this case: there

exists at least one and at most two points of γ, which are tangent to BB2; or does not exist

such tangent points. In the first case, γ XB2 has a connected component which length is

the length of γ X B2, so we can estimate this case as in the previous case. In the second

case, there exist two points A,C P BB2 where the curve goes inside the B2, and two points

B,D P BB2 where the curve goes outside. Consider xpAq ă xpBq ă xpCq ă xpDq. We

claim that xpBq ă xpV q ă xpCq. Otherwise, as V R B2, we should have xpV q ă xpAq,
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or xpDq ă xpV q. By symmetry, it is enough to verify that the second inequality can

not be true (see Figure A1 (b)). Indeed, the curvature κγpxq of the γpxq is increasing

for x ă xpV q, so as γ goes out of B2 at B and goes inside of B2 at C, we have that

κγpxpCqq ą κBB2pxpCqq “ 1. On the other hand, as γ goes inside of B2 at C and goes out

of B2 at D, we have that κγpxpCqq ď κBB2pxpCqq “ 1, which is a contradiction. Therefore,

xpBq ă xpV q ă xpCq. Now we have (by symmetry) two cases: CD passes through or is

on the left of O; or AB is on the left of O, and CD is on the right of O. See Figures A2

and A3.

In the first case, note that ypDq ą 0, xpBq, xpCq ă 0, ´1 ă ypBq, ypCq ă 0, and

ypAq ă 1, xpAq ă 0, since γpxq is decreasing for x ă xpV q, increasing for x ą xpV q,
V R B2, and CD is not on the right of O (see Figure A2 (a)). If ypAq ď 0, again by the

estimate (14) we know that LpγXB2q ă 3.83. In the case ypAq ą 0, take a short translation

of γ and get news points A1, B1, C 1, D1 P γ X BB2, as above. To keep the properties above

for the news points, we translating γ such that C 1 Ñ V, and |C 1D1| “ |CD| is constant.

We note that Lpγq
ˇ̌D1

C1
increase because C 1 is approaching to V, and then the curvature of

γ is increasing between C 1 and D1. Also, we have that γ remains in B2 between C 1 and

D1, since γpxq is increase for x ą xpV q, |C 1D1| ď 1, C 1D1 is not on the right of O, and

then △C 1E 1D1 Ă B2, where E 1 “ pxpD1q, ypC 1qq (see Figure A2 (b)). Furthermore, note

that the graphic of γ is going up and to the right, so xpA1q, ypA1q, xpB1q increase and ypB1q
decrease, by the properties above. In particular, |A1B1| is increasing, B1 is approaching to

V, and then Lpγq
ˇ̌B1

A1
is increasing. In the end get that Lpγ X B2q increased, and V P B2

(see Figure A2 (b)).
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In the second case, we just know that xpAq, ypBq, ypCq ă 0, ypAq, ypDq, xpDq ą 0 (see

Figure A3 (a)). In this case, we take a short translation of γ for xpV q fixed and such that

ypV q increasing to get news points A1, B1, C 1, D1 with the same properties. We take this

translation as long as A1B1 and C 1D1 do not pass through the origin O, and V R BB2. In

particular, these properties apply to the news points. Note that xpA1q, xpB1q, ypA1q, ypD1q
increase, xpC 1q, xpD1q, ypB1q, ypC 1q decrease, then |A1B1|, |C 1D1| increase. Also, as B1, C 1

are approaching to V, we have that Lpγq
ˇ̌B1

A1
and Lpγq

ˇ̌D1

C1
are increasing. We stop that

translation when V touches BB2, or when A1B1 or C 1D1 pass through the origin, in the

last case we continue with the translation as in the previous case until V touches BB2. In

the end, we get again that Lpγ X B2q increased and V P B2 (see Figure A3 (b)).
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By the above arguments and by the estimates (14) and (A1), we have that LpγXB2q ă
3.83, or the maximum length of γ XB2 is reached for some γ such that V P B2, and such

that there exist two points A,D P γ X BB2 with ypAq, ypDq ą 0. We will see that the

second situation happens, and we will calculate it. First, we will see that if we fix γ

in the last situation, then the maximum length of γ X B2 is reached when xpV q “ 0,

in other words, when we translate γ such that ypV q=constant and xpV q Ñ 0. Indeed,

suppose for now that γ X B2 is connected, xpAq ă xpV q ă xpDq, |xpDq| ă |xpAq|, and

consider a such translation so that A Ñ A1, D Ñ D1. If xpDq ă 0, then during the

translation and as long as xpD1q ă 0, we have that the curve goes inside B2, and in

particular Lpγ X B2q increase (see Figure A4 (b)). Now, consider the case xpDq ě 0, as

in the Figure A4 (a). In this case, let |xpV q| “ ǫ ą 0. Take E “ p´pxpDq ` ǫq, ypDqq, F “
p´xpDq, ypDqq, G “ pxpAq ` ǫ, ypAqq, H “ pxpA1q, ypDqq, and I “ pxpA1q, ypAqq, we claim
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that |EH | ă |IG|. To see this, we take a straight line rpxq, which is tangent to γpxq in

A1, and take J “ pr´1pypDqq, ypDqq, L “ ppr´1pypAqq, ypAqq. Note that HI is orthogonal

to JF and AG, also E,H P JF , I, L P AG and ǫ “ |EF | “ |AG| (see Figures A4 (a)

and A5 (a)). Since A, F P BB2, and |EF | “ |AG|, if |EH| ě |IG| then we would have

|HF | ď |AI| and, therefore, |HA1| ă |A1I|, because ypA1q ą 0. The latter and the fact

that γ is convex imply that EH ă JH ă IL ă IG, which is a contradiction. Let γ be the

curve γ after the translation. The inequality EH ă IG means that Lpγq
ˇ̌A1

E
ă Lpγq

ˇ̌G
A1
,

since the curvature of γ is strictly increasing in the direction of the vertex V. Thus, the

length of γ X B2 increased after the translation A Ñ A1, B Ñ B1, because Lpγq
ˇ̌A1

E
is the

amount of the curve that comes out of B2, and Lpγq
ˇ̌G
A1

is the amount that comes into B2.
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For the case γ X B2 not connected, the length of γ X B2 also increase after that

translation. Indeed, in this case we already know that there exist A,B,C,D P γ X B2

such that γ is inside B2 between A and B, and between C and D; otherwise is outside.

Without loss of generality we can suppose xpAq ă xpBq ă xpCq ă xpDq, xpV q ă 0, and, as

we are supposing that ypAq, ypDq ą 0, we have that ypBq, ypCq ă 0. Also, as V P B2, then

xpAq ă xpV q ď xpBq or xpCq ď xpV q ă xpDq. Actually, the case xpAq ă xpV q ď xpBq,
xpV q ă 0 implies that xpAq ă xpV q ă xpBq, so we can see in an analogous way as in the

Figure A1 (b) that the latter can not happen, then xpCq ď xpV q ă xpDq. In particular,

xpAq ă xpBq ă xpCq ă 0. The extreme case C “ V is sketchy in the Figure A5 (b). Note

that during the translation such that xpV q Ñ 0, we have that xpAq, ypAq increase since

the graphic of γ goes to right. Moreover, xpAq ă 0 during that translation. In the end, we

get new points A1, D1 such that ´xpD1q “ xpA1q ă 0, ypD1q “ ypA1q ą 0, and V P B2, the

latter is because the vertex V is the global minimum of γpxq. Finally, observe that γXB2

is now connected after the translation, since ypA1q, ypD1q ą 0, xpV q “ 0, and γ X B2 has

at most four points. In particular, Lpγ X B2q increased, since the curve went inside B2

for γpxq ď 0, and the previous paragraph for γpxq ą 0.

By the last two paragraphs, we need to find an upper bound for Lpγ X B2q, when

xpV q “ 0, Lpγ XB2q is connected, and tγ XB2u „ tV u is given by two points A,D such

that ´xpAq “ xpDq, and ypAq “ ypDq ą 0. In this situation, if we translate γ such that

ypV q Ñ ´1, then Lpγ XB2q increase. So, we will consider the last hypothesis above with

V “ p0,´1q, in other words, γ will be tangent to BB2 in V (see Figure A6 (a)).
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For us, the curve γpxq can be a hyperbola Hpxq with a unique branch intersecting B2,

or a parabola P pxq. To satisfy our situation, the equations become

Hpxq “ c

d

?
d2 ` x2 ´ p1 ` cq and P pxq “ ax2 ´ 1,

where a, c, d ą 0, Hp1q “ pc{dq
?
d2 ` 1 ´ p1 ` cq ą 0, and P p1q “ a ´ 1 ą 0. Note

that if the branch of the hyperbola and the parabola above pass through the same points

A,D, as in the Figure A6 (b), then Hpxq X P pxq “ tA,D, V u, because of the symmetry

and because that intersection can be at most four points. As ´xpAq “ xpDq ă 1, we

conclude that the graphic of Hpxq is above of P pxq for xpAq ď x ď xpDq. In particular,

LpHpxq X B2q ă LpP pxq X B2q, so we only need to bound LpP pxq X B2q for a ą 1.

As a ą 1, the points A,D can be determined uniquely by the value of the parameter

a. In fact, ´xpAq “ xpDq “ xpaq “
?
2a´ 1{a, where xpaq is the positive solution of

x2 ` pax2 ´ 1q2 “ 1. Then, we can calculate LpP pxq X B2q in the parameter a :

LpP pxq X B2q “ Lpaq “ 2

ż xpaq

0

?
1 ` 4a2x2 dx

“
ln

´a
4a2xpaq2 ` 1 ` 2axpaq

¯
` 2axpaq

a
4a2xpaq2 ` 1

2a

“ ln
`?

8a´ 3 ` 2
?
2a´ 1

˘
` 2

?
2a´ 1

?
8a´ 3

2a
.

By the expression above we have LpP pxq X B2q Ñ 4 as a Ñ 8 (P pxq X B2 becomes

two diameters). We will prove that Lpaq has a global maximum point in a0 ă 8, and

then Lpa0q ą 4. Indeed, taking the derivative of the expression above, we obtain

L1paq “ 8a´ 3 ´ p1{2q ln
`?

8a´ 3 ` 2
?
2a´ 1

˘ ?
8a´ 3

?
2a´ 1

a2
?
2a´ 1

?
8a ´ 3

.

Put z “ 2a´ 1, the denominator above becomes

4z ` 1 ´ 1

2
ln

`?
4z ` 1 ` 2

?
z
˘ ?

4z ` 1
?
z.

So, the sign of L1paq is the sign of

2
?
4z ` 1?
z

´ ln
`?

4z ` 1 ` 2
?
z

˘
. (A2)
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Note that the expression above starts positive for a ą 1 and tends to ´8 when a Ñ 8,

moreover it is strictly decreasing for a ą 1. The last one is because the derivative of the

last expression is given by

´ z ` z2

z5{2
?
4z ` 1

ă 0, for a ą 1.

Therefore, there exists a unique a0 ą 1 such that L1pa0q “ 0. Moreover, Lpaq is strictly

increasing for 1 ă a ă a0, and it is strictly decreasing for a ą a0. In particular, Lpa0q ą 4

and Lpa0q is the global maximum of Lpaq, since Lpaq Ñ 4 as a Ñ 8. We can estimate a0

such that (A2) becomes zero, and we obtain a0 « 94.091282, and then Lmax “ Lpa0q «
4.002671.
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