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RESUMO

Para 2-variedades com bordo convexo e nao vazio, provamos um resultado de regulari-
dade para varifolds estaciodrios V' de dimensao um, os quais sao Zs-quase minimizantes
em aneis. Essa regularidade diz que V é uma rede finita de geodésicas com fronteira
livre. Usando essa regularidade, podemos deduzir algumas propriedades de V, como uma
estimativa para a densidade em dimensao um. Juntamente com o Teorema Min-Max e as
p-varreduras dadas por variedades algébricas reais, fomos capazes de calcular as primeiras
p-larguras da bola unitaria B? e de regioes fechadas planas cujo bordo é uma elipse com
excentricidade suficientemente baixa. Essas p-varreduras nem sempre sao 6timas. Con-
tudo, nos casos que consideramos elas sao quase 6timas.

Keywords: Rede de geodésicas com fronteira livre. P-varreduras. P-larguras.



ABSTRACT

For 2-manifolds with non-empty convex boundary, we prove a regularity result for one
dimensional stationary varifolds V' with free boundary, such that are Zs-almost minimizing
in annuli. That regularity says that V' is a free boundary finite geodesic network. Using
that regularity we can deduce some properties of V| as an estimate for the one-dimensional
density. Together with the Min-Max Theorem and the p-sweepouts given by real algebraic
varieties, we were able to calculate the first p-widths of the unit ball B? and of planar full
ellipses close to B2. Those p-sweepouts are not always optimal. However, in our situations
they are almost optimal.

Keywords: Free boundary geodesic networks. P-sweepouts. P-widths.
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1 INTRODUCTION

Almgren-Pitts min-max theory

Minimal surfaces have been an object of study for centuries in the fields of geometry,
analysis and partial differential equations. The solution of the Plateau problem in 1930
stimulated several research activities in related problems, as the free boundary problems
for minimal surfaces. One of the mathematicians that studied related problems was
Almgren [6] that introduced the concepts of varifolds, rectifiable varifolds and integral
varifolds. Essentially, the set of integral varifolds of dimension k, for 0 < k < n + 1,
on a Riemannian manifold M"*' n > 0, is the set [Vy(M) such that each element
V e IV, (M) is a finite union of k-dimensional submanifolds with multiplicity, where
we consider a measure defined by integration of the Hausdorff measure H* over each
submanifold, endowed with the weak convergence topology of measures. We can define
a first variation of varifolds and we say that it is stationary if its first variation vanishes.
When the varifold is a surface, its first variation coincides with the usual first variation
of area formula. In this case, in particular, its support is a minimal surface possibly with
multiplicity and self intersections. The notion of area for a varifold V' over a measurable
set A is given by the weight |V (A).

In the work of Almgren, the study of variational calculus for minimal surfaces is
generalized in the sense that it considers any dimension and codimension, no curvature
hypothesis, and includes the cases with fixed or free boundary. In that work he proposed a
free boundary problem for manifolds possibly with non-empty boundary: to find a smooth,
embedded k-dimensional minimal submanifold ¥ < M™*! solution for the free boundary
problem, and such that 0¥ < d M. In the case with empty boundary, he found a non-trivial
and general weak solution that is an integral stationary varifold V. The regularity for the
codimension-one case was proved by Pitts [31] for 2 < n < 5. Pitts introduced the concept
of almost minimizing, and he shown that V' can be chosen to be almost minimizing and
then the support of V' is given by a smooth embedded minimal hypersurface. Essentially,
the regularity comes from the fact that almost minimizing varifolds are locally stable
almost everywhere. Later Schoen and Simon [34] extended that result for n > 6.

The Almgren-Pitts min-max theory is a Morse-type theory which may explain better

a manifold and its hypersurfaces. For example, some important and surprising applica-



tions are the solution of the famous Willmore conjecture by Marques and Neves [23], the
Yau’s conjecture by Marques and Neves [25] and Song [36], the Weyl law for the Volume
Spectrum by Liokumovich, Marques and Neves [22], and the Freedman, He and Wang con-
jecture by Agol, Marques and Neves [I]. The particularities, comparing with the Morse
theory, is the use of integral n-cycles with coefficients in Z,, and the functional mass M,
which is a notion of volume. Roughly speaking, the space of integral n-cycles with coeffi-
cients in Zs is the space of compact n-dimensional hypersurfaces in M without boundary
and without orientation. Another differences is that the Almgren-Pitts min-max theory
works with varifolds, which allows degenerations. Also, it works with homotopy instead of
homology, thus it is necessary to consider different variations to obtain the critical points
(varifolds).

Essentially, the Almgren-Pitts min-max theory [31] says that: if [®] denotes a certain
homotopy class of a map ® from a cubical subcomplex X < I, for some m € N, into the

space of integral n-cycles, and defining the width of [®] by

L([®]) = B ig;M(‘If(:v)),

then for 2 < n <5 and L([®]) > 0, there exists a closed embedded minimal hypersurface

Y. (possibly with multiplicity) satisfying:

L([®]) = Vol(D).

A similar result was extended by Schoen and Simon [34] for all n > 2. Also, recently
Marques and Neves [24] and [26] obtained from this theory a characterization of the Morse
index for minimal hypersurfaces obtained from a homotopy class of p-parameters.

In the case OM # J, the deformations that we consider are deformations given by
vector fields on M which are tangential to d M. This is because the free boundary minimal
hypersurfaces are critical points to the area functional with respect to deformations in M
that preserves 0 M. In this set, we call the stationary varifolds of stationary varifolds with
free boundary, but this notation does not mean that the varifold has the same properties
as a free boundary minimal surface Y. In fact, in the regular case we have that ¥ meets
the boundary 0dM orthogonally along its boundary 0%. On the other hand, any constant

multiply of a connected component of dM is a stationary varifold with free boundary,
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even though it can be nothing like a free boundary minimal hypersurface in M.

We say that a varifold V' is an almost minimizing varifold with free boundary on a
relatively open set U < M if we can approximate it by a varifold induced from a cycle
T such that for any deformation of T' by a discrete family supported in U, and with the
mass not increasing too much, then at the end of the deformation the mass can not be
deformed down too much. The main difference here, comparing with the definition for
empty boundary, is that we are working with relative cycles, so in that approximation the
induced varifolds have no mass on dM.

In contrast with higher dimensions, where to show the regularity of a stationary va-
rifold V' is used the almost minimizing property, in the one-dimensional case the interior
regularity does not depend on this property. In fact, as showed by Allard and Almgren
[4], one dimensional integral stationary varifolds are given by a geodesic network in any
compact set contained in the interior of M, that is, the varifold is a finite union of geodesic
segments such that the singularities are given by their possible stationary junctions. How-
ever, to obtain the free boundary property, we assume the almost minimizing property in

annuli (Main Theorem [A]).

Sweepouts and width

In the space of flat chains we can define three different topologies: the mass norm, the
flat norm and the F-distance. In fact, since the space of k-currents is the dual space of
the space of differential k-forms, it is naturally endowed with the weak topology and has
a boundary operator. A similar notion to area in the space of currents is given by the
mass norm M(T') of a current 7. When T is induced by a manifold, the mass norm is
exactly the definition of area. Also, this norm induces a topology that is stronger than the
weak topology. The flat distance (or area-distance) between two k-currents 77,75 is the
minimal area of any (k + 1)-current whose boundary is 77 — T5. The space of flat k-chains
is given by the closure under the flat distance over the set of k-rectifiable currents, where
the latter are essentially currents whose support is given by k-rectifiable sets.

The flat chains with no boundary are called of flat cycles, and we denote by Z,(M;Z,)
the space of integral k-cycles with coefficients in Z,. Roughly speaking, this space is
the space of compact k-dimensional submanifolds in M without boundary and without

orientation.
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We are interested in calculating the volume of cycles for certain families of planar
curves with k-parameters in a planar full ellipse M? = E? < R2 In the simplest case
where E? is the unit ball B2, and we take an 1-parameter family of smooth curves that
sweep B? out, we have that one of that curves have to pass through the origin, in particular
the length of that curve is at least 2. On the other hand, if our family is given by vertical
lines in the unit ball, we have that the maximum length will be 2. Denoting by S the
set of all 1-parameter families of curves in the unit ball which sweep B? out, and by C a

curve in a family S € S, we obtain

W(B?) = grégsclég L(C) =2,
where L(C') is the length of C' in B2 We call the min-max estimate above of a width for
B2%. An analogous can be made for higher dimensions, taking families of surfaces ¥ and
the area instead of curves and length, respectively. Also, for the precise definition of the
problem above it is necessary that 0% < M.

For M™*!' n > 0, such that M = ¢, the problem that we will consider is the
min-max problem for continuous families of mod 2 n-cycles such that each family is a
p-sweepout of M, for some p € N. By a continuous family we mean that this family is
given by a map ® : X — Z,(M;Zy) which is continuous in the flat topology, where
X < I™ is a cubical subcomplex for some m € N. And by a p-sweepout we mean that
the p-th cup power of ®*()\) is nonzero, where \ is the generator of H'(Z,(M;Zs)), given
by the Almgren isomorphism [5] and the Universal Coefficient Theorem [16, Section 3.1].
Roughly speaking, the geometric meaning of a family of cycles be a p-sweepout is that for
any choice of p points in M, there exists a cycle ®(z) that passes through these points.
We will see a more precisely definition in the next section, also we will consider these
families without concentration of mass to avoid currents (cycles) such that the mass is
accumulated in points. Similar considerations apply when M has non-empty boundary,
but in this case we use the space of the relative mod 2 n-cycles 2, ,;(M, 0M; Zy), which
is the space given by a quotient in the space of integral flat n-chains with coefficients in
Zy and boundary lying on 0M. Essentially, when we take relative cycles we forget the
part of the cycle lying on d M. The relative cycles was used by Almgren [5] and its use is
motivated by the fact that, in the min-max problem, the cycles need to have its boundary

lying on 0 M.
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Our definition of relative cycles on M is identical to the definition of cycles when M
has empty boundary. So, we will consider the space of relative cycles for the general case.

We denote by P,(M) the set of all p-sweepouts with no concentration of mass, and
we define the p-width of M as

wy(M) = %%{M) sup{M(®(z)) : z € dmn(P)},

where dmn(®) is the domain of each ® (the domain is not fixed).
Clearly, w,(M) < wy41(M) for all p.
Gromov [14] and later Guth [15] estimated the growth of the p-widths. Precisely, there

exist positive constants ¢ and C' depending only on (M"*!, g) such that

1

cpmT < wp(M) < Cpn;ﬂ.

The upper bound arises from constructing a particular sweepout of small mass using
the fact that the coefficients are in Z,. And the lower bound is due to the fact that any p-
sweepout must divide any p disjoint balls in half, so applying the isoperimetric inequality
for each ball is obtained this lower bound. The inequality above was an important tool

used by Marques and Neves [25] to prove the existence of infinitely many embedded

minimal hypersurfaces in certain compact Riemannian manifolds.

Main results and related results

The main goal of this thesis is to calculate the low p-widths for the unit ball B? = R?
and for perturbations of B2, which are given by planar full ellipses £? < R? that are
sufficiently C®-close to B2. Our results are inspired in the results of Aiex [2], which say

that

Theorem 1. |2, Theorem 5.2| If S? is the round 2-sphere of radius 1, then
(i) wi(5?) = wa(S?) = w3(5?) = 2m;
(i) wi(S?) = w5(S?) = we(S?) = wr(S?) = wg(S?) = 4.

Also, given an ellipsoid £2 = R3, take W;, W, W3 as the one-dimensional varifolds with

multiplicity one and induced from the three principal closed geodesics in £2, respectively.
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Consider the varifolds given by the combinations of those varifolds: W, = 2W;, W5 =
Wi+ Wy, We = 2Wo, We = Wi + W3, Wg = 2W3, Wy = Wy + W3. Then,

Theorem 2. [2, Theorem 5.6| If £% is an ellipsoid which is sufficiently C®-close to the

round metric in S?, then
(i) (€)= [Wi(€?) fori=1,2 or 3
(ii) wi(E?) = |[Wi|(E?) for j =4, - ,8 and for some | = 4,--- ,9 without repetition.

As we see in item (ii) above, one of the j-widths for j = 4,--- 8 has multiplicity
two, in other words we have an example of a unstable min-max critical 1-varifold with
multiplicity and smooth embedded support. So, working with min-max critical curves
is a special case, since for min-max critical hypersurfaces this fact should not happen
as claims the Multiplicity One Conjecture for closed manifolds by Marques and Neves
[24], which was proved recently in dimension three by Chodosh and Mantoulidis [7], also
other authors made partial solutions as Zhou [39]. Moreover, many of the recent results
involving min-max techniques are not applicable for curves. So, to obtain the results
above, we will need to adapt some tools from the min-max techniques for the set of
curves. In fact, as we are working in the case with boundary, we need some results about
regularity with free boundary for varifolds. One of our main results gives a regular-type

result. Precisely:

Main Theorem A. Let M? be a compact Riemannian manifold with non-empty strictly
convez boundary. If V € IVi(M) is a stationary varifold such that it is Zs-almost mini-

mazing in small anulli with free boundary, then V is a free boundary geodesic network.

For us, free boundary have a specific meaning: V'L dM = 0 as an 1-varifold and the
varifold tangent VarTan(V,p) ¢ T,(0M) for all p € support(V') N oM.

This result will be useful, because the varifolds given by the Min-Max Theorem satisfy
those hypotheses. So, the p-widths are reached by free boundary geodesic networks, and
we will obtain a finite classification of free boundary geodesic networks, when M is a
planar full ellipse E? close to B2. Indeed, to classify the free boundary geodesic networks
with low mass in £?, we use an upper bound for the density as a function of the mass, so
we forget certain junctions that can not happen. Finally, we use an interior result from
Aiex [2, Theorem 4.13], which says that if a geodesic network is Z,-almost minimizing in

annuli at interior of M, then the density in the interior points is an integer number.
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The Theorem A is founded in the Section B4l Below we give an idea of the proof.

Idea of the proof of Theorem A: By the interior regularity result due to Allard and
Almgren [4] we know that V is a geodesic network finite in every compact K < M.
Near to dM, we will use Fermi coordinates, since the half ball and the half sphere have
good properties in these coordinates. The convexity will be crucial to obtain a weak
regularity result for replacements, which will be important to show that the interior of
each geodesic segment of V' will be in M. We consider replacements on overlapping annuli
centered at boundary points, and by a maximum principle we can glue continuously
those replacements. We do the following important observation: if a varifold is Zj-almost
minimizing in an open ball in M , then the support of each respective varifold tangent
will be a straight line. Using this observation, we can glue smoothly the replacements.
It will not difficult to see that in a neighborhood of dM there will be a finite number of
geodesic segments of spt||V|, which are in M and each segment has endpoints touching
0M. Finally, we apply the Constancy Theorem in M\0M to see that the support of V' is
a free boundary geodesic network.

Our main results for k-widths are very similar to the results above. The main difference

is that we will work with manifolds with boundary. More precisely, we proved that
Main Theorem B. The low p-widths of B? are given by

(i) wi(B?) = wa(B?) = 2;

(11) w3(B?) = wy(B?) = 4.

Also, if E? is a planar full ellipse C®-close to B* with small diameter d and large

diameter D, then
(iii) wi(E?) = d and wy(E?) = D;

(iv) ws(E?),ws(E?) € {2d,d + D,2D} such that ws(E?) # ws(E?). In particular, one of

those widths is reached by an one-varifold with multiplicity two.

Again, from (iv) we obtained an example of min-max critical varifold with multiplicity.
We do not know any development in a Multiplicity One Conjecture in the case with
boundary. But, again the case for curves is a special case, which allows multiplicity. The

Theorem B above is founded in the Section [4.3]
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Idea of the proof of Theorem B: We use the p-sweepouts defined in Guth [I5], whose
images are given by real algebraic varieties. We be able to get a good upper estimate
for the mass of those cycles. By the Min-Max Theorem there will be a varifold V' that
reaches the p-width, and such that it satisfies the hypotheses of Theorem A, so V' will
have regularity properties. Those regularity properties together with an upper bound
for the density will be enough to obtain a finite number of possible values for the first
p-widths. It will be crucial to use the fact that E? is close to B2, then by continuity the
respective p-widths will be close. Finally, for low mass, we will see that the widths of £?
are all different from each other, then it will create ‘gaps’ which will enable us to calculate
presicely the first widths of B? and E?, even though some of those p-sweepouts are not
optimal.

In the case of the sphere M = S? in Theorem 1 above, similar p-sweepouts given by

algebraic varieties are optimal in the sense that
wy(M) = sup{M(®(z)) : z € dmn(P)}.

In contrast, in our case the p-sweepouts for B? are not optimal if p = 3,4 in Theorem B.
Actually, as we will see in the Appendix, for p = 3,4 the p-sweepout is almost optimal. We
believe that this type of p-sweepout is not optimal for all p > 3, and the error increases.
However, the regularity of Theorem A will be enough to classify the varifolds with low
mass (Theorem B.7 and Corollary 3.9). In particular, we will deduce gaps of values for
the p-widths, so we will not need optimal p-sweepouts a priori.

Other important result is the thesis of Nurser [29], which calculates the first widths of
S3

w1(S%) = wy(S3) = w3(S?) = wy(S?) = 4,

ws(S?) = we(S?) = wr(S?) = 27?2,

and gives estimates for wg(S5?) and wy3(S?). In general, for spheres S™ for all n > 3, we
know that w,(S™) = Vol(S"!) for p = 1,--- ,n + 1. This result was proved by Gaspar
and Guaraco [I2] using a notion of width in the context of the Allen-Cahn equation and
the energy functional associated. A more recent result was done in the thesis of Lima
[21], where he calculates that w; (RP?) = wy(RP?) = 72 and gives estimates for wy(RP?),

where RP? is the three-dimensional real projective space.
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A more general and open question is to find a general formula for the width of a certain
manifold M™*!. In fact, so far this problem seems to be very hard. A recent result in this
direction was the proof by Liokumovich, Marques and Neves [22] of the Weyl law for the

volume spectrum {w,(M)}. Precisely, they proved:

Theorem 3. [22] Given (M™, g) a compact Riemannian manifold (with possible non-
empty boundary). There exists a constant a(n) > 0 such that
lim wp(M)p_n%l — a(n)vol(M)=+.
p—®
This formula is very similar to the Weyl law for eigenvalues. While for eigenvalues
we know how to calculate the constant of the Weyl law in many cases, for the volume
spectrum it is not know any example so far, even in our case of the unit disk.
Using the theorem above, Irie, Marques and Neves [I7]| proved the density of minimal
surfaces for closed manifolds M™*! with generic metric and 2 < n < 6. Using that theorem

again, Marques, Neves and Song [27] extended this result, showing that there exist an

equidistribution of minimal surfaces in that case.
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2 PRELIMINARIES

In this section, we summarize some definitions and results that we will use in the next
sections.

Since we are assuming that the Riemannian manifold M has non-empty boundary,
it will be useful consider Fermi coordinates at the points of dM. In fact, the geometric
properties of the half-ball and half-sphere in those coordinates will be crucial to prove our
regularity result.

From geometric measure theory we will talk about currents, flat chains, relative flat
cycles and varifolds. Since we are supposing that M can have non-empty boundary, we
will take more care in these definitions.

We will also talk about some notions of homotopy, definitions and results from the
Almgren-Pitts Theory. In the case with boundary, we follow some modifications due
to Liokumovich, Marques and Neves [22] and Marques and Neves [25]. We will do a
version of the Min-Max Theorem similar to Pitts [31, Theorem 4.10] and Li and Zhou [19,
Theorem 4.21], following the necessary modifications to our case. Roughly speaking, that
theorem proves the existence of almost minimizing varifolds, moreover it says that there
exists always such a varifold that reaches the width of a chosen homotopy class. The main
application is to use this theorem for p-widths as done in the Corollary 223, which will
be important to calculate the p-widths in the next sections, since our p-sweepout does

not always reach the p-widths.

2.1 Manifolds with Boundary and Fermi Coordinates

Here we follow the notations of [19]. When M"*! n > 0, is a compact Riemannian
Manifold with nonempty boundary 0M, we can always extend M to a closed Riemannian
manifold M with the same dimension such that M < M ([30]). Also, by the Nash’s
Theorem, we can fix an isometric embedding M — R? for some @ € N. We will denote
by B,(p) = R? the open Euclidean ball of radius r centered at p € R?, and by gr(p) the
open geodesic ball in M of radius 7 centered at p. For 0 < s < r we define the following

open annuli:

Asp(p) = Bo(p)\Clos(By(p)) and A, ,(p) := B,(p)\Clos(By(p)),

where Clos(S) denotes the closure of the set S.
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We consider the following spaces of vector fields:

X(M):={X e X(RY) : X(p) e T,M for all pe M}
and

Xian(M) :={X € X(M) : X(p) € T,(0M) for all p e IM}.

Definition 2.1. (Relative Topology) Given any subset A < M, where M is equipped
with the subspace topology, the interior relative of A, intp(A), is defined as the set of
all p € M such that there exists a relatively open neighborhood U < A of p. The exterior
relative of A will be the set intp (M\A). And the relative boundary of A, 0,qA, is the

subset of M such that is neither in the relative interior nor exterior of A.

Definition 2.2. (Relative Convexity) A subset {2 — M is said to be a relatively convex
(respect. relatively strictly convex) domain in M if it is a relatively open connected subset

in M whose relative boundary 0,2 is smooth and convex (respect. strictly convex) in

M.

Definition 2.3. (Fermi coordinates) Given p € dM and suppose that (z1,--- ,z,) is the
geodesic normal coordinates of M in a neighborhood of p. Take t = disty, (-, 0M ), which
is a smooth map well-defined in a relatively open neighborhood of p in M. The Fermi
coordinates system of (M,0M) centered at p is given by the coordinates (z1,- - ,zp,t).

Also, the Fermi distance function from p on a relatively open neighborhood of p in M is

defined by

=

= Tyla) = (o) = ot + a2+ 2
Definition 2.4. Given p € dM, we define the Fermi half-ball and half-sphere of radius r
centered at p respectively by
Bi(p)i={qe M:7(x) <r}, 8(p):i={ge M:7(p) =r}.
The geometric properties of the Fermi half-ball and half-sphere can be summarized in
the following proposition:

Proposition 2.5. ([I9) Lemma A.5|) There exists a small constant rpepm; > 0, depending

only on the isometric embedding M < R?, such that for all 0 < 7 < Tperms
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(i) gj (p) is a smooth hypersurface meeting OM orthogonally;
(it) BF(p) is a relatively strictly convex domain in M;
(iii) Bra(p) N M < B} (p) © Bar(p) N M.

Remark 2.6. The convexity in [19] is assumed to be strictly convex. Also, the property
(iii) above will imply that many properties that hold for small open sets in the Fermi

coordinates also hold for small open sets in the Euclidean coordinates, and vice versa.

We want to define the following annuli neighborhood in the Fermi coordinates:

As(p) = B/ (p)\B! (p)
for pe OM, and 0 < s < t. Also, when p € M, we require that ¢ < dist s (p, OM).

2.2 Currents, Flat Chains and Relative Flat Cycles

In this section, we will define the main tools to deal with flat chains, whose classical
reference is Federer [I1], Section 4]. See also Morgan [28, Section 4|. As we are in the case
with boundary, we also follow the treatment given in Liokumovich, Marques and Neves
[22], Guth [15] and Li and Zhou [19].

In the ambient space R?, let us define D¥ = {C® differential k-forms with compact
support}, we define the space of k-dimensional currents Dy as being the dual space of
DF. The space Dy is naturally endowed with the weak topology: T; — T < T;(¢) —
T(€), V€ e D

The support of a current T', denoted by spt(T'), is the smallest closed set C' = R? such
that

(spt(§)) NC = =T(§) = 0.

When k > 1, the k-currents can be interpreted as a generalization of the k-dimensional
oriented submanifolds N having locally finite H*-measure. Indeed, given such N with
orientation given by a k-vector field n (1, = £m1 A -+ A for all z € N, where ny,...,n

is an orthonormal basis for T, V), there exists a corresponding k-current |N| defined by

IN|(€) = L é.(n) dHF, €D, 1)
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A subset R < R is said to be a (countably) k-rectifiable subset if R = Ry U (U7,
F;(R;)), where H*(Ry) = 0, F; : R; —> R is Lipschitz, and each R; = R* is bounded.

As shown in Simon [35], Section 11.6], each H*-measurable k-rectifiable subset R = R%
has approximate tangent space almost everywhere, so we can get a current as (II). Also,

we can add a measurable function 6 : R — R with §, [6|d#" < o0 and define

(R, 6] fgx n)0(x) dHF, € e D", 2)

These currents are actually equivalency classes [R,n, 6] which identify triples that define
the same current. Each class is said to be a rectifiable k-current. 1f 0 : R — Z,, we
said that each class is an integer-multiplicity rectifiable current and 0 is the multiplicity
function.

We define the mass norm M(T) of a T' € Dy, by

M(T) = sup  T(£),
lel*<1, gDk
where [|£]* = sup sup (&,&),. For rectifiable currents,

z gEAszMy <£7£>z:1
M([R,n,6]) = f 6] .
R

In particular, for submanifolds N as above we have that M(|N|) = Area(N).
Also, motivated by () and the Stoke’s theorem ( §, d¢ = §,, & when N has smooth
boundary) the boundary 0T € Dy_q of a current T' € Dy, is defined such that

T(dg) = 0T(E), €eD*",

Note that when N has smooth boundary, we have that |0N| = J|N]|.
The space of rectifiable (flat) chains with coefficients in a complete normed abelian
group (G, | |) is a more general space containing certain types of currents.

The group of Lipschitz k-chains with coefficients in G is defined by
L1(R?; G) {29 [f:(A)] : I < 0,8, € G, A is a k-simplex in RY,

and f; : A; —» R@ is Lipschitz}.
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Where [ f;(A;)] is the rectifiable current [ f;(A;), n:, 1].
Given T € Lx(RY; G), we can always find a representation Y, ;[ f;(A;)] of T such

that f;(A;) are non-self-overlapping and we define the mass norm of T by M(T) =
D 10 M([ fi(As,mi,1)]). In other words:

M(T) = inf { 3 10IM(fi(As i DT) : T = Y6121}

We define the group of the rectifiable flat k-chains, Ry(R?; G), as the M-completion
of L;(R¥;G). In the space L,(RY;G) we can define a boundary map 0 : £,(R9;G) —
L;_1(R¥; @) as in the singular homology theory. The flat norm F of T € L;(R?;G) is
defined by

F(T) = inf(M(A) + M(B) : T = A+ 0B, Ae Li(RY;G), B € L111(RY,G)}.

The F-completion of £,(R?;G) is the group of flat k-chains with coefficients in G,
denoted by F;(R?; G). The boundary map 0 : L;(R?; G) — L;_1(R?; G) admits a unique
continuous extension 0 : (Fx(R?; G), F) — (Fr_1(R?; GQ), F).

The group of integral flat k-chains in R? with coefficients in G is given by

T.(R?;G) = {T € Ri(RY; G) : 0T € Ry_1(R9; G)}.

The groups above can be defined on M taking the groups on R? restricted to the
elements with support on M.

The min-max constructions considered by Almgren [5] for equivalents classes are made
for relative cycles that are integral cycles. We follow Liokumovich, Marques and Neves
[22] approach, although we could work more generally with rectifiable cycles not necessary
integrals (see Li and Zhou [19, Section 3.1]). The space of flat cycles restricted to integral
chains is given by

Z(M;G) ={T € Tj(M; G) : T = 0}.
We also consider the space
ZL(M,0M;G) = {T € T (M; G) : spt(¢T) < M}

and the space of equivalent classes of relative cycles by the quotient
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Zhret(M,0M; G) = Zx(M,0M; Q) /L. (0M; G).

Then the support of a class [T] € 2y e, (M, 0M; G) is given by spt([T']) = (pepry spt(T)-
Also the mass norm and flat norm in the space of relative cycles are defined, respec-
tively, by

M(T)) = jnf M(T). F([T]) = int F(T))

for [T] € 2k e, (M, M; Q).

We will consider the space of relative flat cycles endowed with the flat norm F. When
it is endowed with the topology of the mass norm, we denote it by Z,(M, 0M;M,; G).

Note that each [T] € Zj,«(M,0M;G) has a unique canonical representative k-chain
T° € [T] such that T°L 0M = 0, in particular, M([T]) = M(T°) and spt([T]) = spt(T?),
see [19, Lemma 3.3]. Also, it follows that F([T]) < M([T]). This canonical representative
is obtained take T° = S (M\0M) for any S € [T]. We will keep the notation simple and
we denote [T'] by T" and for us G = Zs.

When 0M = & we have that 2, (M, 0M; Q) is identical to Z,(M;G).

The theorem below is an extension of the classical Federer-Fleming Compactness The-

orem for integral flat cycles.

Theorem 2.7. (Compactness Theorem [22, Theorem 2.3]). The set
{T S Zk,rel(M7 aM, G) . M(T) < L}

is compact in the flat topology for all L > 0.

Another extended theorem is the follow about the lower semicontinuity of the mass

norm with respect to flat topology in Zj ..;(M, 0M; G).

Theorem 2.8. (Lower Semicontinuity, [22, Proposition 2.4|). If {T;} < Z4,a(M,0M;G)

is a sequence converging to T in the flat topology then

M(T) < lim inf M(T;).

1—00

2.3 Varifolds

Here we follow Pitts [31] and Simon [35].
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Let U < R® be an open set. The Grassmannian bundle of k-planes over U is defined
by Gr(U) = {(x,8) : z € U and S is an k-dimensional subspace of R?}.

The space of k-dimensional varifolds in U, Vi (U), is such that V e Vi (U) if V is a
Radon measure on Gi(U) and is equipped with the weak topology. The weight |V of a
varifold V € V;(U) is a Radon measure given by

IVI(A) = (VLA)(GL(U)) = V(gk(U) N{(x,S):x¢€ A}) whenever A < U.

The mass of V € Vi (U) is defined by M(V) = ||V |(U), and the support of V, spt|V||,
is the smallest closed subset C' = R? such that V L (RO\C) = 0.

Given a varifold V € V,(U) and x € spt|V|, we denote by VarTan(V,z) = V(R?)
as the set of the varifold tangents of V at x [35 Definition 42.3|, which is a natural
generalization of tangent planes for smooth surfaces. When the density is positive, this
set is not empty [3, 3.4].

The Pitts” F-metric on Vi (U) is such that F : Vi (U) x V,(U) — R* and

F(V.W) =sup{V(f) = W(f) : f € C2(G(U)), | f| < 1, Lip(f) < 1}.

This metric induces precisely the usual weak topology on the set {V € Vi (U) :
IV|(U) < L}, for each constant L > 0.

If R = U is k-rectifiable and 6 is a H*-integrable non-negative function on R, we denote
by V = v(R,0) € Vi (U) to be the rectifiable k-varifold associated to R with multiplicity
function 6 defined by

L L e@s) dv<x,s>=f b(@)p(e. TLR) dH* Vo € COGUD)).

R

where T, R is the approximate tangent space of R in x. If 6§ assumes only positive integers
values, we say that v(R,#) is an integral varifold.

We denote by RV (U) and IV, (U) the spaces of k-dimensional rectifiable varifolds in
U and k-dimensional integral varifolds in U, respectively.

Given an integer-multiplicity rectifiable k-current T = [R,0,n], we can define an
associated k-varifold |T'| = v (R, ) € IV If T'is a k-chain with coefficients in Z,, |T'| € 1V
denotes the varifold induced by the support of 7.



24
Conversely, given a k-varifold V' € Vi (U) we can define the natural k-current
V() = f wu(S) dV(x, ) we D",
Gr(U)

Let U, U = R? be open sets. Given V € V,(U) and a C* map f : U — U’ with
fl(support(V')) proper. The pushfoward varifold of V by f, denoted by f;V, is defined
by: for any Borel set A c R%,

LV = f Jsf(x) dV (z, ).
F-1(4)

where F(z,5) = (f(2),df.(9)) and Jsf(z) = A/det[(df.|s)* o (df:|s)] (see [35, §39]).

2.3.1 Varifolds in manifolds with boundary

We denote by RV (M) and IV (M) the sets of k-dimensional rectifiable varifolds and
integral varifolds in R? with support contained in M and equipped with the weak topology,
respectively. Also Vi (M) will be the closure of RV, (M) in the weak topology.

Given V € Vg (M), let X € Xiun(M) be a generator of a one-parameter family of
diffeomorphisms ¢; of R? with ¢o(M) = M, we have that the first variation of V along
the vector field X is given by ([35, 39.2|)

SV(xX) = 2

= |, M)V

Definition 2.9. Let U < M be a relatively open subset. A varifold V' € V(M) is said
to be stationary in U with free boundary if §V (X) = 0 for any X € X4, (M) compactly

supported in U.

Note that a free boundary minimal submanifold is also stationary with free boundary.
However, the reverse may not be true. Indeed, as we commented at the introduction,
any constant multiple of a connected component of dM is a stationary varifold with free
boundary, even though it can be nothing like a minimal hypersurface in M.

By the relative topology we will consider the k-dimensional density, ©%(V,x), of a
stationary varifold V' € V(M) as the density restricted to M, that is, given x € M, we
take

K i VB, () N M)
O (V,x) := 1}1—% pZ|Bk| :
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where |B¥| is the volume of the k-dimensional unit Euclidean ball B*. For a fixed z, define

the function
_ VB, () N M)
k| B¥|

CHUAE

In the case M = &, we have B,(x) < M and it is known that the function above for
stationary varifolds satisfies the monotonicity formula [35, Sections 17 and 40]: ©%(V, p)
is non-decreasing in p. A similar monotonicity formula for the case 0M # ¢J can be found
in [T9, Theorem 2.3]. Also, it is well known that any tangent varifold of a stationary
varifold is a stationary Euclidean cone and ©F(C, p) = ©%(V, z) for any C' € VarTan(V, )
and for all p > 0. We will write that as ©%(C, c0) = ©K(V, x).

2.4 Cell Complex

Here we follow the notations of Marques and Neves [23, Section 7].
For each m € N, we denote by I"™ the m-dimensional cube I"™ = [0, 1]™.
For each j € N, I(1,j) denotes the cube complex on I' whose 1-cells and O-cells

(vertices) are, respectively,
[0,379],[379,2-377],--- ,[1—=379,1] and [0],[377],---,[1—377],[1].
We denote by I(m, j) the cell complex on [™:
I(m,j)=1(1,j)®---®I(1,7) (m times).

Then a cell @« = a1 ® -+ - ® vy, of I(m, j) is a g-cell if and only if «; is a cell of I(1, j) for
each 7, and )" | dim(e;) = ¢. By abuse of notation a g-cell a will be identified with its
support: a; X -+ X Q.

We denote by I(n,j), the set of all p-cells in I(m, j).

Let X < I(m,j) be a subcomplex (cubical subcomplex), the cube complex X (j) is
the union of all cells of I(m,j) whose support is contained in some cell of X. The set
of all g-cells in X (j) is denoted by X (j), and we say that two vertices x,y € X(j)o are
adjacent if there is a 1-cell & € X(j); containing both = and y.

Given i, j € N, the map n(i,5) : X(i)o — X (j)o is defined as follows: n(7, j)(x) is the

element in X (7)o that is closest to x.
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Definition 2.10. The fineness of a map ¢ : X(j)o = Znre(M,0M;Zs) is defined by

f(¢) = sup{M(op(x) — ¢(y)); x, y are adjacent vertices in X (j)o}.

2.5 Homotopy

In the following we define the notions of homotopy with fineness follows Marques and

Neves [25].

Definition 2.11. Let ¢; : X(ki)o — Znra(M,0M;Zy), @ = 1,2. We say that ¢; is
X -homotopic to ¢g in 2, e(M,0M;M; Zs) with fineness § if we can find k3 € N and a
map

W I(1, ks)o x X (k3)o — Znre(M,0M; Zy),

such that

(i) f(v) <o

(i) ¥([i —1],2) = ¢s(n(ks, ki)(x)), i = 1,2.
Definition 2.12. We say that a sequence of mappings

¢+ X(ki)o = Znra(M,0M; Zs)

is an (X, M)-homotopy sequence of mappings into Z, (M, 0M;M;Z,), if each ¢; is
X-homotopy to ¢;41 in Z, ,e(M, 0M; M; Zy) with fineness 6; and

(i) lim; o 6; = O;

(i) sup{M(¢;(x));x € X (k;)o,i € N} < o0,

Definition 2.13. Let S' = {¢}}icny and 5% = {¢?}ien be (X, M)-homotopy sequences of
mappings into 2, (M, 0M; M;Zs). We say that S* is homotopic with S? if there exists

a sequence {0;};en such that
(i) ¢} is X-homotopic to ¢7 in Z, (M, dM;M;Z,) with fineness d;;
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The relation “homotopy with” is an equivalence relation on (X, M)-homotopy se-
quences of mappings into Z,, .;(M,dM;M;Zs). So we can define the (X, M)-homotopy
classes of mappings into Z,, (M, 0M; M; Zy). We denote the set of all equivalence classes
by [X, Zp (M, OM; M; Zs)]%.

2.6 Min-Max Definitions

Let Il € [X, Z,, (M, 0M; M; Zy)]*. For each S = {¢;}ien € 11, we define

L(S) = lim sup max{M(¢;(x)); x € dmn(¢;)}.

1—00

Definition 2.14. The width of 1II is defined by
L(IT) = inf{LL(S) : S € IT}.

We say that S € Il is a critical sequence for II if L(S) = L(II), and the critical set

C(95) of a critical sequence S is given by
C(9) =K(S) N{V eV, (M) : |[V[(M) = L(S)},
where

K(S) = {V eVa(M):V = jli_{g) i, (x;)| as varifolds, for some subsequence

{¢5,} © Sand z; € dmn(gbij)}.

From Marques and Neves |23, Theorem 15.1] (See also Pitts |31, 4.1 (4)]) we know
that there exist critical sequences for each class II, and from [31}, 4.2 (2)], C(S) is compact

and non-empty.

Definition 2.15. Let X < I™ be a cubical subcomplex. Forpe Nand 0 < k <n+1, we
say that a continuous map in the flat topology ® : X — Zj ,../(M, 0M;Zs) is a p-sweepout
if the p-th cup power of ®*(\;) is nonzero in H?"*+1=%)(X; Z,), where )} is the generator
of H"MF(Zy (M, 0M; Zs); Zs).

Obviously, a (p + 1)-sweepout is a p-sweepout.
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Remark 2.16. In the above definition we used the fact that H"11=%(Zy ,o/(M, 0M; Zy); Zs)
has a generator \;. This is consequence of Almgren Isomorphism Theorem [5], Hurewicz
Theorem and Universal Coefficients Theorem (see Liokumovich, Marques and Neves [22,

Section 2.5]). More precisely,
H" (2 (M, 0M; Zs); 7o) = Zo = {0, A1}
Also, the pullback map ®* is the map
O* . H"R(Zy (M, 0M; Z); Zo) — H™ M H(X; Zy),

defined by ®*(0)(-) = o(®(")) for o € H™ '"F(Zy (M, OM; Zo); Zo).

Remark 2.17. Geometrically, if a map ® : X — Z ..;(M,0M; Zs) is a p-sweepout, then
for each point 2 € M there exists a cycle ®(t), for some ¢, such that it passes through the
point z (|22], Section 2.5). For the case k = n, another consequence noted by Gromov
[13] and a consequence of Lusternik-Schnirelmann Theory [9, p. 2-3| is that if Uy,..., U,
are disjoint open sets in M, then there exists a cycle ®(s), for some s, that separates each
U; into two sets of equal area. In particular and roughly speaking, for every set of points

{z1,...,2,} © M, we can find a cycle ®(r), for some r, so that {z;,...,z,} < O(r).

Definition 2.18. A flat continuous map ® : X — 2y (M, 0M;Zs) has no concentration
of mass if

lin% sup{|®(x)||(B,(p)\eM) : x € dmn(®P),pe M} = 0.
The set of all p-sweepouts with no concentration of mass is denoted by PE(M ).

Definition 2.19. The p-width of M (of dimension k) is given by

k = inf su r)) : x € dmn .
M) = int sup{M(8(a) : 7 € dumn (@)}

For the case k = n, we just write P,(M) and w,(M).
As showed by Gromov [I4] and later by Guth [I5], there exist positive constants ¢ and
C depending only on (M™*!, g) such that

T < wy(M) < Cprn (3)
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for all p e N.

2.7 Min-Max Theorem

In this section we will talk about the existence of Zy-almost minimizing varifolds with
free boundary. The main theorem will be consequence of Pitts [31], Marques and Neves

[23] and Liokumovich, Marques and Neves [22].

Definition 2.20. Let U < M be a relatively open subset, we say that a varifold V € V;
is Zs-almost minimizing in U with free boundary if for every € > 0 we can find § > 0 and
T e 2y ea(M,0M;Zy) with F(V,|T|) < € and such that the following property holds true:
T =1T4,T,...,Tm € Zra(M,0M;Zy) with

e support(T —T;) c U fori=1,...,m;
o F(T, - T,-y) <dfori=1,...,m and

e M(T;)) <M(T)+dfori=1,....m
then M(7,,) = M(T) — e.

Roughly speaking, it means that we can approximate V' by a varifold induced from a
current 7" such that for any deformation of 7" by a discrete family supported in U, and
with the mass not increasing too much (parameter J), then at the end of deformation the
mass cannot be deformed down too much (parameter ¢).

A varifold V' € V(M) is said to be Zy-almost minimizing in annuli with free boundary
if for each p € support(V') there exists r > 0 such that V' is Zy-almost minimizing in the
annuli M N A, ,.(p) = M N B,(p)\Bs(p) for all 0 < s < r. If p ¢ OM, we require that
r < dist(p, dM). By Proposition 2.3 (iii), this definition with respect to A ,.(p) or As.(p)
is equivalent.

As shown in Pitts ([31], Theorem 3.3), if V' € V(M) is Zs-almost minimizing in
a relatively open set U < M with free boundary, then V is stationary in U with free
boundary.

When 0M = &, we do not need use the expression ‘with free boundary’.

In the following, we talk about the existence of such varifolds. First of all, we can
do a tightening process to a critical sequence S € II so that every V € C(S) becomes a
stationary varifold with free boundary. For the case without boundary this is proved in

[31] and [23]. For the case with boundary, we discuss the proof below.
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Theorem 2.21. Let Il € [X, Z, (M, 0M; M; Zy))*. For each critical sequence S* € 11,
there exists another critical sequence S € T1 such that C(S) < C(S*) and each V € C(S)

15 stationary in M with free boundary.

Proof. The proof of this result is essentially the same as [23, Theorem 8.5|. The only
modifications are the use of Theorems 13.1 and 14.1 of [23], as noted in |19, Theorem
4.17]. In place of [23, Theorem 14.1] we use [22, Theorem 2.11]; and a compatible version
of [23, Theorem 13.1] follows from [22] Lemma A. 1] in the same way that the |23, Theorem
13.1] follows from [23, Lemma 13.4].

0

With the tightening process above we can prove the existence of a Zs-almost mini-
mizing varifolds with free boundary such that it reaches the width of a chosen (X;M)-
homotopy class I1 € [X, Z,, (M, 0M; M; Zy)|*. For 0M = (&, it was first proved by Pitts
[31, Theorem 4.10| with maps in cubical domains for 1 < k < n and later by Marques and
Neves |25, Theorem 2.9] for cubical subcomplex domains when k& = n. For the case with
boundary, a version for cubical domains was proved by Li and Zhou [19, Theorem 4.21].
We present below a version for the case 0M # & and take maps in cubical subcomplex

domains when k£ = n.

Theorem 2.22. For any Il € [X, Z,, .(M,0M; M; Zy)|*, there exists V € I1V,(M) such
that

(1) |V (M) = L(IL);
(i) V is stationary in M with free boundary;

(iii) V' is Zs-almost minimizing in small annuli with free boundary.

Proof. Using the previous theorem, we can follow the same procedure in the proof of |31,
Theorem 4.10| (see also [19, Theorem 4.21]). To prove that V is Zs-almost minimizing in

small annuli with free boundary on dM, just do as in the proof of [I9, Theorem 4.21]. O

When oM = ¢, as noted by Aiex [2, Theorem 4.4|, if we take ® : X — Z,(M;Zs) a
p-sweepout with no concentration of mass and define Ilg the class of all flat continuous
maps ¥ : X — Z.(M;Z,) with no concentration of mass that are flat homotopic to @
and define

L(Ilg) = inf sup M(¥(z)),

Vellg rxeX
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then the same conclusion of the theorem above is still true.

We present the most useful result for us of this section.

Corollary 2.23. For pe N and each € > 0, we can find V € IV, (M) such that
(1) wp(M) < [V[[(M) < wp(M) + €
(i) V is stationary in M with free boundary;

(iii) V is Zg-almost minimizing in small annuli with free boundary.

Proof. Note that the results in Section 3.3 of Marques and Neves [25] can be extended
for compact manifolds (with or without boundary) from the results in Section 2 of Lioku-
movich, Marques and Neves [22]. So we can use the results from Section 3.3 of [25].

By definition we can find ® : X — Z, (M, 0M;Zs) a p-sweepout with no concentra-
tion of mass such that sup{M(®(z)) : z € dmn(®)} < w,(M) + €. From 3.6 of [25] there
exists an (X, M)-homotopy sequence of mappings S = {¢;};en € II associated. By 3.7 and
3.9 (ii) of [25] we can extended this sequence to a sequence {®;};cy of maps continuous in

the mass norm and homotopics to @ in the flat topology for large ¢. Moreover

L(II) < L(S) = }E& sup sup{M(®;(z)) : x € X} < sup M(P(z)).

zeX

As @ is a p-sweepout and ®; is flat continuous and homotopic to ® for large ¢, then
®, is also a p-sweepout for large ¢ with no concentration of mass by 3.5 of [25]. Also from
3.9 (i) of [25] we have that {®;}icy € P,(M) for each S = {&:}ien € T and for large i.
Together with the above inequality we conclude that

wp(M) < L(IT) < sup M(P(x)) < wy(M) +e.

zeX

The remaining items are deduced from the above theorem.
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3 ONE DIMENSIONAL STATIONARY VARIFOLDS

In this section we will talk about results related to one dimensional stationary varifolds.
In that case, we have a classical result about interior regularity due to Allard-Almgren
[4] which says that those varifolds are geodesic networks. Our main result about free
boundary geodesic networks is used to give an upper bound for the density. When M
is the unit ball B> < R?, or a planar full ellipse £? < R? sufficiently close to B2, we
will be able to classify the free boundary geodesic networks, provided they are Zs-almost
minimizing in annuli and has mass bounded by 6. Also we will prove our main theorem
about regularity (Main Theorem [Al), which it will be important to show that the varifold

obtained in the Min-Max Theorem is a free boundary geodesic network.

3.1 Free Boundary Geodesic Networks

We now define in this section certain 1-dimensional stationary varifolds whose support

is given by geodesic segments. We follow the notations of Aiex [2].

Definition 3.1. Let U < M be a relatively open set. A varifold V' € IV(M) is called
a free boundary geodesic network in U if there exist geodesic segments {ay,..., o} < M
and {6,,...,0;} = Z, such that
l
(i) VLU =) v(e N U, 0y);
i=1
(ii) The set of junctions is the set ¥y = U!_,(da;) N U. If p € By, then there exist
geodesic segments {c,, ..., o, } © M for some m = m(p) and we require m > 3 for

pE M. Each geodesic segment is parameterized by arc-length with initial point p,

>16;,64,(0) = 0, if peSyNM, and (4)
k=1

NgE

E
Il

1

A junction p € Xy N M is said to be singular in M if there exist at least two geodesic
segments with 0;, &;, (0) # —0;,;,(0), and regular in M otherwise. In other words, an
interior regular junction belong to the intersection of longer geodesic segments. When

p € Xy N 0M, we said that it is regular if ¢;, (0) L 0M for every «; such that p € a;. A
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triple junction is a point p € Xy such that it belongs to exactly three geodesic segments
with multiplicity 1 each. Obviously a triple junctions is not regular in M.

We can deduce the following properties as did in [2]:
Proposition 3.2. (Proposition 3.2 and Corollaries 3.3 and 3.4 of [2]). Let V' be as above.

(i) V is stationary in U,

(ii) OV, z) = Z % for x e ﬁ v(ag, NU,0;);
k=1

k=1

(iii) If OV, z) < 2 for all z € spt|V| N M, then every p e Sy N M is a triple junction;

(iv) IfOY(V,z) < 2 for all z € spt| V| N M, then either Sy N M contains a triple junction
or all junctions are regular in M and the geodesic segments of each junction have

multiplicity one;

(v) If ©Y(V,z) < 1 for x € spt|V|| N M, then a junction on x is given by a geodesic
segment with multiplicity one or two and orthogonal to dM, or by two geodesic
segments with multiplicity one each and with the same angles with respect to 0 M.

3.2 Upper Bound for the Density

Now we prove the main property for us about free boundary geodesic networks. We
do similar results to Proposition 3.6 and Theorem 3.7 from Aiex [2], but in a different

way.

Lemma 3.3. Consider M? a compact region in R? with non-empty boundary and V €

IVi (M) a free boundary geodesic network. For each p; € Xy N M, let
Fy =) 60;,64,(0),
k=1

as in the Definition [T (i).
(ii) For M?* = B? we have that >, |F;| = |V|(M).

(1) If M?* — B? in the manifold sense, then Z|F,| — |V|[(M). More precisely, let
e > 0. For M? sufficiently close to B2, depending only on a parameter C' > 0, we

have
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Ivion - YIEl| < (©)

for every free boundary geodesic network V- e IV, (M) with |V||(M) < C.

Proof. Denote by J; the i-th junction of V. Each segment of V' is determined by two
junctions J; and J;. Denote that segment by «; ;. Also we have two angles ¢; ; and ¢;;
associated, which are the intern angles of the respective junctions in the triangle given by
the origin O and the junctions J; and J; (see Figure[ll). Note that, in those notations, we
have «o; ; = ;.

Figure 1

Uik

Source: Own construction

Suppose that each segment «; ; has multiplicity 6; ;, for some 6, ; € N. Note that

Zﬁm cos(¢; ;) = 0, (7)
irj
for all 7 or j fixed such that J; € M, or Jj € M, respectively. Indeed, cos(¢; ;) is the
projection of &; ;(0) (recall that |&; ;(0)| = 1) on the straight line that passes through O
and J;. So, the condition () concludes.
Let 7; be the distance from the origin O to the the junction J;. The length |a; ;| of
each «; ; is given by

| ;| = (ricos(¢iy) + 75 cos(¢y))-



35

Using this and (),

V(M ZGZ]|a”| ZGMTZ cos(¢i ;) Zﬁk 11 cos(py ) for J, € OM. (8)

k,l

For J; € M, let 9y, be the angle between the segment o and the normal to dM at
J; (see Figure[ll). Thus,
|Fi| = 2 Ok cos(Pu ).
k

If M = B?, then r, = 1 and ¢ = Y1y for all [, k such that J; € dM. So,
IVI(B?) ZIFz
For M close to B?, we have r; ~ 1 and o1k ~ Yy for all [, k such that J; € M. Then,

IVI(M) = (1 £e1) ) |F

for some £; > 0, which depends only on the approximation M ~ B?. Note that, as
IV[[(M) < C, we see by the above expression that ), |F;| < C; = C1(C) for some

constant C7 > 0. Therefore, taking ¢; = ¢/C, we obtain

IVIOD - S IRl <& DA <0 =e
l l
0

Note that, when V' is a smooth free boundary submanifold of M, the above result is an
immediate consequence of the Divergence Theorem. Furthermore, we can find the same
formula () applying the Divergence Theorem at each segment of V' along of the position
vector.

From the above theorem we have the following upper bound for the density. Compare

with Aiex |2 Theorem 3.7]|.

Theorem 3.4. Let V € IV,(B?) be a free boundary geodesic network. If |V|(B?) <m+1

for some integer positive m, then
(i) ©(V,z) < 5 for all x € int(B?).

(ii) ©Y(V,z) < %for all x € OB
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Futhermore, let V € IV (M?) be a free boundary geodesic network and 0 <& <m + 1
such that |V |[(M?) < m+1—¢, where M? is a compact region of R? with convex boundary,
sufficiently close to B* and satisfying (@) for C = m + 1 — e. Then, the conclusions (i)

and (i1) above are still true for M?* in place of B>.

Proof. We can extend the geodesic network V e IV;(M?) for a varifold V € V;(R?) (not
necessary a geodesic network) in the followings way: for each p; € ¥y N dM we take the
semi-straight line r; starting in p; with direction —F; = — " | 6;, &;, (0) and multiplicity
|F;|. Then V is a stationary varifold on R2.

Let = € spt| V|, d; = dist(p;, ), and ¢; be the angle between p; — 2 and 7; at p;. Also,

consider dy as the minimal value of s such that Bs(z) contains M. See Figure 2

Figure 2

Source: Own construction

As M has convex boundary, we have that each r; does not intersect M in R*\ M. So,

for s = dy we obtain the following expression for the monotonicity formula:

[V][(Bs(x))
2s

IVI(M) + S ] (dscos(6) + /Ao (6] — (@ — 7))
2s

Ol(s) =

Consider first the case M? close to B? and |V| (M) < m + 1 — e. By the expression
above OL(s) — 3>, |Fi| for s — c0. And by the above theorem we know that Y |F] is



37

close to |V||(M), so for s large

~ 1-— 1
oYV, z) < OL(s) < % <Z+5

Where we used the fact that the function ©.(s) is non-decreasing for each z fixed, so
Oz, V) < ©L(s) for all s > 0.

(i) If z € spt||V| N M, then ©'(z,V) = O'(z,V) < m/2 + 1/2. By the property (ii) of
B2, we actually have that ©!(z, V) < m/2.

(i) If € spt|V| N OM, then ©'(z,V) = Oz, V)/2 < m/4 + 1/4. Again, by the
property (ii) of B2l we actually have that ©'(z, V) < m/4.

For the case M? = B? and ||V'|(B?) < m+ 1, just take € = 0 in the above expressions.

U

3.3 Free Boundary Geodesic Networks with Low Mass

In this section we describe the free boundary geodesic networks with low mass when
M? is the unit ball B? or a full ellipse E? sufficiently close to B2.

We will need the following important theorem from Aiex [2]:

Theorem 3.5. ([2], Theorem 4.13). Given V € IV,(M) a geodesic network with free
boundary and p € Xy N M. If V' is Zo-almost minimizing in annuli with free boundary at

p, then
©'(V,p) e N.

Remark 3.6. This theorem is proved in [2] for closed manifolds but it still holds for
manifolds with boundary, provided that p is a junction of V' in the interior of M, as
established above. Indeed, the only care are the use of the Constancy Theorem, the
Compactness Theorem for relative flat cycles and the lower semi-continuity of M. The
last two are proved for the context with boundary in Liokumovich, Marques and Neves
[22]: Theorem 2.3 and Proposition 2.4, respectively. Also, if we consider the open sets
in Section 4 from [2] as open sets in the interior of M, then the Constancy Theorem
is still applicable in the situations that appear in [2, Section 4]. Finally, to prove the
Theorem 4.13, this author uses the theorems of Section 4 for any sufficiently small open

ball containing p.
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For £ = 3, let P, be a regular k-sided polygon inscribed in the unit circle. Here
P, will be a diameter of the unit ball B2. Clearly, for k£ > 2 we have that P, and f’k
are distinguished by a rotation. Also, note that P, P, + 152, P3, Py and Ps are the only
ones such that the perimeter |P;| is smaller than 6, whose values are 2,4, 3+/3,4y/2 and
10sin(+/7/5), respectively.

More generally, we will use the term closed k-polygon, k > 3, to denote a periodic bil-
liard trajectory inside of a domain {2 with boundary 0€2, which is obtained by k reflexions

on €.

Theorem 3.7. Let V € IV(B?) be a free boundary geodesic network and Z-almost mi-
nimizing in annuli with free boundary in B. If 0 < |[V|(B?) < 6, then V = Py for some

k=2,,...,5, orV =P+ D,

Proof. From Theorem B2l we know that ©'(V,z) < 5/2 for z € M, and ©(V, z) < 5/4 for
x € 0M. Now using Proposition (ii) and Theorem 3.5, we deduce that ©'(V,z) = 1
or 2 for x € M, and ©'(V,z) = 0.5, or 1 for x € dM. Therefore, Proposition (iv)
says that all junctions of V' in M are regular and the geodesic segments of each junction
have multiplicity one. Also, Proposition (iv) and (v) say that each segment of V
has multiplicity one or two and touches dM orthogonally, or has multiplicity one and
touches 0 M making a reflexion generating another segment with multiplicity one also. As
IV (B?) < 6, we claim that: if V' touches 0M orthogonally in some point, we have that
V will be a diameter (V = P,) or two diameters (V = P, + P5) of B2 (see Figure @ (a));
and if V' does a reflexion in some point of M, then V will be a regular polygon P, for

some k = 3,4 ou 5 (see Figure B (b), (c) and (d)).

Figure 3

X G

Source: Own construction

In fact, for k = 6 we have |P;| > |Ps| = 6. From five reflexions, we can have non-convex
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closed polygons with self-intersection as in the Figurel (a) and (b). As a closed k-polygon
in B? has all the sides with the same length, we have that each side is tangent to the
same circle Cj, concentric with 0B? (see Figure dl (c)), in particular the perimeter of that
k-polygon is at least |Ck|. A regular convex k-polygon in B? gives a unique round around
C}, and a non-convex (closed) k-polygon in B? gives at least two rounds around Cj. So,
if the radius of C} is bigger than 0.5, then the perimeter of a non-convex k-polygon is
bigger than 2-2-0.57 > 6. Otherwise, if the radius of C} is less or equal to 0.5 (see Figure
M (d)), then each side of a non-convex k-polygon is bigger than 1.7, and so the perimeter
is bigger than 5-1.7 > 6, since for non-convex k-polygons we have k > 5. Therefore, there

is not candidates for V' in the set of non-convex k-polygons.

Figure 4

(a) (b) (c)

W N>

Source: Own construction

O

Remark 3.8. In the theorem above the case V = P, + P, is the only possibility for V' to

have multiplicity, which occurs if P, = b,

A similar result holds replacing B? by a planar full ellipse E? sufficiently close of B2.
We denote by PF, for k > 3, the closed convex polygon (not necessary regular) inscribed
in £? defined by k reflexions on k different points of dE2. Here, Pf will be the smallest
or the largest diameter of E2. Cleary, as E? is close to B?, we have that PF is close to
Py.. That polygons PF are examples of closed billiard trajectories in ellipses (Poncelet

polygons). We will see more properties of polygons in the proof below.

Corollary 3.9. Let E? be a planar full ellipse and 0 < R < 6 be a real number. For
E? sufficiently close to B?, depending only in the parameter R, the following is true: if
V e IVi(E?) is a free boundary geodesic network such that it is Zs-almost minimizing
in annuli with free boundary in E* and 0 < |V||(E?) < R, then V. = PE for some
k=2,...,5, 07’V=P2E+152E.
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Proof. Consider E? an planar full ellipse which boundary is given by an ellipse 22/a® +
y?/b* = 1 for a > b with focus Fy, F; € Oz (see Figure [l (a)). Let d and D the values of
the smallest and largest diameters of E?, respectively. So, d = 2b and D = 2a. Also, here
we will always consider E? sufficiently close to B2, so d ~ D ~ 2, for example.

Take E? ~ B? such that it satisfies () from Lemma for C' = 6 — R. So we can
use the Theorem B4l for C' = 6 — R = 5+ 1 — ¢ for some € > 0 and, as in the proof
of the theorem above, applying Proposition and Theorem we get: all junctions
of V in M are regular and the geodesic segments of each junction have multiplicity one;
each segment of V' has multiplicity one or two and touches dM orthogonally, or has
multiplicity one and touches M making a reflexion generating another segment with
multiplicity one also. Therefore, V could be the smallest or the largest diameters of E2,
since they touch dE? orthogonally (see Figure [l (a)). Also, V could be PE + PF, and
then |V||(E?) = 2d,d + D or 2D, since d ~ D ~ 2 and |V|| < R < 6. We could have V/
as in the Figure [ (b): a segment touching dE? orthogonally at A;, making a reflexion
at (0,b) € 0E? with respect to dE?, generating another segment which will be touch
orthogonally 0E? at Ay = (—x(A;),y(A;)). This can always happen for a >> b. However,
for E? close to B? we have a,b ~ 1, and the cases V = PF or V = PF + IBQE are the only
possibility such that V' touches d M orthogonally in some point and |V |(E?) < R. Indeed,
considering (asin(t),bsin(t)) the polar coordinates on 0E? for t € [0,27), and taking
without loss of generality (by symmetry ) A € 0E? such that A = (asin(t4),bsin(t4)) for
ta € (3/4m,2m), we claim that if a segment AB < E? touches dM orthogonally at A, then
AB is not orthogonal to 0E? at B € dE?, and the segment BC, reflexion of AB at B, is
also not orthogonal to dE? at C' (See Figure [ (c)). In fact, the equation of the straight

line which is perpendicular to 0E? at A is given by

2
Y = at%@f‘)x + sin(ta) (b— %) :

We will require that a® < 2b?, which is a condition satisfied for E? ~ B2, since
a,b ~ 1. Take x = 0 above, we see that this condition implies that y(I) < b, where I is
the intersection of AB with Oy (FigureHl (c)).

In an ellipse we have the following fact: if AB is orthogonal to 0E? at A, then AB
bisects the angle / F} AF;,. In particular, AB passes through F}F; and, since y(I) < b,
we have tg € (7/2,7), where B = (asin(tg),bcos(tp)). Also, if AB was orthogonal to
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Figure 5

Source: Own construction

0E? at B, the equation of the straight line through B will be the same as above, which
implies that tan(t4) = tan(tg) and sin(t4) = sin(tp), which contradicts the fact that
ta€ (3/4m,2n) and tg € (7/2,7). So, AB is not orthogonal to 0E? at B and there exists
BC, reflexion of AB at B. Remember from billiard theory in ellipses that, if a segment
in E? passes through FyFy, then all the segments in that billiard trajectory (segments
reflected at dE?) pass through FyFy (see for example [I8, Theorem 4]). So BC passes
through F F5.

Supposing that BC is orthogonal to 0E? at C, the same argument applied for AB could
be apply to BC to get that tc € (3/4w,27) and tc # ta, where C' = (asin(tc), beos(tc)).
Taking the equations of the straight lines that are perpendicular to A and C| respectively,
we would have that they intersect at B = (acos(tg), bsin(tg)), then

Ma cos(tp) + sin(t4) (b - %) = at#b(tc)a cos(tp) + sin(tc) (b - %)
3 %cos(tg)(tan(tA) — tan(tc)) + (b ;“ ) (sin(t4) — sin(te)) = 0.

As ta,to € (3/4m,27), ta # tp and cos(tp), (b* — a®) < 0, we see that the left side of
the last expression above is not equal to zero. Therefore, BC is not perpendicular to 0E?
at C and there will be another reflexion CD at C' (see Figure [l (c)).

Supposing that V # PF and V # PE + PE. there exists a segment of V which is not
orthogonal to dE%. By the properties of billiard trajectories in ellipses ([I8, Theorem 4]),
we know that if some segment passes through FyFs, then all the segments will be pass
through FyF,. Moreover, by the above arguments, there will be at least three segments

that pass through FyF,. We consider E? ~ B? such that the length of each of these
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segments is at least R/3, since the length of each of these segments tending to 2 as E?
tends to B%2 and R < 6. So, there is not a segment of V that passes through F}F, for
every V with ||[V](E?) < R. Since any segment that is orthogonal to dE? have to pass
through F} Fy, we see that V' is a closed k-polygon. Also, as the segments of V' do not pass
through F) F5, we have by [18, Theorem 4| that all the segments of that closed k-polygon
is tangent to the same ellipse (E},), where E}, is a planar full ellipse inside of E? and with
the same focus of E2. The Poncelet theorem (see for instance [32, Theorem 4]) says that
if a closed k-polygon P is tangent to 0E, then any other polygon Q that is tangent to
0FE; is also a closed k-polygon with the same perimeter of P. Moreover, for each k > 3
there exists a unique ), such that all the convex closed k-polygons PF have its trajectory
tangent to 0(E},) (see for example [33, Section 4]). In particular for a fixed k > 3, all the
polygons PF have the same perimeter. In the Figure [f] (a), (b) and (c) we see examples
of PF, PF and PE, respectively. Also, we see E}, Ey and Ej}, respectively.

Figure 6

Source: Own construction

Note that, due to uniqueness existence of each Ej for PP, we have that |0(E})| <
|0(E, )| for B, and Ej,, associated to PF and PF,,, respectively. Indeed, let A € 0E?
and take a segment starting at A and tangent to d(E}). This segment generates a billiard
trajectory that is always tangent to d(E}) (|18, Theorem 4]), so by the Poncelet theorem
this billiard trajectory is also a k-polygon ZSkE . In the same way we obtain a (k+1)-polygon
ﬁ,ﬂl through A and tangent to d(Ej ). As the intern angle of ]Blﬂl at A is bigger than
the intern angle of PF at A, we see that Ej. ., is bigger than Ej (see Figure[d (a)).

We also require E? ~ B? such that 2D < |PF|, |PE|, |PF| < 6, |PE| > R for k =
6,---,11, and [0(E},)| > 6 since |Py| > |Ps| = 6 for k > 6, and |C1| > 6. As |PF| >
|0(E})| > |0(E},_,)|, we have that |PE| > R for all k > 6. So the only candidates for V in
the set of closed convex k-polygons are PE, PF and P3 (Figure [6).
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Finally, with the same argument as in the proof of the theorem above, we see that all
closed non-convex polygons in E? have perimeter bigger than 6, so there is not candidates
for V in that set. Indeed, the estimates there are strictly, so for £? ~ B? and replace Cj,
by E; with average radius approximately 0.5, we conclude that the perimeters are bigger
than 6. Compare the Figures [ (c) and [ (c). In the Figure [ (b) below, we have an

example of a closed non-convex 5-polygon.

Figure 7

Source: Own construction

]
Remark 3.10. As we saw above, for a fixed k£ > 3, all the polygons PP have the same

perimeter. So, the corollary above says more: there are only six possibles values for

IVI(E?) - d,d + D, 2D, |P|, |P{| or |PF.

3.4 Replacement and Regularity

The regularity of one dimensional stationary integral varifolds for open sets was proven
by Allard and Almgren ([4], Section 3). As noted by Aiex (2], Theorem 3.5), the regular

structure described in [4] is exactly our definition of geodesic network. Precisely:

Theorem 3.11. ([4]; [2], Theorem 3.5). Let M be a Riemannian manifold, U < M open
and K < U compact. If V € IVi(M) is a stationary varifold in U, then VLK is a geodesic

network.

Definition 3.12. Let T € Z,.(M;Z,) and U < M be a relatively open subset. We say
that T'is locally mass minimizing in U if for every p € spt(T") N U there exists r, > 0 such
that B, (p) N M < U and for all S € 2,(M;Zs) such that spt(T — 5) < B,,(p) N M we

have

M(S) = M(T).
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The definition above is equivalent if we take Fermi half-balls gj; (p) instead of Eu-
clidean balls B, (p) restricted to M.

The following theorem is about replacements of almost minimizing varifolds, which is
one of the most important property of this kind of varifolds. Roughly speaking, we can
replace an almost minimizing varifold V' by another almost minimizing varifold V*, which

has better regularity properties.

Theorem 3.13. Let U ¢ M be a relatively open set, K < U compact and V € Vi.(M)
be an Zs-almost minimizing varifold in U with free boundary. There exists V* € Vi.(M)

such that
(1) VL (M\K) = VL (M\K);
(i) |V*| (M) = [V][(M);
(1ii) V* is Zo-almost minimizing in U with free boundary;
(iv) V*e V(U N M);

(v) VLU = lim; . |T;| as varifolds for some {T;} € Zj rer(M, (M\U) U 0M; Zs) such

that each T? is locally mass minimizing in inty (K).

Proof. The proof follows as in Proposition 5.3 from [19], replacing Lemmas 3.10 and 3.7
by Theorem 2.3 and Proposition 2.4 from [22], respectively. See also Theorems 3.11 and
3.13 from [31] to get (iv) from (iii). O

The varifold V* in the above theorem is called of a replacement of V in K.

In the next lemma we will prove a weak regularity for varifolds that are Zs-almost
minimizing with free boundary in an open set. As we will see in the Theorem [A] we have
actually a more strong regularity in the one-dimensional case. Restrict to M , that strong
regularity was expected since V is Zs-almost minimizing, thus V is stationary and then

holds the interior regularity (Theorem B.IT]).

Lemma 3.14. (Weak Regularity of Replacements) Under the same hypotheses of Theorem
[213, assume that OM is strictly convex and take V' an one-dimensional varifold. Then
spt|V*|| Ninty (K) is a free boundary geodesic network (possibly infinite) without junctions
in (KN M)\é’relK, such that each geodesic segment has to touch O, K U 0M, and they
can only touch OM N inty (K) orthogonally.
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Proof. From [2, Proposition 4.6] we know that if 7" is an one-cycle that is locally mass
minimizing in an open set W < M and Z < W is compact, then T'L Z is a geodesic
network (finite) such that each geodesic segment has endpoints in ¢Z and those segments
do not intersect each other, since the coefficients are in Zs. So, for a relatively compact
K < M and T locally mass minimizing in inty;(K) (as in Theorem BI3, (v)), we have
that T Linty, (K) is given by geodesic segments without intersecting each other and each
segment that touches dM N inty(K) is orthogonal to M, in particular |TP| L inty (K)
is a free boundary geodesic network (possibly infinite). Indeed, as T7 is locally mass

minimizing, each segment of T) that touches M is locally the shortest path, so it is

orthogonal to M (see Figure [ (a)).

Figure 8

TP~

Source: Own construction

(b)

As V* is given by the limit as in the Theorem (v), we using the properties from
geodesics and the fact that 0M is strictly convex to see that V* is given by geodesic
segments that can only touch dM N inty,(K) orthogonally. In fact, the strict convexity
implies that any geodesic segment can only touch dM only in its endpoints. So, given
a limit segment « that touches dM at p € dM, we have that there exists a sequence of
geodesic segments converging to « such that each segment of that sequence touches 0 M
in a neighborhood of p. Therefore, a will be orthogonal to M at p (see Figure § (b)).
Moreover, as the segments of T do not intersect each other, we get that in the limit the
geodesic segments of VV* can have multiplicity, but two distinct segments can not intersect

each other.
O

We called the result above of weak regularity, because we do not know if the number of
geodesic segments could be infinite. However, the above result is true for any codimension.

Let p € R? and let C' € V(R?) be a varifold such that C' = Y._, v(ry, m;) for some
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[,mq,---,m; € N, and each r; is some semi-straight line from p. We will call C' of a cone
with vertex at p.

The next proposition will be very important to prove our main result about regularity
(Theorem [Al). Essentially, we will use it to glue replacements on overlapping annuli (see

Step 2 in the proof of Theorem [Al)

Proposition 3.15. Let C' € IV, (R?) be a stationary cone with vertex at the origin 0 € R?,
and such that it is Zsy-almost minimizing in Bo(0) < R% Then C' = v(r,m), for somer a

straight line passing through the origin 0, and for some m € N.

Proof. We will use the following fact: as C' is Zs-almost minimizing in By(0), then each
varifold tangent is also an integral and stationary varifold on 7,R? = R? such that it is
Zy-almost minimizing in any bounded open subset of R? [3T, Theorems 3.11 and 3.12(1)].

As C' is a cone, we have C = Zi:l v(r;, m;) for some I, mq,--- ,m; € N, and each r; is

some semi-straight line from the origin 0. So,
Lo
0Y(C,0) = 6} =) —.
( 70) 0(07 OO) ; 9

By Theorem 3.5 we actually have that ©'(C,0) = k for some k € N.

It is sufficient to prove the result restricted to B2(0), that is, to prove that C is a
straight line with possibly with multiplicity on By(0). We will prove it by induction on
04(C, ). Indeed, the result is obvious for ©}(C, ) < 1. Suppose that O (C,0) = k+1,
and that the result is true for ©}(C,®) < k, k > 1. Let C* be a replacement of C' on
B1(0), we know that C* is integral, stationary and Z,-almost minimizing in B(0). Also,
|C*[(B2(0)) = [C[(B2(0)), C* L (B2(0)\B1(0)) = C'L (B2(0)\B1(0)), and together with

the monotonicity formula we get

6! (VarTan(C*, y), o) = ©1(C*,y) < OL(C*, ) = O(C, ),

Y

where y € dB1(0) N spt|C*.

We have two cases: ©'(C*,y) = ©,(C*, ) for some y € dBi(0) N spt|C*|, or
0'(C*,y) < ©,(C*,») for any y € dB1(0) N spt|C*|. In the first case, C* will be a
cone with vertex at y. This implies that C' = mr,, for some m € N and r, is the straight
line that passes through y and the origin, since C* L (B2(0)\B1(0)) = C' L (B3(0)\B;(0))
(see Figure [).
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Figure 9

Source: Own construction

In the second case, O} (VarTan(C*,y), ) < k for any y € dB;(0), since O}(C, 0) =
k + 1. So, as VarTan(C*,y) is Zs-almost minimizing in B(0), we can use the induction
hypothesis for each y to get that VarTan(C*,y) = m,r, for some m, € N and r, is the
straight line that passes through y and the origin. As C* does not have junctions in B (0)
(previous Lemma), we conclude that C* = C and then C' = mr for some m € N, and r is

a straight line through the origin (see Figure [).
0

The next result is a boundary maximum principle for stationary varifolds with free

boundary in codimension one case.

Theorem 3.16. (Boundary maximum principle [I9, Theorem 2.5]). Let U = M™"! be
a relatively open subset and V' € V,(M) be stationary with free boundary in U. Suppose

N cc U is a relatively open connected subset in M such that
(i) OraN meets OM orthogonally, if OrqN N OM # &,
(i) N is relatively strict convex in M;

(iii) spt|V| < N.

Then we have spt|V|| N 0p,qN = .

Proof. Tt follows from the interior maximum principle of White [38, Theorem 1] and the

boundary maximum principle for stationary varifolds with free boundary of Li-Zhou |20,
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Theorem 1.4]. I

Now we will prove our main theorem about regularity of stationary Zs-almost mini-

mizing with free boundary.

Main Theorem A. Let M? be a compact Riemannian manifold with non-empty strictly
convex boundary. If V € IVi(M) is a stationary varifold with free boundary such that it
15 integral in M and Zo-almost minimizing in small anulli with free boundary, then V s

a free boundary geodesic network.

Proof. Here we follow similarly to the proof of [19, Theorem 5.2 and [8, Proposition 6.3],
with the necessary modifications.

Given p € spt| V| N M, we know by the Theorem BIT that in a compact neighborhood
around p we have that V' is a geodesic network. So, assume that p € spt|V| N JdM and
fix r > 0 such that

1 .
r < Zmln{TFermia Tam(p>7 TOTt(p)}’ <9)

where 74, (p) > 0 is such that V' is Zy-almost minimizing in A, ;(p) with free boundary for
all 0 < s <t < 7y, and 7,+(p) > 0is such that two distinct geodesics that are orthogonal
to oM N ggr (p) do not intersect each other in 5; (p) for all 0 < § < 744(p)-

Note that, as a consequence of the maximum principle (Theorem BI6), we have the
following: if W € V,(M) is stationary in B, (p) with free boundary for p € spt|W| and r

as above, then
spt|W| NS (p) # @ forall0<t<r (10)

In fact, suppose that there exists ; € (0, 7] such that spt|WV| ﬂg‘g(p) = ¢, then spt|WL
gti; (p)|| < gti; (p) for some 0 < #, < #;. By the maximum principle (Theorem BI6) we
conclude that sptHWl_gt{ (»)| ﬂgg (p) = & and we could repeat this argument indefinitely,
which contradicts the fact that p € spt|W|. Using the same argument and suppose only
that W # 0 in gj (p) for some p € @M, we conclude that there exists 0 < < r such that

spt|W[ NSHp) # @ forall0<f<t<r (11)

Step 1: Constructing successive replacements on two overlapping annuli.
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Fix any 0 < s <t <r. Asr < (1/4)rs, and V is Zy-almost minimizing in As,.,./2(p)
with free boundary for all 0 < 5§ <t < rg,,/2, we can use the Theorem B.13 to get a first

replacement V* of V on K = Ag,(p). The Lemma 314 says that
5y = spt| V] N Aue(p)

is a free boundary geodesic network (possibly infinite). By Theorem B3 (iv) we have
that V* is still Zy-almost minimizing in As,,,,/2(p) with free boundary for all 0 < 5 <
t < Tem/2, so we can apply again the Theorem B.I3] to get a second replacement V** of

V*on K = A, 5,(p) for 0 < 51 < s < sy <t. Again,
X 1= spt|[V*[ N Ay, s, (p)

is a free boundary geodesic network (possibly infinite). Let us consider the following
choices: we fix any s; € (0,s), and we choose sy € (s,t) such that VarTan(¥,z) is a
straight line transversal to §SJ; (p) for all z € (§8J; (p)\OM), and (o N §;(p))\5M #
for every geodesic segment a € ¥;. Indeed, fixing s, € (s,t), we know by the regularity
of replacements (Lemma [B.14) that VarTan(X,,x) is a straight line for any x € A;.(p).
Also, we will have only a finite number of geodesic segments {a;} = ¥y in A 3(p) for
any 0 < s <t < t. Too see the last one, note that any geodesic segment (with possible
multiplicity) a; € 31N A, (p) has to touch S (p). Indeed, by the Lemma B3I each a; has
to touch S (p) US; (p) U (M N A, 4(p)) and it can only touch oM N A,,(p) orthogonally.
Using that any two orthogonal geodesic segments to dM do not intersect each other in
B, (p), together with the fact that St (p) is strictly convex and orthogonal to dM, we
conclude that if a; € ¥ touches OM N Ag,(p), then a; N gj (p) = &, unless a; touches
SH(p) N M (sce Figure Md). Also, if a; does not touch S; (p), then its endpoints can
not be on dM N A,+(p), because «; would be a stationary varifold with free boundary,
contracting (I). Then, any o; that touches S (p) or OM N A, 4(p), should touch S, (p).
Therefore, if there were an infinite number of geodesic segments {a;} = X} in A, 3(p), then
there would be an infinite number of geodesic segments from g‘tf (p) to §t+ (p), contradicting
the fact that 3; has finite mass. Thus the set {a;} is finite. Finally, using again the strict

convexity of 5’;; (p), each geodesic segment that is tangent to g;; (p) can not touch 5’;; (p)
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for all 0 < S5 < s5. So, by the finitude of the geodesic segments and by ([I0), we can
choose 0 < sy < t as requested. See Figure [0

Figure 10

Source: Own construction

Note that each o; < ¥ have to touch gj (p) at points in M, since gj (p) is orthogonal
to OM.

~

Step 2: Gluing Xy and Xy across S5, (p).

As before, any geodesic segment (with possible multiplicity) f5; € ¥ N A, 5,(p) has to
touch §SJ; (p) in points belonging to M. Since V** is stationary and integral in A +(p),
we have by the interior regularity (Theorem BIT) that each z € spt|V**| N M N A, (p)
belongs to a finite number of geodesic segments (including multiplicity). In particular,
if 2 € spt|V**| N M N 5;; (p) then = belongs to ¥ N X, since each geodesic segment of
Y1 touches 5’;; (p) transversally. So, 3; and X5 glue continuously across g;; (p). Note that
spt| V| N g;; (p) =%, N g;;(p) =N 5’;; (p) © M. As we will see below, that gluing
is actually C*. To prove this, we will show that the varifold tangent VarTan(V** z) is a
straight line for every x € spt||V**| N 5;; (p), that is, x is not a junction.

In fact, as x € M , we can choose by the interior regularity an open neighborhood
U < M of z such that V¥* LU = 22:1 v(a; N U,m;) for some I, my,---,m; € N and
{aq, -+, a;} geodesic segments in M from x to oU. So, VarTan(V**, z) = Zi‘=1 v(ry,m;) <
R?, where each r; is a semi-straight line from the origin 0 € R? (see Figure [[T]). In other
words, VarTan(V**,x) € IV;(R?) is a stationary cone satisfying the Proposition .15

then VarTan(V** z) will be a straight line with possible multiplicity.
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Figure 11

Py,

U

Source: Own construction

Step 3: Unique continuation up to the point p.

By Step 2 and property (i) (Theorem B.I3]) of replacements, we can extend ¥, to o
in A, +(p) such that Sy =Y, on As(p), 3, is given by geodesic segments possibly with
multiplicity and without interior junctions that can only touch Ay, +(p) NdM orthogonally,
Sy L Ass,(p) has a finite number of geodesic segments, and each geodesic segment of Sy
has to touch §t+ (p). Using (I0), we can continue to take replacements in this way for all
0 < 51 < s. For each 0 < s; < s as before, denote iz by ¥,,. If 0 < s} < s; <0, then we

have that ¥ = X, on Aj, ;(p). Thus

in gj (p) is given by geodesic segments possibly with multiplicity and without interior
junctions that can touch oM N (B} (p)\{p}) orthogonally only, and each geodesic segment
of ¥ has to touch S;(p). Moreover, ¥ L gtf (p) has a finite number of segments for all
0 <t < t. See Figure [2

Claim: spt||V| = % in the punctured ball B (p)\{p}.

Proof of Claim: Consider the set

v . . . .
T, = {y e spt|V]| : VarTan(V,y) is a straight line or

a semi-straight line transversal to g’;; W (p)}
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Figure 12

oM

B/ (p)

Source: Own construction

We know by [8, Lemma B.2| (see also [I9], Claim 3, p. 42) that the set T} is a dense
subset of spt| V|| N B (p).

Given y € T)' N (B (p)\{p}), let p = 75(y). Take V* the replacement of V in A;,(p)
and V** the replacement of V* in A, ,,(p) for s, € (s,t) chosen as in Step 1. By the
property (i) from Theorem BI3] we have V** = V* =V in gj (p), then

y e spt|V] N B (p) NSH(p) = spt|V*]| N B (p) NS (p).

Since spt||V**|| = ¥ in A, (p) and VarTan(V**,y) is transversal to 5’; (p), we have by (I0)
and above that y € ¥. Thus, T N (B (p)\{p}) = =, and hence spt|V | N (B (p)\{p}) < ©.
The last one is deduced using that T is a dense subset of spt|[V] N gj (p), and the fact
that ¥ is compact in B (p).

To see the converse inclusion ¥ < spt|V] in B{ (p), note that by the Constancy
Theorem |35, Theorem 41.1], we have spt|V| N (BX (p)\{p}) = ¥ in M\OM. For y €
SN oM N (B (p)\{p}), we know that VarTan(X,y) is a straight line perpendicular to

T,

spt[V] N (BE (p)\{p}) = =

(M), which implies that y is a limit point of £ N M and thus y € spt|V|. Therefore,

Step 4: V is a free boundary geodesic network

From the interior regularity (Theorem [B.11]) and the Step 3, V' is a geodesic network
(finite) in B (p) and a free boundary geodesic network (finite) in (B (p)\{p}). In particu-
lar, ©(VLOM, p) = 0. So, if there exist geodesic segments at p, as in the Figure T2, then
those segments must satisfy (), and then V' is a free boundary geodesic network (finite)

in B (p).
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Varying p € 0M, we see that V' is a free boundary geodesic network (not necessarily
finite) on M. Given any compact K < M , the interior regularity says that V'L K has a
finite number of geodesic segments. So, we only need to show that there exists a compact
K < M such that V L (M\K) has also a finite number of geodesic segments. Indeed,
take a cover of dM by open balls gj (p) as in the previous steps, extract a finite cover

{g;r (pj)}i_y, and define K := M\(U\_, g;r (pj)). This finishes the proof.

O

Remark 3.17. We believe that in the above theorem the stationary condition is enough
for V' to be a geodesic network finite in M\0M, like in the case without boundary ([4]).
In a general case, if we suppose noting about the boundary and V is just stationary in
M, then we believe that V' is given by the union of a geodesic network finite V; in M\ M
with another geodesic network finite V5 on M, this last one considered as a varifold in

OM (the geodesics of V, are geodesic on d M, not necessary geodesic on M.)
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4 THE WIDTH OF A FULL ELLIPSE

In this section we will prove our main theorem about p-widths: we will calculate the
first p-widths of B? and E?, where E? is a planar full ellipse C*®-close to B?. As in Aiex [2],
we will take the p-sweepouts from Guth [15, Section 6]. We will consider some adaptations
to get a convenient upper bound for the mass of the cycles. Also, we will need to take
a better estimate than that given by the Cauchy-Crofton Formula. Indeed, to calculate
the widths of the unit sphere in [2], the Cauchy-Crofton Formula given a sharp estimate,
which does not happen in our case. Fortunately, by our regularity results, we do not need

a sharp estimate a priori, but we will give a sharp estimate in the appendix.

4.1 Planar Cauchy-Crofton Formula

In this section we follow Do Carmo [10, Section 1.7 C].

Let £ be the set of straight lines in the plane. A straight line r in the plane is
determined by the distance p = 0 from r to the origin of the coordinates and by the angle
0, 0 < 6 < 2m, which a half-line starting at the origin and normal to » makes with the x

axis (see Figure [[3]). The equation of r in terms of these parameters is given by

x cos(f) + ysin(d) = p.

We refer to r as above by r,.

Figure 13

%

Source: Own construction

Given a piecewise C! curve C : [a,b] — R?, let n(p, #) be the number of intersection

points (with multiplicity) of the stratight line r,o with C. The function n(p,#) is finite
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almost everywhere. The Cauchy-Crofton formula [I0, Theorem 3, p. 41| states that the
length L(C) of C is given by

L(C) = % fo ' fw n(p, 8)dpdo. (12)

4.2 A Sweepout for B?

The sweepout that we will use to calculate the p-widths is given by a map whose image
is given by real algebraic varieties. The properties of this map can be found in Guth [I5]
Section 6].

Let Q; : R? — R denote the following polynomials for i = 1,...,4:

Qi(z,y) =2, @Qz,y) =y, Qs(r,y)= z? and Qa(z,y) = 2y.

Also, put A, = span (1 U?_; @Q;)\{0} and define the relation @ ~ AQ@, for A # 0 and
Q) € A,. The quotient (A,, ~) can be identified with RP? and by this identification we
can define the map F, : RP? — Z,.(B? 0B?% Z,), which send a class [Q] to the real
algebraic variety defined by Q(z,y) = 0 restricted to B?, considered as a mod 2 relative
Lipschitz cycle (see [15, Section 6]).

As proved in [I5, Section 6], F), is a flat continuous map and it defines a p-sweepout.
Also, in the next lemma we will use the Cauchy-Crofton formula to prove that F,, has no

concentration of mass, thus Fj, € P,(B?).

Lemma 4.1. The map F, : RP? — Z, ,.(B? 0B% Zy) has no concentration of mass for
p=1,...,4.

Proof. Without loss of generality, consider Py = (pg,0) € B? for py = 0, and the ball
B, (P,) for small r > 0.

If po > 0, note that for § € [0,7/2] the straight line 7,4 intersects B,(F) if and
only if p € [pocos(f) — r,pocos(f) + r] (see Figure [[4 (a)). On the other hand, if 6 €
(m/2 + sin~'(r/po), 7], then 7,4 does not intersect B,.(Py) N B? for all p (see Figure [4]
(®)).

For p = 1,...,4, we have that F,([Q]) is an algebraic variety of degree at most 2, so
F,([Q]) intersects r,¢ at most 2 times. By the Cauchy-Crofton Formula and symmetry,
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Figure 14

(b)

NG
Source: Own construction
we obtain
) 9 7/24+sin "1 (r/po)  po cos(8)+r
IB(QDIER)eB) < 3 | | 2dpdd
2 0 po cos(0)—r

= 4r (I +sin~! <L>) .
2 Do

In the same way we have that |F,([Q])||(B.(Py)\0B?) < 4rm, when py = 0. Then, in
all the cases we conclude that ||F,([Q])|(B.(Py)\¢B?) — 0 as r — 0.
U

In the following, we estimate an upper bound for |F,([Q])|, p = 1,...,4. In other
words, we estimate the maximum length of the algebraic variety F,([(Q)]). By the defini-
tions above, F,([Q]) is degenerate or is the restriction to B? of a straight line, or of two
straight lines, or of a parabola, or of a hyperbola. Actually, F,([Q]) is a quadratic curve
which is not an ellipse, since we excluded the polynomial Q5(z,y) = y*. In the Appendix

we will give a sharp upper bound for |F,([Q])|,p =1, - ,4.

Lemma 4.2. For any [Q] € RPP we have that |F,([Q])] < 2, p = 1,2, and |F,([Q])| <
452, p=3,4.

Proof. Clearly, for p = 1,2 the algebraic variety F,([Q]) is degenerate or the restriction
to B2 of a straight line, thus |F,([Q])| < 2 for p = 1,2 and for all [Q] € RP*.

Forp = 1,...,4 note that if F,([Q]) is degenerate or the intersection to B? of a straight
line, or two straight lines, then | F,([Q])| < 4. Also, this estimate holds when F,([Q]) is
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the restriction to B? of a hyperbola H such that each branch of the hyperbola intersects
B?. Indeed, if we take B,.(0) for r large, each arm of the branches tends to their respective
asymptotes, so the length of the two asymptotes restricted to B,.(0) is bigger than the
length L(H) of this hyperbola restricted to B,(0), then L(H) < 4r in B,(0) (see Figure
(a)). Decreasing r, we note that the reduction of length is at least the reduction of 4r,
since there exist four points in H N 0B? during the reduction r — 1. We conclude that

L(H) <4 in B2

Figure 15

Source: Own construction

In the other cases (hyperbolas with a unique branch intersecting B2, or parabolas
intersecting B?), we choose an orientation such that the axis of symmetry of the curve is
orthogonal to z-axis. Hence, F,([Q]) will be a convex downward curve intersected with
B? and we have two cases: there exist two points A, C' in the intersection of the curve with
0B? such that y(A),y(C) > 0; or there exists at most one such point. In the first case, as
in the examples of the Figure [ (b), take B = (z(A), —y(A)), D = (z(C), —y(C)) € 0 B>
(AB and C'D are perpendicular to z-axis), and the circular arc BD. The length of this
convex curve in B? is at most the length of AB+ BD + CD. Let a (resp. 3) be the angle
between OA (resp. OC) and z-axis for a, § € (0, 7/2], then

L(F,([Q])) < AB+ CD + BD = 2sin(«a) + 2sin(f) + 7 — (a + ) < 4.52. (13)

In the second case, as in the example of the Figure[IH (¢), where does not exist A or C'

as in the first case, we take @ = 0 or § = 0 in the above estimate, respectively. Without
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loss of generality suppose 8 = 0, then

L(F,([Q])) < 2sin(a) + 7 — () < 3.83, (14)

for ac € [0, 7/2].

4.3 The First Widths of B? and E?

In this section we will prove our main result about k-widths: we will calculate the low
p-widths of the unit ball B2, and of full ellipses C*-close to B2.
The next theorem is similar to Aiex [2, A.1] and a weaker version of the results in

Marques and Neves [25].

Theorem 4.3. Let M? be a Riemannian manifold with non-empty strictly convex boun-
dary. If w,(M) = wpi1(M) for some p, then there exist infinitely many free boundary

geodesic networks whose masses tend to wy,(M).

Proof. As proved in |2, Proposition A.1], the proof follows from [25, Theorem 6.1] for the
case without boundary. For our case take the following modifications: note that the results
of [25, Section 3.3] can be extended from the results of [22 Section 2|; the conclusion of
[25, Proposition 4.8] holds for free boundary geodesic networks in consequence of Theorem
and Theorem [A] ; take Theorem 2211 in place of [25, Proposition 2.4]; for the sets S
and T we take the supports on free boundary geodesic networks.

As spt| V] is a geodesic network with free boundary, we can use the Constancy Theo-
rem in [25, Claim 6.2| as in [2, Proposition A.1]. Finally, |25, Theorem 2.8] follows from
Theorem 2.22] as noted in the proof of Theorem 4.21 from [19], and the conclusion about
the masses follow from the fact that the infinitely many free boundary geodesic networks

are taken from the proof of |25, Proposition 4.8]. O

Now, we will prove our Main Theorem B. Compare with Theorems 5.2 and 5.6 from

2].

Main Theorem B. For B? we have

(i) wi(B?) = wa(B?) = 2;
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(ii) ws(B?) = wi(B?) = 4.

Also, if E* is a full ellipse C*-close to B? with small diameter d and large diameter

D, then
(111) wi(E?) = d and we(E?*) = D;

(iv) w3(E?),ws(E?) € {2d,d + D,2D} such that w3(E?) # wy(E?). In particular, one of
those widths is reached by a I1-varifold with multiplicity two.

Proof. (i) Let p = 1,2 and take the p-sweepout F, € P,(B?). By Lemma we know
that |F,([Q])] < 2 for all [Q] € RPP, thus w;(B?),ws(B?) < 2.

Now, given € > 0 we can find by the Corollary a special varifold V' such that
0 < w,(B?) < |V|(B?) < wy(B?)+¢€ < 2+¢. By Theorem [A] and Theorem B.7] we actually
have that V is a diameter of B? and |V|(B?) = 2. Therefore, wy(B?) = wy(B?) = 2.

(i17) Still consider p = 1,2. As E? is close to B%, we deduce by continuity (as did in
[2, Proposition 5.4 (iv)]) that w,(E?) is close to w,(B?). Then, w,(E?) < 2 + ¢ for some
small § > 0. By the same argument above using Corollary 223, Theorem [A] and Corollary
B9, we conclude that the only possible values for w;(E?) and wo(E?) are d or D. Finally,
by Theorem 3 and Corollary B9 we know that w;(E?) # wo(E?), then w;(E?) = d and
we(E?) = D.

(i1) As wy(FE?) = D, by the same argument above we have that wy(E?) # ws(E?). Tt
follows from Corollary that w3(E?) > 2d = 4 — ¢ for some small § > 0. Therefore,
by continuity ws(B?) > 4 — € for some small ¢ > 0, which implies by Theorem [3.7] that
w3(B?) = 4 (two diameters). Now, by Lemma 2] we obtain 4 < w3(B?),w,(B?) < 4.52 <
(length of P3), and so by Theorem B.7 we actually have that 4 < ws(B?),ws(B?) < 4,
which concludes this case.

(17v) We use again the continuity and Corollary to conclude that the only possible
values to w3(FE?) and wy(E?) are 2d,d + D or 2D. Finally, by Theorem E3] and Corollary
we know that ws(E?) # wy(E?).

U

Remark 4.4. An alternative way to see that ws(B?) > 2, without using Theorem F3]
is to use the Lusternik-Schnirelmann theory as in Guth [I5], p. 1923-24. Indeed, we can
take three disjoint balls B; in B?\@B? with radius 0.4 each ball. Each 3-sweepout ® of
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B? is also an 1-sweepout of B?, in particular it is an 1-sweepout of each B;. Lusternik-
Schnirelmann theory says that ® contains a cycle such that its mass is at least the sum of
the first width of each B;. By the item (i) above we know that the first width of a ball is
equal to the diameter of that ball, so ws(B?) = 3 x 0.8 > 2. Therefore, we could calculate
the widths above of B? without use Theorem However, we could not determine the

widths above of FZ2.

Remark 4.5. For p = 1,2, note that F}, is an optimal p-sweepout in the sense that

wy(B?) = sup{M(F,([Q])) : [Q] € dmn(F})}.

The estimate obtained in the Lemma.2]is not enough to know if F), is also an optimal

p-sweepout for p = 3, 4. Actually, in the Appendix we calculate that
4 < sup{M(F,([Q))) : [Q] € dmn(F,)} ~ 4.0027,

for p = 3,4. So, F,, is almost an optimal p-sweepout for p = 3, 4.

Remark 4.6. Notice how similar is our result comparing with the results in Aiex [2]
Theorems 5.2 and 5.6] about the p-widths for the unit sphere and the ellipsoid in R?. In
fact, as in that work, we obtained in (iv) above an example of a min-max critical varifold
with multiplicity. So, as in the closed case [2], we see that in the case with boundary the

Multiplicity One Conjecture [24] is also false for min-max critical curves.
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5 FURTHER WORKS

Both in the case of the sphere, both in the case of the unit ball, we note certain
standards for the values of the widths, so we could conjecture a general formula for the
width of the unit ball in a similar way as suggested in |2, Section 6| for S2. Unfortunately,
we did not proof a general formula for the widths of the unit ball. Indeed, the sweepout
that we used does not guarantee good estimates that are sufficient to calculate the higher
widths.

With some more care, we can use the Lusternik-Schnirelmann inequality [22, Section
3] and the Theorem [37] to get that 3v/3 < ws(B?) < 6 and then, by Theorem 37 we can
estimate that ws(B?) = 3+/3,4+/2,10sin(7/5), or 6. We expected that ws(B?) = 6, if we
could prove a more strong regularity theorem than Theorem [Al However, so far we did
not conclude the details of that argument.

As we commented in Remark BT we expected that holds a more general theorem
than Theorem [A} if M"! is a Riemannian manifold and V' € IV;(M) is a stationary
varifold, then V is a geodesic network finite ¥; in M\0M union with another geodesic
network finite X5 in 0 M, this last one considered as a varifold in 0 M, that is, the geodesics
of ¥ are geodesics on dM, not necessary geodesics on M.

If we have a general formula for the widths, automatically we deduce the constant in
the Weyl law for the volume spectrum. But, since to find a general formula seems difficult,
it is to be expected that it will be possible to deduce that constant without finding a such
formula.

Finally, to find the maximum length of a real algebraic curve of degree d > 0 restricted
to B? can be a little complicated, even in the case with degree two, as we did in the
Appendix. Moreover, the result did not follow the intuition of [I5, p. 1974|. For higher
degree, or for a general degree, we do not know the way to calculate these maximum

length.
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APPENDIX

In the Lemma we calculated an upper bound for the length of F,([Q]) for
p =1,...,4. Note that we did not calculate a sharp upper bound. In this appendix we
will do it, that is, we will calculate the maximum length of a parabola or a hyperbola
restricted to B2, since the others cases were did in the Lemma B2l As we will see, this
sharp upper bound will imply that F), is not an optimal p-sweepout of B? for p = 3, 4.
The length of a real algebraic curve C' can be bounded in terms of its degree using
the Cauchy-Crofton formula ([I2)). In fact, if that curve has degree d, then it intersects
a straight line at most d times, so by ([I2)) the length of C' restricted to B? is at most
d - area(B?) = md. Obviously, this upper bound is not sharp. For example, if d = 1
we have that C' is a straight line and the length of the intersection of a straight line
with B? is at most 2. It is intuitive, and it was conjectured in Guth [I5, p. 1974], that
the sharp upper bound is similar to the case d = 1, that is, L(C' N B?) < 2d for all
d € N. Contradicting that result, we will see that for d = 2 we can find C' such that
L(C N B?%) > 4. Our counterexample in the case d = 2 is a parabola P(z) such that its
length in B? is bigger than any other parabola restricted to B?, and L(P(x) N B?) > 4.
Moreover, |F,([Q])|| < L(P(z) N B?) for p=1,...,4. See the arguments below.

Theorem. Let Ly, such that L(P(z) N B?) < Lyae for any parabola P(x). Then
IE,([QDI] < Lmaz for p = 1,...,4 and all [Q] € RPP. Furthermore, that estimate is
sharp and Lq, ~ 4.0027.

Proof. By the proof of Lemma 2, we know that if F,([Q]) is not the restriction to B?
of a hyperbola with a unique branch intersecting B2, or is not the restriction to B? of a
parabola, then ||F,([Q])| <4 fori=1,---,4. So we focus on these two exceptional cases
to improve the estimate (I3). We will use the fact that in these cases the curvature of
the curve F,([Q]) = v(x) is strictly increasing in the direction of the axis of symmetry,
and it has at most four points in the intersection with ¢B2. Also, as in Lemma F2], we
choose an orientation such that the axis of symmetry of that curve is orthogonal to x-axis,
then the curve will be downward convex with vertex V' such that, y(x) is increasing for
x > x(V), and decreasing for x < x(V). We will fix a such curve with L(y N B?) > 0,
and by translation we will find the positions such that the length of that curve restricted

to B? increases, next we will change the parameters of that curve to get the maximum
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length in B2

First of all, suppose that V ¢ B%. As L(y N B?) > 0, then when v N B? is connected
there will be one point A € 0B? where the curve goes inside B2, and another point D € 0B?
where the curve goes outside. Consider z(A) < z(D) and, because of symmetry, we can
assume without loss of generality that x(V) < x(A). For x > x(V) the curve is strictly
increasing, so y(A) < y(D). If y(A) < 0, the estimate (I4) says that L(y N B?) < 3.83.
For the case y(A) > 0, we have that y(A) < 1 and L(y N B?) is bounded by |AE| + |DE],
where E = (z(D),y(A)), see Figure [ATl (a). Let 8 be the clockwise angle between the
z-axis and OD, and let o be the angle between OA and the z-axis. So a € (0,7/2),
B e (0,7), and

L(yN B%) < |AE| + |DE| = cos(a) + cos(f) + sin() — sin(a) < 2.42. (A1)

Figure Al
(b)

v
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C D v

Source: Own construction

Is not difficult to see that to get the maximum length of v N B? by translations, it is
necessary that V € B2 We will see this fact in the next case below, and we could have
done this in the previous case, however the estimate above is enough for what we need.

Suppose now the case V ¢ B? and v N B? is not connected. As the intersection v N 0B>
has at most four points and L(y N B?) > 0, we have two possibilities for this case: there
exists at least one and at most two points of v, which are tangent to 0B?; or does not exist
such tangent points. In the first case, ¥ N B? has a connected component which length is
the length of v N B?, so we can estimate this case as in the previous case. In the second
case, there exist two points A, C' € 0B? where the curve goes inside the B2, and two points
B, D € 0B? where the curve goes outside. Consider z(A) < z(B) < z(C) < z(D). We
claim that z(B) < z(V) < z(C). Otherwise, as V ¢ B?, we should have z(V) < z(A),
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or z(D) < z(V). By symmetry, it is enough to verify that the second inequality can
not be true (see Figure [ATl (b)). Indeed, the curvature k. (z) of the y(x) is increasing
for # < x(V), so as v goes out of B at B and goes inside of B? at C, we have that
K (2(C)) > kg2 (2(C)) = 1. On the other hand, as v goes inside of B? at C and goes out
of B? at D, we have that . (2(C)) < rkap2(x(C)) = 1, which is a contradiction. Therefore,
x(B) < 2(V) < x(C). Now we have (by symmetry) two cases: C'D passes through or is
on the left of O; or AB is on the left of O, and C'D is on the right of O. See Figures [A2]
and

In the first case, note that y(D) > 0, z(B),z(C) < 0, =1 < y(B),y(C) < 0, and
y(A) < 1,2(A) < 0, since y(x) is decreasing for x < z(V'), increasing for x > z(V),
V ¢ B2 and CD is not on the right of O (see Figure [A2] (a)). If y(A) < 0, again by the
estimate (I4]) we know that L(yNB?) < 3.83. In the case y(A) > 0, take a short translation
of v and get news points A’, B',C’, D' € v N dB2, as above. To keep the properties above
for the news points, we translating v such that C’ — V, and |C"D’| = |CD| is constant.

We note that L(7) g,,

increase because C” is approaching to V, and then the curvature of
7 is increasing between C’ and D’. Also, we have that + remains in B? between C’ and
D', since () is increase for x > z(V), |C"D’| < 1, C"D’ is not on the right of O, and
then AC'E'D’ < B?, where E' = (z(D’),y(C")) (see Figure [A2] (b)). Furthermore, note
that the graphic of v is going up and to the right, so x(A’), y(A’), x(B’) increase and y(B’)
decrease, by the properties above. In particular, |A’B’| is increasing, B’ is approaching to
V, and then L(7) Z
(see Figure [A2] (b)).

is increasing. In the end get that L(y N B?) increased, and V € B2

Figure A2

Source: Own construction
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In the second case, we just know that z(A), y(B),y(C) <0, y(A),y(D),z(D) > 0 (see
Figure[A3] (a)). In this case, we take a short translation of v for 2:(V') fixed and such that

y(V) increasing to get news points A’, B’, C’, D" with the same properties. We take this

translation as long as A’B’ and C’D’ do not pass through the origin O, and V ¢ 0B2%. In
particular, these properties apply to the news points. Note that x(A"), z(B’),y(A"),y(D")
increase, z(C"),z(D’),y(B’),y(C") decrease, then |A’B’|,|C"D’| increase. Also, as B, C’

B’ D’
v and L(v)|,,

are approaching to V, we have that L(v) are increasing. We stop that
translation when V touches 0B2, or when A’B’ or C'D’ pass through the origin, in the
last case we continue with the translation as in the previous case until V' touches 0B2. In

the end, we get again that L(y N B?) increased and V € B? (see Figure [AJ] (b)).
Figure A3

Source: Own construction

By the above arguments and by the estimates ([4) and [[A1)] we have that L(yNB?) <
3.83, or the maximum length of v N B? is reached for some v such that V € B? and such
that there exist two points A, D € v N dB? with y(A),y(D) > 0. We will see that the
second situation happens, and we will calculate it. First, we will see that if we fix ~
in the last situation, then the maximum length of v N B? is reached when z(V) = 0,
in other words, when we translate v such that y(V')=constant and (V) — 0. Indeed,
suppose for now that v N B? is connected, x(A) < z(V) < x(D), |z(D)| < |z(A)|, and
consider a such translation so that A — A", D — D'. If (D) < 0, then during the
translation and as long as x(D’) < 0, we have that the curve goes inside B?, and in
particular L(y N B?) increase (see Figure [AZ] (b)). Now, consider the case x(D) = 0, as
in the Figure[A4] (a). In this case, let |[2(V)| = € > 0. Take E = (—(x(D) +¢€),y(D)), F =
(—2(D),y(D)), G = (x(A) + &, y(A)), H = (2(A"),y(D)), and I = (s(A"), y(A)), we claim
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that |[EH| < |IG|. To see this, we take a straight line (), which is tangent to v(z) in
A’ and take J = (r~Y(y(D)),y(D)),L = ((r~*(y(A)),y(A)). Note that HI is orthogonal
to JEF and AG, also E,H € JF, I,L € AG and € = |EF| = |AG| (see Figures [A4] (a)
and [A5 (a)). Since A, F € 0B?, and |EF| = |AG)|, if |[EH| = |IG| then we would have
|HF| < |AI| and, therefore, |HA’| < |A’I], because y(A’) > 0. The latter and the fact

that ~y is convex imply that EH < JH < IL < IG, which is a contradiction. Let 7 be the

curve 7 after the translation. The inequality FH < IG means that LW)‘E/ < L(7) j,,

since the curvature of v is strictly increasing in the direction of the vertex V. Thus, the
length of v N B? increased after the translation A — A’, B — B’, because L(W)‘; is the

j, is the amount that comes into B2.

amount of the curve that comes out of B2, and L(7)

Figure A4

Source: Own construction

Figure A5

Source: Own construction
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For the case v N B? not connected, the length of v N B? also increase after that
translation. Indeed, in this case we already know that there exist A, B,C,D € v N B2
such that ~ is inside B? between A and B, and between C and D; otherwise is outside.
Without loss of generality we can suppose z(A) < z(B) < z(C) < z(D), (V) < 0, and, as
we are supposing that y(A),y(D) > 0, we have that y(B), y(C) < 0. Also, as V € B?, then
z(A) < z(V) < x(B) or z(C) < z(V) < x(D). Actually, the case z(A) < z(V) < z(B),
(V) < 0 implies that z(A) < z(V) < z(B), so we can see in an analogous way as in the
Figure [ATl (b) that the latter can not happen, then z(C) < (V) < x(D). In particular,
z(A) < z(B) < 2(C) < 0. The extreme case C' =V is sketchy in the Figure [A5] (b). Note
that during the translation such that z(V') — 0, we have that z(A),y(A) increase since
the graphic of 7 goes to right. Moreover, z(A) < 0 during that translation. In the end, we
get new points A’ D’ such that —z(D’) = x(A") < 0, y(D') = y(A') > 0, and V € B2, the
latter is because the vertex V' is the global minimum of v(x). Finally, observe that v N B2
is now connected after the translation, since y(A’),y(D’) > 0, (V) = 0, and v N B? has
at most four points. In particular, L(y N B?) increased, since the curve went inside B?
for v(z) < 0, and the previous paragraph for v(z) > 0.

By the last two paragraphs, we need to find an upper bound for L(y N B?), when
x(V) =0, L(y N B?) is connected, and {y N B%} ~ {V} is given by two points A, D such
that —x(A) = z(D), and y(A) = y(D) > 0. In this situation, if we translate v such that
y(V) — —1, then L(y N B?) increase. So, we will consider the last hypothesis above with
V = (0,—1), in other words, v will be tangent to 0B% in V (see Figure[Af] (a)).

Figure A6

(b)

Source: Own construction
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For us, the curve v(x) can be a hyperbola H(z) with a unique branch intersecting B2,

or a parabola P(z). To satisfy our situation, the equations become
H(x) = ngQ +22—(1+¢) and P(z) =ax® -1,

where a,c,d > 0, H(1) = (¢/d)v/d>+1— (1 +¢) > 0, and P(1) = a — 1 > 0. Note
that if the branch of the hyperbola and the parabola above pass through the same points
A, D, as in the Figure [Adl (b), then H(z) N P(x) = {A, D, V}, because of the symmetry
and because that intersection can be at most four points. As —z(A) = z(D) < 1, we
conclude that the graphic of H(x) is above of P(z) for z(A) < x < x(D). In particular,
L(H(z) N B%) < L(P(z) N B?), so we only need to bound L(P(x) N B?) for a > 1.
As a > 1, the points A, D can be determined uniquely by the value of the parameter
a. In fact, —w(A) = 2(D) = z(a) = v/2a — 1/a, where z(a) is the positive solution of

22 4+ (ax? — 1)? = 1. Then, we can calculate L(P(x) N B?) in the parameter a :

L(P(z) N\ B?*) = L(a) = Qf(a) V1 + 4a22? dx
In («/4@%(&)2 +1+ 2ax(a)) + 2ax(a)y/4a’x(a)? + 1

2a
In (v8a — 3+ 2v2a — 1) + 2¢/2a — 1v/8a — 3
2a '

By the expression above we have L(P(xz) N B?) — 4 as a — o (P(z) N B? becomes
two diameters). We will prove that L(a) has a global maximum point in ag < oo, and

then L(ag) > 4. Indeed, taking the derivative of the expression above, we obtain

_8a—3-(1/2)In (v8a — 3+ 2v2a—1) v/8a — 3y/2a — 1

L) a?+/2a — 14/8a — 3

Put z = 2a — 1, the denominator above becomes

1
4z +1— 5ln (VAz +1+22) Viz + 1/
So, the sign of L'(a) is the sign of

LV? S (VI T4 2v5). (A2)
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Note that the expression above starts positive for a > 1 and tends to —oo when a — o0,
moreover it is strictly decreasing for a > 1. The last one is because the derivative of the

last expression is given by

2+ 22

_25/2\/42 +1

<0, for a>1.

Therefore, there exists a unique ag > 1 such that L'(ag) = 0. Moreover, L(a) is strictly
increasing for 1 < a < ag, and it is strictly decreasing for a > ag. In particular, L(ag) > 4
and L(ap) is the global maximum of L(a), since L(a) — 4 as a — o0. We can estimate ag
such that becomes zero, and we obtain ay ~ 94.091282, and then L., = L(ag) ~
4.002671.
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